Как найти коэффициент тепловых потерь

Простой расчет теплопотерь зданий.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания.  Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q = S * T / R,

где

Q — теплопотери, Вт

S — площадь конструкции, м2

T — разница температур между внутренним и наружным воздухом, °C

R — значение теплового сопротивления конструкции, м2•°C/Вт

Схема расчета такая — рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции.  Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Расчет теплопотерь зданий.

Считаем площади ограждающих конструкций:

пол: 20 м * 40 м = 800 м2

кровля: 20,2 м * 40 м = 808 м2

окна: 1,5 м * 1,4 м * 30 шт = 63 м2

стены: (20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или  вычислить исходя из значения коэффициента теплопроводности по формуле:

R = d / ?

где

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть здесь.

пол: бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75  = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037  = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля: кровельные сэндвич панели из минеральной ваты толщиной 15 см

R (кровля) = 0.15 / 0,037  = 4,05 (м2*К)/Вт

окна:  значение теплового сопротивления окон зависит от вида используемого стеклопакета
R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4  при ?T = 40 °С

стены: стеновые сэндвич панели из минеральной ваты толщиной 15 см
R (стены) = 0.15 / 0,037  = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры — 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт,   здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при  нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч,  и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.

Теплотехнический калькулятор позволяет выполнить расчет тепловых потерь дома или отдельного помещения через ограждающие конструкции по СНиП – теоретическое обоснование указано ниже. Для начала расчета укажите город проживания или ближайшую столицу субъекта (только Россия), чтобы получить значения температуры воздуха наиболее холодной пятидневки по СП 131.13330.2012 «Строительная климатология» (можно указать значения самостоятельно). Далее требуется выбрать ограждения, которые необходимо учитывать при подсчете (стены, окна, потолок, пол), также можно рассчитать потери на инфильтрацию (вентиляцию). Для каждого параметра можно выбрать два слоя (внешний, внутренний). Чтобы получить результат, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 50.13330.2010 «Тепловая защита зданий»
  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
  • СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»
  • СНиП 2.04.07-86* «Тепловые сети»
  • СНиП 2.08.01-89* «Жилые здания»
  • СНиП II-3-79* «Строительная теплотехника»
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»
  • ГОСТ 22270-76 «Оборудование для кондиционирования воздуха, вентиляции и отопления»
  • ГОСТ 31311-2005 «Приборы отопительные»

Теоретическое обоснование расчета тепловых потерь

Для расчета потерь теплоты через ограждающие конструкции помещений используют законченную формулу из СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Q = S × ((tв – tн) / R)

  • S – площадь помещения, м2;
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • R – термическое сопротивление материала, (м2 × °С)/Вт.

Для расчета общего термического сопротивления стен дополнительно применяются поправочные коэффициенты:

Rобщ = Rм + Rв + Rн

  • Rм – термическое сопротивление материала, Вт/(м2 × °С);
  • Rв – термическое сопротивление внутренней поверхности стены, Вт/(м2 × °С);
  • Rн – термическое сопротивление наружной поверхности стены, Вт/(м2 × °С).

В свою очередь, показатели термического сопротивления равны:

Rм = L / λ 
Rв = 1 / αв
Rн = 1 / αн

  • L – толщина материала, м;
  • λ – теплопроводность материала, Вт/(м × °С)
  • αв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 × °С);
  • αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м2 × °С).

Все параметры подбираются согласно СНиП II-3-79* «Строительная теплотехника».

Теплопотери для многослойных стен рассчитываются аналогичным образом, за исключением того, что значение суммарного термического сопротивление складывается для каждого слоя:

Rобщ = Rв + R1 + R2 + .. + Rн

Иным способом производится расчет тепловых потерь на инфильтрацию, формулу можно найти в СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Qi = 0.28 × Gi × c × (tв – tн) × k

  • Gi – расход воздуха, м3/ч;
  • c – удельная теплоемкость воздуха, 1.006 кДж/(кг × °С)
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • k – коэффициент учета влияния встречного теплового потока в конструкциях (по умолчанию 0.8).

Расход удаляемого воздуха Gi, не компенсируемый приточным воздухом определяется следующим образом:

Gi = 3 × S

  • 3 – норма воздухообмена для жилых квартир, м3/ч (по СНиП 2.08.01-89* «Жилые здания»);
  • S – площадь помещения, м2.

Расчет теплопотерь

Расшифровка расчетов по формулам с примерами расчета. Будет видео и расчет в Excel.

В этой статье я в деталях расскажу, как сделать расчет теплопотерь дома для жилого здания по государственным стандартам в России. Учтите, что здание должно быть утеплено согласно СП 50.13330.2012 (бывший СНиП 23-02-2003 ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ).

