Как найти коэффициент теплопроводности бетона

Содержание

  1. Как влияет теплопроводность бетона на микроклимат внутри помещения
  2. Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями
  3. Коэффициент теплопроводности бетона для различных видов монолита
  4. Какие факторы влияют на коэффициент теплопроводности железобетона
  5. Теплопроводность бетона и утепление зданий
  6. Как производится расчет с учетом коэффициента теплопроводности бетона
  7. Заключение
  8. Похожие статьи:

При выполнении мероприятий по строительству зданий или ремонту ранее возведенных построек важно надежно теплоизолировать стены строения. Для уменьшения объема тепловых потерь и снижения затрат на поддержание комфортной температуры важно ответственно подойти к выбору теплоизоляционных материалов и выполнению тепловых расчетов. Решая задачи, связанные с обеспечением энергоэффективности бетонных строений, необходимо учитывать теплопроводность бетона. Этот показатель характеризует способность проводить тепло и является одной из наиболее важных характеристик.

Теплопроводность бетона

Теплопроводность бетонного массива

Как влияет теплопроводность бетона на микроклимат внутри помещения

Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.

Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:

  • существенно сократить тепловые потери;
  • снизить затраты на обогрев помещения;
  • обеспечить внутри здания комфортный микроклимат.

Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:

  • при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
  • снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.

Комфортный микроклимат внутри здания

Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат

Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.

Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями

Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:

  • коэффициент теплопроводности железобетона или бетона. Это специальный показатель, характеризующий объем тепловой энергии, которая может пройти через различные стройматериалы за определенный промежуток времени. При снижении величины коэффициента, способность материала проводить тепло уменьшается, а при возрастании показателя – скорость отвода тепла возрастает;
  • тепловое сопротивление строительных конструкций. Этот параметр характеризует свойства стройматериалов препятствовать потерям тепловой энергии. Тепловое сопротивление является обратным показателем, если сравнивать со степенью теплопроводности. При повышенном значении показателя теплового сопротивления стройматериал может применяться для теплоизоляционных целей, а при пониженном – для ускоренного отвода тепла.

Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.

Теплопроводность железобетона

Коэффициент теплопроводности материалов

Коэффициент теплопроводности бетона для различных видов монолита

[adsense1]

Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м2х ºC для наиболее распространенных разновидностей материала.

Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:

  • для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м3 коэффициент равен 0,14, а при плотности 1 т/м3 уже составляет 0,31. При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
  • керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м3 параметр теплопроводности возрастает до 0,66.

Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:

  • для тяжелого бетона плотностью 2,4 т/м3, содержащего щебеночный наполнитель, показатель составляет 1,51;
  • бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
  • керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.

Показатели теплоотдачи

Коэффициент теплопроводности бетона

  надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.

Какие факторы влияют на коэффициент теплопроводности железобетона

[adsense2]

Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:

  • структура бетонного массива. При создании внутри монолита воздушных полостей процесс передачи тепла через ячеистый массив осуществляется на небольшой скорости и с минимальными потерями. Если подытожить, то увеличенная концентрация ячеек позволяет снизить потери тепла;
  • удельный вес материала. Плотность бетонного массива влияет на его структуру и, соответственно, на интенсивность процесса теплообмена. При возрастании плотности материала увеличивается степень теплопередачи и возрастает объем тепловых потерь;
  • концентрация влаги в бетонных стенах. Бетонный массив, имеющий пористую структуру, гигроскопичен. Частицы влаги, которые по капиллярам просачиваются вглубь бетона, заполняют воздушные поры и ускоряют тем самым процесс теплопередачи.

Выполняя расчеты необходимо учитывать, что с уменьшением влажности материала снижается степень теплопроводимости, и теряется меньшее количество тепла. Применение пористого заполнителя позволяет снизить потери тепла и обеспечить комфортный микроклимат помещения. Стройматериалы с низкой теплопроводностью целесообразно использовать для теплоизоляционных целей. Зная зависимость теплопроводности бетона от его характеристик можно выбрать оптимальный вид материала для постройки стен.