Найдем максимальные теплопотери здания для того, чтобы подобрать котел необходимой мощности.

Найдем теплопотери отдельного помещения.

Рассмотрим для примера место проживания: Свердловская область, город Екатеринбург.

Теплопотери дома:

1. Ограждения: Стены, пол, крыша, окна.
2. Вентиляция = инфильтрация.
3. Другие тепловые притоки, которые учитываются в редких случаях: Например, оборудование, которое выделяет тепло, человек выделяет своим телом около 100 Вт в час и другое.

Пример таблицы в Excel: Скачать файл Excel!

Подробнее о видеокурсе: Видеокурс: Расчет теплопотерь дома

Наружная температура воздуха

Расчетную температуру наружного воздуха следует принимать по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92 согласно СНиП 23-01.

Показатель обеспеченности 0,92 означает коэффициент вероятности. То есть указанная температура в СНиП 23-01 рассчитана до 92%, а остальные 8% означают экстремальные температуры, которые не стоит брать в расчет. В природе существуют экстремально низкие температуры воздуха, которые происходят редко(раз в 100 лет), поэтому не следует рассчитывать теплопотери здания на экстремально низкие температуры, это приведет к удорожанию материалов на утепление здания и экономический показатель будет снижен. Попросту деньги, потраченные на утепляющий материал будут долго себя окупать.

Значения в СНиП 23-01 были вычислены наиболее холодные температуры в году, в период с 1925 по 1980 года, и за расчет берется только обеспеченность в 92%. Подробный расчет об этом написан в справочном пособии Е. Г. Малявина Теплопотери здания в пункте 1.2.

Поскольку по статистике в России стены массивные (кирпичные, бетонные и тому подобное) они имеют большую тепловую инерцию. В следствии этого, температура в помещении остывает не быстро. И было принято решение, что наиболее холодную температуру правильнее находить среднюю за 5 суток.

Если у Вас легкие стены типа (дерева или просто ваты или пенопласта покрытой жестким ребром дерева), то выбирать нужно расчетную наружную наиболее холодную температуру в сутках. То есть Температуру воздуха наиболее холодных суток.

Температура наиболее холодной пятидневки находится в СНиП 23-01-99 Строительная климатология

Свежие данные по температурам находятся в СП 131.13330.2018

Если Вы хотите найти ваш город на карте и узнать температуру, то воспользуйтесь картой тут: map.teploov.ru

Выбираем из таблицы -35 градусов Цельсия

Температура воздуха в помещении

Температура помещений определяется согласно: ГОСТ 30494-2011, САНПИН 2.1.2.2645-10

В СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» в П 5.1 написано, что выбирать температуру по минимальному значению оптимальной температуры. То есть для расчета жилой комнаты следует принять температуру 20 градусов в холодный период года.

Свежие правила указаны в СП 60.13330.2016

Холодный период года – это время когда среднесуточная температура воздуха на улице +10 и ниже градусов Цельсия.

Теплый период года выше +10 градусов.

Среднесуточная температура воздуха на улице определяется по формуле

Где n – количество снимаемых показаний температуры. Если показания температуры снимать каждый час, то показаний должно быть 24. Если каждые два часа, то показаний должно быть 12. То есть нельзя заходить на следующий час следующих суток, будет искажение результата.

Т1,т2,т3 –конкретное показание температуры в определенный час времени. Т1 в первый час времени. Т2 во второй час времени и т.д.

Вы можете снимать показания каждый час или каждые 2-3 часа. Точность будет выше, если снимать каждый час.

Влажность воздуха. Необходимо для расчета термического сопротивления ограждающих стенок.

Определить зону из трех категорий:

1 – Влажный

2 – Нормальный

3 – Сухой или мокрый

Карта зон влажности:

Карта зон влажности указан в СНиП 23-01-99 Строительная климатология. Вы можете попытаться найти зону влажности визуально, а можете воспользоваться онлайн сервисом, в котором введете ваш город, и он вам скажет зону влажности тут: map.teploov.ru

Например, в городе Екатеринбурге зона 3 – сухая. В Москве 2 – нормальная.

Инфильтрация = Вентиляция воздуха

Вентиляция = инфильтрация. Теплопотери на вентиляцию одно и тоже, что теплопотери на инфильтрацию. Кто-то выражается термином инфильтрация, а кто-то просто называет вентиляцией. Два разных термина характеризуют количество поступаемого воздуха в помещение, но отличие между инфильтрацией и вентиляцией следующее:

Инфильтрация – это процесс проникновения воздуха в помещение через наружное ограждение. То есть наружный воздух с улицы, проникающий через окна и двери или другие щели в стенах.

Вентиляция – это специально организованная система для проникновения воздуха в помещение. Вентиляция может быть естественной или механической(с помощью вентиляторов).

Инфильтрация это по СНиП – процесс проникновения воздуха в помещение, а обратное явление называют эксфильтрацией.

Для расчета вентиляции необходимо знать, сколько воздуха будет поступать в помещение. Для каждого типа помещения необходимо найти расход воздуха поступаемого в помещение.

Вентиляция для жилых зданий (Жилые коттеджи и многоквартирные дома)

В СП 54.13330.2016 (бывший СНиП 31-01-2003 ЗДАНИЯ ЖИЛЫЕ МНОГОКВАРТИРНЫЕ ПРАВИЛА ПРОЕКТИРОВАНИЯ) на стр.33 в пункте 9.2 написано:

Расчетные параметры воздуха в помещениях многоквартирного здания следует принимать по СП 60.13330 (бывший СНиП 41-01-2003. Отопление, вентиляция и кондиционирование воздуха) и с учетом ГОСТ 30494. Кратность воздухообмена в помещениях в режиме обслуживания следует принимать в соответствии с таблицей 9.1.

Расход воздуха в многоквартирных домах. Таблица.

Расход воздуха для жилых одноквартирных зданий (для частных домов) указан в СП 55.13330.2016 (бывший СНиП 31-02-2001 «ЗДАНИЯ ЖИЛЫЕ ОДНОКВАРТИРНЫЕ»)

Расчет вентиляции для других типов помещений вы найдете в специальных документах:

СНиП 31-02-2001 «ЗДАНИЯ ЖИЛЫЕ ОДНОКВАРТИРНЫЕ» Свежая версия СП 55.13330.2016

СНиП 31-06-2009 «Общественные здания и сооружения»; Cвежая версия СП 118.13330.2012*

СНиП 31-01-2003 «Здания жилые многоквартирные»; Cвежая версия СП 54.13330.2016

СНиП 31-03-2001 «Производственные здания»; Свежая версия СП 56.13330.2011

СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха». Свежая версия СП 60.13330.2016

Количество инфильтрующегося воздуха может быть указано в точных значениях расхода воздуха в м3/час или кратности воздухообмена (ч-1).

Кратность (ч-1) – это единица количество объема помещения. То есть если кратность равна 1,0 то объем протекающего воздуха будет равным объему помещения. Объем помещения будет равен площади помноженное на высоту помещения(от пола до потолка). Например, если площадь пола равна 10 кв.м, а высота от пола до потолка 2,5 метра, то объем помещения будет равен: 10 х 2,5 = 25 м3. Расход воздуха будет равен 25м3/час. Если кратность равна 0,5 то расход будет равен: 25 м3 х 0,5 = 12,5 м3/час.

Для спальной комнаты кратность будет равна единице, тогда расход воздуха в этой комнате будет равен объему помещения. То есть комната размерами 10м2 х 2,5(высота) = 25 м3/час.

Для кабинета кратность будет равна 0,5, тогда расход воздуха в этой комнате будет равен объему помещения помноженный на 0,5. То есть кабинет размерами (5м х 4м) х 2,5м(высота) х 0,5 = 25 м3/час.

Учтите, что расчетный расход может отличаться от практических расходов из-за воздушного сопротивления воздухопроводов. Бывает, что воздухопровод установлен в ванной, туалете и кухне. То есть воздух прибывает в помещение через окна, форточки и другие специальные приточки, а уходит через вентиляционные воздухопроводы кухонь и ванных комнат.

Теплопотери на инфильтрацию рассчитываются, если этот воздух поступает в помещение не нагретый какими либо приборами. То есть воздух поступаемый с улицы.

В СП 60.13330.2016 в приложение И в таблице И.1 Указаны минимальные значения расхода воздуха:

Приточный воздух может поступать из жилых помещений

Это значит, что воздух, зашедший через окно в жилую комнату, потом перетекает в кухню и там уходит в вентиляционный канал.

То есть для расчета общего расхода всей квартиры или дома нужно учесть то, что один и тот же воздух может быть использован повторно для ванной комнаты. Между суммами расходов притока и вытяжки выбираем наибольшее значение расхода для расчета тепловых потерь на инфильтрацию. То есть для расчета тепловых потерь на нагрев воздуха выбираем наибольшее значение из сумм расходов притока или вытяжки.