Теплопроводность железобетона

Коэффициент теплопроводности железобетона

Теплопроводность бетона и утепление зданий

[adsense3]

Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:

  • конструкционные, применяемые для капитальных стен. Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
  • теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.

Таблица теплопроводности

Таблица теплопроводности строительных материалов: коэффициенты

Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:

  • пенобетон – 25 см;
  • керамзитобетон – 50 см;
  • кирпичная кладка – 65 см.

Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.

Сравнительный график коэффициентов теплопроводности

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:

  • поверхности пола;
  • капитальных стен;
  • кровельной конструкции;
  • оконных и дверных проемов.

При профессиональном подходе и выборе эффективных утеплителей можно сделать свой дом более комфортным, а также сэкономить значительный объем денежных средств на отоплении.

Как производится расчет с учетом коэффициента теплопроводности бетона

[adsense4]

Для поддержания комфортной температуры и снижения теплопотерь несущие стены современных зданий выполняются многослойными и включают капитальные конструкции, теплоизоляционные материалы, отделочные покрытия. Каждый слой сэндвича имеет определенную толщину.

Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:

  • R – величина температурного сопротивления;
  • p – значение толщины слоя, указанное в метрах;
  • k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.

Используя данную зависимость можно самостоятельно выполнить расчет, используя обычный калькулятор. Для этого необходимо разделить толщину строительной конструкции на коэффициент теплопроводимости бетона или другого материала. Рассмотрим пример расчета для стен толщиной 0,3 метра, возведенных из газобетона с удельным весом 1000 т/м3 и степенью теплопроводности, равной 0,31.

Алгоритм вычислений:

[adsense5]

  • Рассчитайте термосопротивление, разделив толщину стен на коэффициент теплопроводности – 0,3:0,31=0,96.
  • Отнимите полученный результат от предельно допустимого для определенной климатической зоны – 3,28-0,96=2,32.

Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.

Заключение

При выполнении проектных работ и осуществлении мероприятий по теплоизоляции зданий необходимо учитывать теплопроводность бетона. Она зависит от структуры, плотности и влажности стройматериала. Понимая определение теплопроводности, и владея методикой расчетов, несложно определить толщину утеплителя для бетонных стен здания. Правильно подобранный теплоизолятор позволит минимизировать тепловые потери, уменьшить затраты на отопление, а также обеспечить поддержание благоприятной температуры.

Как вам статья?

Оглавление

  • 1 Способность материалов проводить тепло
    • 1.1 Критерии зависимости
  • 2 Состав легких бетонов
    • 2.1 Перлитобетон
    • 2.2 Керамзитобетон
  • 3 Прочность или теплоизоляция?
  • 4 Какая теплопроводность изделий?
  • 5 Определение
  • 6 Влажность
  • 7 Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями
  • 8 Какие факторы влияют на коэффициент теплопроводности железобетона
  • 9 Как производится расчет с учетом коэффициента теплопроводности бетона
  • 10 Некоторые особенности материала и его коэффициент теплопроводности
  • 11 Что влияет на величину теплопроводности?
  • 12 Теплопроводность готового здания. Варианты утепления конструкций
  • 13 Теплопроводность материалов. Таблица
  • 14 Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица
    • 14.1 Понятие теплопроводности
    • 14.2 Факторы, влияющие на теплопроводность
    • 14.3 Понятие теплопроводности на практике
    • 14.4 Конструкционные материалы и их показатели
    • 14.5 Материалы из бетона с добавлением пористых заполнителей
    • 14.6 Показатели теплоизоляционных материалов
    • 14.7 Таблица показателей
  • 15 Основные характеристики
  • 16 Виды пенобетона
  • 17 Перегородки из пенобетонных блоков
  • 18 Свойства различных типов блоков
    • 18.1 Красный керамический
      • 18.1.1 Клинкерный
      • 18.1.2 Характеристика шамотного
    • 18.2 Силикатный
  • 19 Что влияет на показатели?

Способность материалов проводить тепло

По сути, это свойство любого материала пропускать через свою структуру тепло. И чем больше тепловой энергии проходит, тем выше теплопроводность. Для того чтобы сохранить температуру внутри дома, необходимы стройматериалы с низким коэффициентом.

Критерии зависимости

К второстепенным относят влажность бетонной конструкции, температуру окружающей среды, качественное состояние самого бетона.

Состав легких бетонов

Итак, нас будут интересовать легкие бетоны, которые обладают самой низкой теплопроводностью и могут использоваться для сооружения несущих конструкций. Обозначим два из них, которые сегодня все чаще стали применяться для сооружения домов.

Это бетон, в состав которого входит перлит и керамзит. Сразу же оговоримся, что перлитобетон имеет плотность 1200 кг/м³, а керамзитобетон 950-1000 кг/м³.

Перлитобетон

Наименование компонента Количество компонентов
Цемент, кг 280
Перлит вспученный, м³/кг 0,9/240
Песок кварцевый, м³/кг 0,4/680
Вода, л 100-1500

Кстати, из этого раствора можно заливать как монолитные изделия, так и пустотелые. Так вот, марка первого всегда М50, а вот марка второго – М35.

Керамзитобетон

Наименование компонентов Количество компонентов
Цемент, кг 250
Керамзит, м³/кг 1,2/720
Вода, л 100-150

В зависимости от фракции используемого наполнителя керамзитобетон может быть марки М50 или М35.

Прочность или теплоизоляция?

Вот почему, решая сразу две задачи: увеличение теплоизоляционных характеристик конструкции и снижение ее себестоимости, в первую очередь необходимо соблюсти точное соотношение прочности и количества раствора.

Какая теплопроводность изделий?

Вид Показатель, Вт/м°С
Керамический Полнотелый 0,5—0,8
Щелевой 0,34—0,43
Поризованный 0,22
Клинкерный 0,8—1,16
Шамотный 0,6
Силикатный Полнотелый 0,7—0,8
Пустотелый 0,4—0,66

Характеристика теплопроводности стройматериала

Вернуться к оглавлению

Определение

Способность предмета проводить через себя тепло — важный показатель, чем больше пропускная способность, тем выше коэффициент теплосбережения. Соотношение энергии, которое охлаждает или нагревает тело в процессе теплообмена, характеризует степень пропуска.

Влажность

Например, пористый бетон обладает способностью проводить тепло на 0,14 Вт, а пропитанный водой материал — 1,1 — 2,9 Вт.

Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями

Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:

Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.

Какие факторы влияют на коэффициент теплопроводности железобетона

Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:

Коэффициент теплопроводности железобетона

Как производится расчет с учетом коэффициента теплопроводности бетона

Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:

  • R – величина температурного сопротивления;
  • p – значение толщины слоя, указанное в метрах;
  • k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.

Алгоритм вычислений:

  • Рассчитайте термосопротивление, разделив толщину стен на коэффициент теплопроводности – 0,3:0,31=0,96.
  • Отнимите полученный результат от предельно допустимого для определенной климатической зоны – 3,28-0,96=2,32.

Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.

Некоторые особенности материала и его коэффициент теплопроводности

Блоки из керамзитобетона – материала с продолжительным сроком службы, способны сохранять высокие характеристики прочности и теплоемкости на протяжении более 50 лет.

Размеры готовых элементов значительно ускоряют строительный процесс и при этом их кладку вполне можно выполнять собственноручно (без наличия специальной техники).

Сравнение теплопроводности в таблице

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Теплопроводность материалов. Таблица

Очень часто домашнему мастеру приходится выбирать, какой материал выбрать для той или иной работы. Одним из основных параметров материалов, в том числе и строительных, является их теплопроводность.

Чтобы быстро найти ответ, какой теплопроводностью обладает конкретный материал, или сравнить между собой различные материалы, очень удобно воспользоваться таблицей теплопроводности материалов.

В таблице собраны, конечно, далеко не все материалы. Но по большинству самых распространенных материалов вы с можете найти в ней значение теплопроводности.

Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица

Понятие теплопроводности

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Понятие теплопроводности на практике

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Конструкционные материалы и их показатели

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:

Еще один популярный строительный материал – кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

Таблица показателей

Основные характеристики

В основа блоков – раствор из цемента, воды, песчаного наполнителя и керамзитовых гранул. При этом основную роль играет именно концентрация и размеры последних в составе.