Расход воздуха в помещениях общественных зданий. Таблица

Расчет расхода воздуха в помещениях

В СП 60.13330.2016 в приложение Ж указаны формулы расчета воздуха для расчета по нормам из таблицы:

Формула расчета расхода теплоты на инфильтрацию указана в СНиП 2.04.05-91* ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ, приложение 10. Измененный СНиП 41-01-2003. И свежая версия СП 60.13330.2016

Имхо… Считаю коэффициент учета влияния встречного теплового потока в конструкциях для окон относится к старым деревянным двухрамочным окнам, где расстояние между стеклами 10-20 см. Соответственно воздух попадая через форточку перемешивается с воздухом находящимся между стеклами. Получается некая рекуперация. Воздух приходящий с улицы нагревается тепловым притоком с помещения. По поводу стен, имеется ввиду, что стены якобы тоже пропускают воздух, и воздух проходя сквозь толщу стены успевает нагреваться на определенное значение. Поэтому воздух поступает в помещение немного нагретый на величину коэффициента 0,7 – 1,0 вызванный встречным тепловым потоком. Тепловой поток, это не только воздух, но и поток вызванный теплопроводностью стенок, а также поток вызванный тепловыми лучами.

Имхо… По моему мнению этот коэффициент учета влияния встречного теплового потока должен быть равным единице или его вообще исключить из расчета. Потому что на сегодняшний день стены имеют хорошую пароизоляцию. И окна тоже не обладают процессами перемешивания воздуха. Разве что воздух, поднимаясь вверх от стенок стекла, успел нагреться на незначительное значение.

Для расчета поступаемого воздуха в помещение можно использовать два способа:

1. Точное указание поступаемого воздуха в помещение.
2. Расчет воздуха через окна и двери из-за разности давлений наружного и внутреннего воздуха.

Первый способ будет наиболее простой и точнее второго, если в помещении проживают или работают люди, которые контролируют поступление воздуха через окна и форточки. То есть если будет холодно в помещении, то люди закроют окно ровно на столько, насколько это комфортно. И поэтому такой расчет будет более точным.

Второй способ будет учитывать разность давления наружного и внутреннего воздуха для разной высоты окон. Такой способ расчета будет вести к тому, что чем ниже этаж, тем больше приток воздуха в помещение. Чем больше этажей в здании, тем выше разница расходов воздуха в помещение между первым и последним этажах. На первом этаже расход воздуха будет больше. Также давление наружного и внутреннего воздуха будет зависеть от ветра.

Если у Вас старые деревянные окна и двери, и есть щели в соединениях стекол и дверей, и присутствуют еще щели в проемах окон и дверей то, конечно считать нужно по второму способу. На сегодняшний день появились пластиковые окна, и они настолько герметичны, что о расчете воздуха по второму способу можно забыть. Расчет воздуха имеет очень большую погрешность. Статистику проникания воздуха сложно предугадать из-за разного рода людей находящихся в помещениях. Поэтому лучшим расчетом будет уложиться в нормы потребления по первому способу.

Если вы решили сделать расчет по второму способу, то согласно нормам нужно все равно заложить приток воздуха в помещение согласно нормам. И этот расход должен быть не ниже нормируемого значения. То есть, если расход воздуха по второму способу показал меньше нормируемого значения, то закладываем расход воздуха не ниже нормируемого значения. Поэтому как не крути, а первый способ расчета наиболее актуален на сегодняшний день из-за герметичности пластиковых окон.

Пример расчета инфильтрации при точном подсчете воздуха в помещение.

Дано:

Расход воздуха в помещении 25 м3/час. Температура помещения 20 градусов. Температура на улице -35 градусов.

При расчете инфильтрации не учитывается влажность воздуха, потому что разница будет ничтожно малой. Теплоемкость воздуха принимается равным 1,006 кДж/(кг°С); Единственное, что следует учесть это плотность воздуха для помещения. Расход уличного воздуха в объемах значительно меньше, чем расход воздуха в помещении. То есть один и тот же объем воздуха на улице будет меньше, чем в помещении.

Решение:

плотность воздуха находим по таблице ниже

Ответ: Теплопотери на инфильтрации 471,24 Вт в час.

Как мы теряем тепло обычным воздухом?

Пример расчета инфильтрации. Расчет воздуха через окна и двери из-за разности давлений наружного и внутреннего воздуха.

Подробнее о расчетах описано в СНиП 2.04.05-91* приложение 10.

Также написано в справочном пособии Е. Г. Малявина Глава 6. Воздухопроницание в здание.

Необходимо найти расход поступаемый через окна и двери. Конечно, воздух может поступать в сквозь стены, но это значение настолько ничтожно, что расчет проникновения воздуха через стены не учитывают.