С увеличением размеров гранул керамзита в бетоне снижается способность материала пропускать тепло, что разрешает сооружать конструкции с узкими стенами в местах, где их уровень прочности будет достаточный, чтобы выдерживать возлагаемые нагрузки.

Такие характеристики материала – находка для строительства. При небольшой ширине стен и, соответственно, массе не требуется создания высокопрочного основания, что сокращает затраты на строительство.

Виды пенобетона

Легкие пенобетонные блоки подразделяются на три вида:

Как изготавливают пенобетон читайте в этой статье.

Перегородки из пенобетонных блоков

Рисунок 3 — монтаж перегородки из пенобетонных блоков

На внутренние перегородки из пенобетона показатель теплопроводности практически не влияет. Но при повышенной пористости структуры улучшаются звукоизоляционные свойства материала, что положительно сказывается на эксплуатационных характеристиках.

Перегородки лучше строить из теплоизоляционного пенобетона используя марки D300, D400 и D500.

Узнать недостатки пенобетона и рассчитать сколько в 1 кубе пеноблоков можно перейдя по ссылкам.

Свойства различных типов блоков

Красный керамический

Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.

  • прочность;
  • морозостойкость;
  • огнеупорность;
  • звукоизоляция.

Вернуться к оглавлению

Клинкерный

Характеристика шамотного

  • огнеупорность;
  • устойчивость к перепадам температуры;
  • высокая теплопроводность;
  • легкий вес;
  • устойчивость к воздействию щелочей и ряда кислот;
  • прочность;
  • эстетичность.

Вернуться к оглавлению

Силикатный

Что влияет на показатели?

Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.

Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:

  • Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
  • Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
  • Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
  • Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.

Теплопроводность бетона

Содержание:

  • Понятие коэффициента теплопроводности
  • Факторы, влияющие на теплопропускаемость бетона

Коэффициент теплопроводности бетона – одна из важных характеристик, учитываемых при проектировании здания. Эта величина применяется в теплотехнических расчетах, позволяющих точно определить минимально допустимую толщину стен.

Значение коэффициента теплопроводности бетона при строительстве зданий

Понятие коэффициента теплопроводности

Эта величина определяет количество тепла, проходимое через единицу объема образца при разнице температур в 1 градус Цельсия. Единица измерения – Вт/(м*C). Чем больше эта характеристика, тем выше способность материала передавать тепло и тем хуже он выполняет функции теплоизолятора.

Бетон имеет неоднородную структуру. Теплопередача определяется компонентами, входящими в состав строительного материала. Наименьшую теплопроводность имеет воздух, который находится в микропорах заполнителей и капиллярах цементного камня. Поэтому чем выше его содержание, тем лучше теплоизоляционные свойства бетонного элемента.

Факторы, влияющие на теплопропускаемость бетона

Из-за неоднородности структуры бетонных конструкций и разных условий эксплуатации коэффициент теплопроводности в этом случае – величина условная. На этот параметр оказывают влияние:

  • Плотность. Чем плотнее материал, тем ближе друг к другу находятся его частицы, тем быстрее передается тепло. Это значит, что тяжелые бетоны имеют больший коэффициент теплопроводности, по сравнению с легкими (керамзитовыми, вермикулитовыми, перлитовыми).
  • Пористость и структура пор. Чем больше объем, занятый воздухом, тем лучше материал задерживает тепло. Но на теплоизоляционные характеристики влияет не только процентное содержание воздуха, но и размеры, а также замкнутость пор. Лучше всего прохождению тепла препятствуют мелкие замкнутые поры. Крупные поры, которые сообщаются между собой, увеличивают теплопередачу.
  • Влажность. Это еще один фактор, влияющий на коэффициент теплопередачи бетона. Вода способна проводить тепло в 20 раз лучше воздуха. Поэтому увлажненный материал резко теряет теплоизоляционные характеристики. При отрицательных температурах вода в увлажненном слое замерзает, вызывая не только повышенные теплопотери здания, но и быстрое разрушение строительного материала. В таблицах, применяемых при точных теплотехнических расчетах, часто указывают три значения коэффициента теплопроводности – в сухом виде, при нормальной влажности, в увлажненном состоянии.
  • Температура. С повышением температуры коэффициент теплопроводности увеличивается.