Расход будет зависеть от разности давления наружного и внутреннего воздуха, и поэтому необходимо рассчитать перепад давления через окно и дверь для разных высот. И еще необходимо учесть ветер, который тоже может добавить давление.

Расчет сопротивления через инфильтрацию реализован в программном обеспечении.

Необходимо каждому окну или двери задать сопротивление воздухопроницанию м2⋅ч /кг и перепад давления Па. И алгоритм расчета за вас выполнит расчеты.

Что такое воздухопроницаемость можно найти в СНиП II-3-79* Строительная теплотехника п. 5. СОПРОТИВЛЕНИЕ ВОЗДУХОПРОНИЦАНИЮ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ.

Перед расчетом нужно указать:

В графе как считать поступаемый воздух: Воздухопроницаемость окон и дверей

Рассчитать направление ветра: Не направленный ветер

Средняя скорость ветра: Значение находится для каждого города в СП 131.13330.2018 (бывший СНиП 23-01-99 Строительная климатология).

Подробнее о программе.

Ограждения: Стена, пол, крыша, окно.

Расчет теплопотерь через одну стену

Следует понять, что тепловые потери через стену уходят теплопроводностью воздуха и тепловым излучением. То есть поверхность стены в помещении нагревается воздухом и тепловым излучением других предметов в помещении. Далее тепловая энергия передается теплопроводностью через стену на наружную поверхность стены. И наружная поверхность стены отдает тепловую энергию воздуху и тепловым излучением другим материалам на улице.

Коэффициенты теплоотдачи наружной и внутренней поверхности включают в себя сумму тепловых потерь: Теплопроводность воздуха через конвекцию и тепловое излучение. То есть это полное значение тепловых потерь пограничного слоя наружной поверхности. Эти коэффициенты были найдены опытным путем.

Некоторая информация теплоотдачи поверхности:

Написано в справочном пособии Е. Г. Малявина Теплопотери здания стр 58. п.3.4.4.

Чтобы найти теплопроводность λ стены из различных материалов необходимо воспользоваться СНиП II-3-79* Строительная теплотехника, таблица материалов находится в приложении 3.

Для расчета теплопотерь ограждения используют законченную формулу:

Написано в справочном пособии Е. Г. Малявина Теплопотери здания стр 88. п.7.1

Также формула указана в СНиП 2.04.05-91* в приложении 9 на стр.54

То есть добавочные коэффициенты учитывающие: Сторону света(юг, север, запад , восток), добавка на угловое помещение, добавка на не обогреваемый пол и другое, смотри ниже раздел: Добавочные теплопотери через ограждения.

Добавочные теплопотери через ограждения β

Теплопотери, рассчитанные по формуле выше без учета добавочных потерь (при β = 0), называются основными. Основные трансмиссионные теплопотери часто оказываются меньше действительных, т.к. в формуле не отображены некоторые факторы. Дополнительные теплопотери учитываются добавками к основным, задаваемыми в долях единицы. Выраженные коэффициентом β добавки подразделяются на несколько видов:

Расчет площади ограждений для расчета теплопотерь

Написано в справочном пособии Е. Г. Малявина Теплопотери здания стр 88. п.7.1

Для показа трансмиссионных потерь используют таблицу

Пример таблицы в Excel: Скачать файл Excel!

Пример расчета одной стенки

Дано:

Стенка из железобетона толщиной 200 мм. И площадью 4 кв.м.

t_вн= 20 °С.

t_нар= -35 °С.

L= 200мм.=0,2м.

Решение

Теплопроводность материалов вычисляется по таблице из СНиП II-3-79* Строительная теплотехника.

Полный список материалов находится в СНиП II-3-79* Строительная теплотехника, в приложении 3.

Категория А и Б вычисляется в СНиП 23-02-2003 ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ

Для расчета А и Б необходимо: Вычислить влажность и сверить с таблицей 1 и 2.(см выше)

Вычислить влажность для помещений указано в справочном пособии у Е. Г. Малявина Теплопотери здания, в пункте 2.4.

Расчет А или B для Москвы:

Зона влажности 2 – нормальная

Влажность жилого помещения 55%

По таблице 1 – при температуре 20 градусов, влажностный режим будет нормальный

По таблице 2 – условие эксплуатации Б. И выбираем категории Б для вычисления теплопроводность по таблице из СНиП II-3-79* Строительная теплотехника. (Смотри выше таблицу теплопроводности)

Расчет теплопотерь многослойной стены

Расчет многослойной стены рассчитывается так же как и расчет одной стены, различие в том, что необходимо вычислить сумму термического сопротивления всех слоев стенки.