Сравнение коэффициента теплопроводности тяжелого бетона, пено- и газобетона, керамзитобетона, фибробетона.

Наиболее высоким коэффициентом теплопроводности обладает тяжелый бетон, армированный стальными стержнями или проволокой (железобетон) – до 2,04 Вт/(м*C). Немного ниже этот показатель у неармированных бетонных элементов.

Более низким коэффициентом теплопроводности и повышенными теплоизоляционными характеристиками обладают: керамзитобетон, изготовленный с использованием кварцевого или перлитового песка, сухой пено- и газобетон. Уровень теплопередачи фибробетона сравним с аналогичным показателем плотного керамзитобетона.

Теплопроводность керамзитобетона

Таблица коэффициентов теплопроводности различных видов бетона

Вид бетона Коэффициент теплопроводности, Вт/(м*C)
Тяжелый армированный бетон 1,68- 2,04
Тяжелый бетон 1,29-1,52
Керамзитобетон (в зависимости от плотности) 0,14-0,66
Пенобетон (в зависимости от плотности) 0,08-0,37
Газобетон разной плотности 0,1-0,3
Фибробетон 0,52-0,75

Правильное проведение теплотехнических расчетов позволяет определить оптимальную толщину стен, что обеспечивает уменьшение расходов на отопление и комфортный микроклимат внутри здания.

Дата публикации: 11.12.2019

Дата обновления: 01.07.2022

Инженер-технолог по бетону с 17 летним стажем.

Образование:

1999 год – Профессионально-техническое училище №71
2005 год – Сибирская государственная автомобильно-дорожная академия по направлению
“Промышленное и гражданское строительство, Организация и технология строительного производства

Опыт работы:

Испытания образцов бетона. Определение марки бетона и цемента, прочности бетона на сжатие в лабораторныx условияx. Расчет состава бетона. Испытание арматуры. Проверка марки бетона на месте строительства. Контроль качества бетона в процессе строительства.

Производим и предлагаем продукцию:

  • Бетон М100 (В7,5)

    Бетон М100 (В7,5)

    Цена:

    4360 руб./м3

    В корзину

  • Бетон М200 (В15)

    Бетон М200 (В15)

    Цена:

    4750 руб./м3

    В корзину

  • Бетон М350 (В25)

    Бетон М350 (В25)

    Цена:

    5270 руб./м3

    В корзину

  • Бетон для фундамента М100

    Бетон для фундамента М100

    Цена:

    4360 руб./м3

    В корзину

  • Бетон для фундамента М150

    Бетон для фундамента М150

    Цена:

    4540 руб./м3

    В корзину

  • Бетон для фундамента М200

    Бетон для фундамента М200

    Цена:

    4750 руб./м3

    В корзину

Читайте также:

  • Бетон для системы «теплый пол»
  • Плотность бетона: что это такое, на что влияет?
  • Влияние температуры на бетон
  • Водонепроницаемость бетона
  • Морозостойкость бетона

Все статьи

Теплопроводность бетона — одна из важных характеристик строительного материала наряду с прочностью, плотностью и морозостойкостью. Ее учитывают в теплотехническом расчете для определения минимальной толщины наружных стен. Ограждающие конструкции в первую очередь защищают внутренние помещения от холода и промерзания. Особенно важно это для отапливаемых зданий, когда для обогрева расходуются значительные средства. Установлено, что от 20 до 30% тепла уходит через стены и перекрытия.

Строительство в разных климатических зонах предполагает эксплуатацию зданий при большом интервале внешних температур. Определение минимально необходимой толщины наружной конструкции с учетом теплотехнических свойств бетона экономически целесообразно. Это позволяет существенно сократить затраты на возведение и обогрев сооружения в отопительный сезон.