Пример расчета многослойной стенки

Дано:

Слой1 – Пенополистирол, толщиной 50 мм, теплопроводностью 0.04 Вт/(м• °С)

Слой2 – Кирпич, толщиной 120 мм, теплопроводностью 0.64 Вт/(м• °С)

Слой3 – Штукатурка, толщиной 20 мм, теплопроводностью 0.81 Вт/(м• °С)

Стена площадью 4 кв.м.

Решение

Расчет теплопотерь через воздушную прослойку воздуха

Для расчета воздушной прослойки необходимо добавить термическое сопротивление этой самой замкнутой воздушной прослойки воздуха, как это делается для расчета многослойной стенки. Замкнутая прослойка воздуха означает, что воздух в этом пространстве не перемешивается с каким либо другим воздухом с улицы или помещения. То есть воздух не перемешивается с другими воздушными пространствами.

Данные взяты в СП 50.13330.2012 в таблице Е.1. (бывший СНиП 23-02-2003 Тепловая защита зданий)

Тепловой поток, проходящий через воздушную прослойку, складывается из потоков, передаваемых теплопроводностью, конвекцией и излучением. При этом доля потока, передаваемого излучением, самая большая.

Берем из таблицы значение термического сопротивления воздушной прослойки воздуха для определенной толщины воздушной прослойки и используем для расчета многослойной стенки. Воздушная прослойка будет являться еще одним слоем для многослойной стенки. Расчет многослойной стенки смотри выше.

Для вертикальных стен используется столбец: Горизонтально при потоке теплоты снизу вверх или вертикальный.

Для крыши и полов перекрытия используется столбец: Горизонтально при потоке теплоты снизу вверх или вертикальный, только если нижняя стенка теплее, чем верхняя. То есть нижняя стенка теплее, чем верхняя. В таком случае тепловой поток идет снизу вверх.

Если нижняя стенка холоднее чем верхняя, то тепловой поток идет сверху вниз, тогда столбец: Горизонтально при потоке теплоты сверху вниз.

Воздушная прослойка на крыше всегда подразумевает тепловой поток снизу вверх, если конечно вы не защищаетесь от жары сверху.

Если Вы хотите произвести расчет вентилируемой воздушной прослойки воздуха, которая контактирует с наружным воздухом, то используется коэффициент теплоотдачи наружной поверхности 12. Это соответствует пониманию вентилируемого фасада. Подробнее описано в видеокурсе по расчету теплопотерь дома тут: Видеокурс: Расчет теплопотерь дома

Теплопотери через окна

Расчет теплопотерь через окно имеет самые высокие погрешности в расчете из-за того, что термическое сопротивление окон сильно отличаются от материалов и конструкции окна.

Рекомендую ознакомится с пластиковыми окнами по ГОСТ 30674-99 “Блоки оконные из ПВХ профилей”, таблица 2, где описаны детали о том, как выбрать термическое сопротивление для расчета теплопотерь через окна.

Значение 4М1-16Аг-К4 расшифровывается как 4мм стекла марки М, далее 16 мм расстояние между стеклами заполненным аргоном и внутреннее стекло толщиной 4 мм с твердым теплоотражающим покрытием.

Подробную расшифровку других марок ищите в ГОСТ 30674-99 “Блоки оконные из ПВХ профилей”.

Если известна точная модель окна, то найти термическое сопротивление можно в поисковом сервисе Яндекс. Вводите текст в виде: Модель окна ОП В2 1840-1220, термическое сопротивление. Или вводите текст: Модель окна ОП В2 1840-1220 паспортные данные, характеристики и тому подобное.

Расчет теплопотерь окна не требует прибавлять коэффициент теплоотдачи внутренней и наружной поверхности, как это делается для стен, пола и крыши.

В таблице выше указано термическое сопротивление всего окна с включением рамок. То есть и стеклопакет и рамки уже учтены в площадь всего окна.

Если некогда искать информацию, то можно выбрать минимальные значения:

Дополнительная информация по окнам

В таблице учтено среднее термическое сопротивление всего окна, включая рамы всей конструкции. Поэтому площадь окна берется включая рамы и прочие конструкции. То есть для расчета теплопотерь берется площадь проема окна.

Площадь самих стекол учитывается при расчете теплопоступления через окна, от солнечной радиации в течение отопительного периода. Расчет теплопоступлений исключительно через солнечную радиацию вы найдете в справочном пособии Е. Г. Малявина Теплопотери здания на странице 133.

Формула расчета теплопотерь окна

Пример расчета теплопотерь окна

Дано:

t_вн= 20 °С.

t_нар= -35 °С.