Содержание

  1. О понятии теплопроводности
  2. Что такое коэффициент теплопроводности
  3. Как рассчитать ограждающую конструкцию

О понятии теплопроводности

Теплопроводностью обладают все твердые, жидкие и газообразные вещества. Энергию от нагретого участка более холодному передают хаотично движущиеся частицы — молекулы, атомы, электроны. Чем ближе друг к другу они расположены, тем активнее происходит теплообмен.

Плотность материала напрямую влияет на его способность проводить тепло. Например, кирпич по сравнению с ячеистым бетоном более плотный, лучше проводит тепловую энергию. Кирпичная стена толщиной 500 мм также защищает помещение от теплопотерь, как легкобетонная толщиной 300 мм. Железобетон плотнее керамзитобетона в три раза, соответственно, он более теплопроницаемый.

Зависимость теплопроводности от плотности

Бетон представляет собой сложную неоднородную структуру. Входящие в состав компоненты обладают разной способностью теплопередачи. Наименьшую имеет воздух в капиллярах цементного камня и микрополостях внутри заполнителя. Чем материал пористее, тем хуже передается тепловая энергия.

Закономерную связь между видом заполнителя и теплопроводностью бетона подтверждают опыты материаловедов Довжика В. Г., Миснара А. Они установили, что чем мельче размер замкнутых пор в теле монолита, тем хуже передается тепло.

Третий фактор, влияющий на теплопроводность — влажность. Вода проводит тепло в 20 раз лучше воздуха. Заполняя поры бетона, она ухудшает теплоизоляционные качества. Зимой возможно промерзание увлажненного слоя ограждающей конструкции.

Что такое коэффициент теплопроводности

Физический смысл коэффициента теплопроводности — это количество тепла, которое проходит через образец единичного объема за одну секунду при разнице температур в один Кельвин (градус Цельсия). Единица измерения — Вт/(м °К), обозначение — λ, k, ϰ.

Чем выше значение коэффициента, тем большей способностью к передаче тепла обладает материал. В абсолютном вакууме λ=0, максимальный — у алмаза и графена, применяемого в наноразработках.

У бетона значение коэффициента теплопроводности находится в пределах 0,05 -2,02 Вт/(м °К) в зависимости от плотности и влажности материала. У ячеистого автоклавного бетона марки М150 λ=0,055 Вт/(м °К), а тяжелые бетоны М800-1000 характеризуются показателем 2,02 Вт/(м °К).

В строительстве при расчете конструкций на сопротивление теплопередаче используют таблицу с точными значениями коэффициента. Его указывают для трех состояний материала:

  • в сухом виде;
  • при нормальной влажности;
  • при повышенной влажности.

Теплотехнический расчет проводят в соответствии с условиями эксплуатации бетона.

От чего зависит величина коэффициента

Коэффициент теплопроводности бетона определяют опытным путем. Поскольку у материала неоднородная структура, то величина непостоянна и носит условный характер.

Параметры, от которых зависит показатель:

  • Плотность. Тепловую энергию передают друг другу частицы, поэтому чем ближе они расположены, тем быстрее этот процесс. Соответственно, рыхлые материалы с меньшей плотностью способны лучше противостоять теплопередаче.
  • Пористость материала. Тепловой поток перемещается сквозь толщу монолита, часть которого составляют воздушные пустоты. Теплопроводность воздуха очень мала — 0,02 Вт/(м °К). Чем больше занятый воздухом объем, тем коэффициент λ ниже.
  • Структура пор — размеры и замкнутость. Мелкие полости снижают скорость передачи энергии, в то время как в крупных сообщающихся отверстиях теплообмен совершается конвекционным путем, увеличивая тем самым общую теплопередачу.
  • Влажность. Коэффициент теплопроводности воды 0,6 Вт/м К, это достаточно большой показатель. Проникая в полости бетона, влага уменьшает способность материала сохранять тепло.
  • Температура. Чем она у вещества выше, тем быстрее движутся молекулы. Зависимость от температуры линейная, выражается формулой λ=λо х (1+b х t), где λ и λо — искомый и начальный коэффициенты теплопроводности, b — справочная величина, t — температура в градусах.