Модель окна: 4М1-16Аг-К4

R_окно = 0,54 (м2• °С)/Вт. Взято из таблице выше.

Площадь окна высотой 1840 мм, шириной 1220 мм. 1,84 х 1,22 = 2.24 м2.

A = 2.24 м2.

Решение

Формула расчета теплопотерь двери и ворот

Пример расчета теплопотерь двери

Дано:

t_вн= 20 °С.

t_нар= -35 °С.

R_дверь = 1,5 (м2• °С)/Вт.

Площадь двери высотой 2000 мм, шириной 1000 мм. 2 х 1 = 2 м2.

A = 2 м2.

Решение

Теплопотери через крышу

Теплопотреи через крышу (угловую или горизонтальную) рассчитываются также, как и теплопотери через вертикальные стены, но только в том случае, если указана внутренняя температура в помещении через ограждение крыши (без чердака или другого пространства между помещением и крышей)

Но бывает, что существует не отапливаемое пространство между ограждением крыши и потолком последнего этажа. Или например подвального помещения, которое тоже не отапливается. В таких помещениях температура неизвестна. В таком случае необходимо найти среднюю температуру не отапливаемого пространства. А если в не отапливаемом пространстве происходит вентиляция, то ее тоже следует учитывать.

Расчет не отапливаемых помещений реализован в программном обеспечении.

Методом итерации подбирается температура в не отапливаемом помещении, которая удовлетворяет теплопотерям равным нулю. То есть, каждое ограждение нужно посчитать на выбранную температуру и сумма тепловых потерь всех ограждений включая инфильтрацию должны быть равными нулю. Это реализовано в программном обеспечении.

Добавочный коэффициент на сторону света не учитывается на горизонтальные крыши и на угловые ограждения от вертикала более 60 градусов.

Для расчета ограждений (перекрытия между подвалом и помещением первого этажа) существует коэффициент положения ограждения относительно наружного воздуха, смотри выше.

Теплопотери через стены и пол по грунту

Расчет приведен в справочном пособии Е. Г. Малявина Теплопотери здания в пункте 5.3

Для расчета стен и пола по грунту используется простейшая методика, она не является точным расчетом, но применяется как стандарт расчета для России.

Пол и стены под землей делятся на зоны 1,2,3,4. Ширина каждой зоны по 2 метра, кроме 4 зоны . 4 зона может иметь любое значение, так как является последней отдаленной зоной. И для каждой зоны установлено определенное термическое сопротивление. Пол и стена по грунту рассматривается как многослойная стенка, которая имеет в себе слой грунта в глубину на неопределенное значение. То есть, к примеру – это многослойная стенка со слоем грунта, который тоже обладает термическим сопротивлением.

На рисунке выше обозначены зоны. Чаще всего дома строятся с фундаментом и на рисунке б) обозначены зоны по вертикале фундамента.

зона I – RI = 2,1 м2•°С/Вт;

зона II – RII = 4,3 м2•°С/Вт;

зона III – RIII = 8,6 м2•°С/Вт;

зона IV – RIV = 14,2 м2•°С/Вт.

Для не утепленного фундамента и плиты перекрытия(пола) термическое сопротивление не учитывается, если теплопроводность λ >= 1,2 Вт/(м•°С). То есть теплопроводность выше или равно 1,2 Вт/(м•°С).

Для утепленной стены просто к термическому сопротивлению прибавляется термическое сопротивление утепленного слоя. Ниже будет пример расчета.

Для расчета пола по грунту не учитывается коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, потому что сопротивление слоя грунта достаточно велико.

Пример расчета теплопотерь пола и стены по грунту

Дано:

Решение:

Если Вы утеплили фундамент и пол пенополистиролом толщиной 50 мм., то вычисляем термическое сопротивление всех слоев стенки.

Теплопотери через пол по лагам

Расчет приведен в справочном пособии Е. Г. Малявина Теплопотери здания в пункте 5.4

В расчете пола через лаги используются три зоны.

Если Вам нужен расчет по лагам, то Вы можете обратиться за помощью в расчете сюда.

Пример расчета утепленных полов на лагах

Утепленные полы на лагах имеют не однородную теплопроводность по всей площади пола. Поэтому для такого расчета необходимо вычислить среднее термическое сопротивление всего пола на лагах. Подробный расчет нахождения среднего термического сопротивления описан в справочном пособии Е. Г. Малявина Теплопотери здания в пункет 5.1.3. Пример определения приведенного термического сопротивления неоднородной конструкции методом сложения проводимостей

Рассмотрим пример расчета термического сопротивления неоднородной конструкции ограждения

Расчет теплопотерь каждого помещения

Для расчета теплопотерь помещения пользуются формулой:

Сумма тепловых потерь Qогр. складывается из теплопотерь ограждений таких как: стена, пол, потолок, окно, дверь.