Таблица теплопроводности кирпича и бетона

Как рассчитать ограждающую конструкцию

Чтобы определить минимальную толщину наружной стены или перекрытия, при которой в помещении сохранится благоприятный микроклимат в жару и мороз, используют теплотехнический расчет.

В упрощенном виде он представлен формулой:

R=δ/ λ, где

R — нормативное температурное сопротивление, м²/ (°С Вт);

δ — толщина стены или слоя бетона, м;

λ — коэффициент теплопроводности, Вт/(м °С).

Нормативное сопротивление находят по таблице СП 131.13330.2012 «Строительная климатология». Каждому региону соответствует свое значение. Например, для Москвы оно равно 3,28 м²/ (°С Вт).

Если предположить, что наружные стены будут выполнены из керамзитопенобетона плотностью 800 кг/м³ с λ=0,21 Вт/(м °С), то искомая толщина конструкции равна:

δ=R х λ= 3,28х0,21=0,688 м.

Чтобы не сооружать такие массивные стены, их утепляют эффективными теплоизоляционными материалами. Это позволяет уменьшить толщину ограждения, понизить нагрузку на фундамент.

В многослойных конструкциях расчет ведут для каждого слоя. Суммарное сопротивление должно соответствовать нормативному:

R=δ1/ λ1+ δ2/ λ2+ δ3/ λ3…, где δ и λ соответствуют каждому из слоев.

Теплотехнический расчет с использованием коэффициента теплопроводности бетона производят перед началом строительства на этапе проектирования.

При возведении частного дома или проведении утепляющих работ необходимо ответственно подойти к вопросам покупки материалов. Чтобы уменьшить потери тепловой энергии и снизить расходы на обогрев, следует учитывать такой параметр, как теплопроводность бетона. Он определяет способность блоков пропускать тепло и считается важнейшей эксплуатационной характеристикой.

коэффициент теплопроводности бетона определение

Содержание

  • 1 Влияние теплопроводности на микроклимат внутри помещения
  • 2 Теплопроводность железобетона и тепловое сопротивление
  • 3 Коэффициент теплопроводности
    • 3.1 Коэффициент для различных видов монолита
    • 3.2 Факторы влияющие на коэффициент
    • 3.3 Теплопроводность и утепление зданий
    • 3.4 Как производится расчет
  • 4 Теплопроводность строительных материалов таблица
    • 4.1 Конструкционные материалы и их показатели
    • 4.2 Материалы из бетона с добавлением пористых заполнителей
    • 4.3 Показатели теплоизоляционных материалов
    • 4.4 Таблица показателей

Влияние теплопроводности на микроклимат внутри помещения

Среди большого разнообразия материалов бетонный массив считается достаточно популярным. Его ключевым свойством считается степень теплопередачи. Чтобы избежать непредвиденных теплопотерь, нужно учитывать это значение еще при составлении проекта теплоизоляции. В таком случае постройка будет как надежной и долговечной, так и комфортной для пребывания.

Если определить коэффициент теплопроводности бетона и найти подходящие материалы теплоизоляции, это позволит получить такие преимущества:

  • снизить затраты тепловой энергии;
  • уменьшить расходы на отопление;
  • организовать в помещении комфортный микроклимат.

Зависимость микроклимата в доме от степени теплопередачи объясняется следующими особенностями:

  1. По мере роста значений увеличивается интенсивность подачи тепла. В результате помещение быстрее остывает, но так же быстрее прогревается.
  2. Если теплопередача снижается, тепло долго удерживается внутри здания и не выходит наружу.

В результате степень проводимости тепловой энергии становится ключевым фактором, определяющим комфорт пребывания в доме. В зависимости от особенностей материала, он может обладать разной структурой и свойствами, а также теплопроводностью. Перед выбором блоков нужно внимательно изучить их эксплуатационные свойства и подготовить грамотный проект.

какая теплопроводность у разных типов бетона

Теплопроводность железобетона и тепловое сопротивление

Начиная строительство помещения, следует ознакомиться с такими характеристиками:

  1. Коэффициент проводимости тепла. Он указывает на объемы тепла, которое проходит через блок в течение заданного интервала. Если значение снижается, это уменьшает способность пропускать тепловую энергию. При повышении значений ситуация выглядит противоположным образом.
  2. Сопротивление конструкций к потере тепла. Показатель указывает на способность материала сохранять тепло внутри постройки. Если он высокий, бетон подходит для теплоизоляции, если низкий — для быстрого отвода тепла наружу.

При составлении проекта здания и проведении тепловых расчетов важно уделять таким значениям особое внимание.

Коэффициент теплопроводности

В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.

Коэффициент для различных видов монолита

Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:

  1. Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
  2. Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.

Еще коэффициент зависит от применяемых наполнителей. Так, если тяжелый бетон (2,4 т/м³) будет иметь в составе щебенку, параметр составит 1,51.

При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.

теплопроводность бетона

Факторы влияющие на коэффициент

Степень проводимости бетона любой марки определяется множеством факторов. В их числе:

  1. Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
  2. Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача. В результате конструкция быстрее лишается тепла.
  3. Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.

При выполнении расчетов нужно учитывать, что снижение влажности минимизирует проводимость тепла, из-за чего уровень теплопотерь становится невысоким.

С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.

коэффициент теплопроводности монолитного бетона

Теплопроводность и утепление зданий

Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:

  1. Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
  2. Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.

Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:

  1. Пенобетон — не больше 25 см.
  2. Керамзитобетон — до 50 см.
  3. Кирпичи — 65 см.

Как производится расчет

Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.

Она имеет следующую расшифровку:

  • R — показатель устойчивости к скачкам температуры;
  • p — толщина слоя в метрах;
  • k — Проводимость тепла монолитом.

С помощью такой формулы можно благополучно выполнить расчет с помощью простого калькулятора. Это решается путем разделения толщины на коэффициент теплопроводности.

Теплопроводность строительных материалов таблица

Конструкционные материалы и их показатели

Конструкционный бетон, теплопроводность которого зависит от применяемых наполнителей, пользуется большой популярностью. Это обусловлено его прочностью и эластичностью, что позволяет возводить надежные и защищенные от потерь тепла постройки.

Чем тяжелее наполняющий компонент, тем выше степень теплопроводности раствора. Тяжелый материал не сможет долго удерживать тепло, поэтому большинство построек из конструкционных материалов требуют дополнительной теплоизоляции, в большинстве случаев — снаружи.

Для таких материалов характерны следующие коэффициенты:

  1. Тяжелый — 1,2-1,5 Вт/м К.
  2. Легкий — 0,25-0,52 Вт/м К.

определение теплопроводности железобетона

Материалы из бетона с добавлением пористых заполнителей

Пористые конструкции характеризуются хорошим удержанием тепла, при этом точный показатель теплопроводности зависит от следующих факторов:

  1. Параметры ячеистости.
  2. Уровень влажности.
  3. Показатели плотности.
  4. Теплопроводность матрицы.

Так, кирпич керамический пустотелый обладает теплопроводностью в 0,4-0,7 Вт/(м град). Полнотелые разновидности проводят тепло в 1,5-2 раза лучше.

Показатели теплоизоляционных материалов

Теплоизоляционные конструкции, состоящие из шлакового наполнителя и керамзита, характеризуются минимальной теплопроводностью. Однако их прочностные свойства остаются невысокими, поэтому основная сфера применения — изоляция несущих стен и пола. Возводить основные конструкции из таких материалов запрещено.

Таблица показателей

Таблица значений для разных материалов выглядит следующим образом:

Материал Плотность кг/м³ Теплопроводность

Вт/(м/С)

Паро-

проницаемость

Сопротивление теплопередаче
Железобетон 2500 1.69 0.03 7.10
Бетон 2400 1.51 0.03 6.34
Керамзитобетон 1800 0.66 0.09 2.77
Кирпич красный 1800 0.56 0.11 2.35
Пенобетон 300 0.08 0.26 0.34
Гранит 2800 3.49 0.008 14.6
Мрамор 2800 2.91 0.008 12.2

Руководствуясь сведениями из этой таблицы, можно подобрать оптимальный строительный материал для возведения надежной и защищенной от холода постройки.

Добавить комментарий