Тепловые выделения приборов Qбыт. таких как: холодильник, стиральная машина, плита, чайник, микроволновка, пылесос, телевизор и пр. Эти электроприборы, потребляя электроэнергию, вырабатывают тепло, которое попадает в помещение, и его нагревает. Почти вся потребляемая электроэнергия (более 90%) превращается в тепло. То есть даже пылесос, которому нужна механическая энергия все равно как побочное явление будет вырабатывать тепло. Не исключено, что компьютер, как ЭВМ для электронных вычислений тоже будет вырабатывать тепло. Тепловая энергия почти равна электрической энергии.

В различных инженерных документах Qбыт для жилых помещений с постоянным пребыванием людей находится в диапазоне от 10 до 20 вт. на кв.метр. То есть считают упрощенно по формуле:

В справочных пособиях по проектированию пишут, что 10 Вт/м2 это минимальное значение. В проектных документах по расчету встречал 21 Вт/м2.

Значение Wпом Указано в СП 50.13330.2012 (тепловая защита зданий) в приложении Г.5. на стр. 35.

Рассмотрим реальный расчет целого дома и покажу расчет в Excel

Видео: Расчет теплопотерь дома по СНиП

Подробнее о программе.

Если Вам нужен грамотный расчет, то готов для Вас составить таблицу со всеми формулами расчета по СНиП для жилого здания. Обратиться за расчетом.


Расчет теплопотерь
Расчет утеплителя
Из-за чего шумит радиатор? Как избавиться от шума в радиаторах?
Петля Тихельмана не греют средние радиаторы
Гравитационное отопление рабочие схемы
Гравитационное отопление схема однотрубная горизонтальная
Расчет теплопотерь теплицы
Температурный перепад радиатора отопления
9 схем подключения твердотопливного котла для естественной циркуляции

Расчет теплопотерь: методики, формулы, пример

Первый шаг в организации отопления частного дома — расчет теплопотерь.

Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности.

Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

Базовые формулы

Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

  • теплопотерь через ограждающие конструкции;
  • потерь энергии, идущей на нагрев вентиляционного воздуха.

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (tв — tн) х S х (1+ ∑β). Здесь:

  • Q — количество тепла, теряемого конструкцией одного типа, Вт;
  • R — термическое сопротивление материала конструкции, м²°С / Вт;
  • S — площадь наружного ограждения, м²;
  • tв — температура внутреннего воздуха, °С;
  • tн — наиболее низкая температура окружающей среды, °С;
  • β — добавочные теплопотери, зависящие от ориентации здания.

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

  • λ — справочное значение теплопроводности материала стены, Вт/(м°С);
  • δ — толщина слоя из этого материала, м.

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

  1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
  2. Если конструкция обращена на юго-восток или запад, β = 0,05.
  3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Порядок выполнения вычислений

Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.

Окна и двери измеряются по проему, который они заполняют.

По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С.

Обратите внимание

Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С).

Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

R = 0,25 / 0.44 = 0,57 м²°С / Вт

Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Qвозд = cm (tв — tн). В ней:

  • Qвозд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
  • tв и tн — то же, что в первой формуле, °С;
  • m — массовый расход воздуха, попадающего в дом снаружи, кг;
  • с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час.

Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность.

Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:

Температура воздушной смеси, ºС — 25 — 20 — 15 — 10 — 5 + 5 + 10
Плотность, кг/м3 1,422 1,394 1,367 1,341 1,316 1,290 1,269 1,247

Пример. Необходимо просчитать вентиляционные теплопотери здания, куда поступает 500 м³ в час с температурой -25°С, внутри поддерживается +20°С. Сначала определяется массовый расход:

m = 500 х 1,422 = 711 кг/ч

Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

Qвозд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.

Источник: http://pikucha.ru/otoplenie/proektirovanie/raschet-teplopoter.html

Расчет теплопотерь — Лучшее отопление

Выберите город tнар = — o C

Введите температуру воздуха в помещении; tвн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада &#945 =

Площадь наружных стен, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

Введите площадь потолка, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

Введите площадь пола, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. что такое зоны?

Площадь зоны 2, кв.м.

Площадь зоны 3, кв.м.

Площадь зоны 4, кв.м.

Теплопотери через пол

Теплопотери на инфильтрацию развернуть свернуть

Введите Жилую площадь, м.

Теплопотери на инфильтрацию

О программе развернуть свернуть

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут.

Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза.

Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

03.12.2017 — скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

Источник: https://lucheeotoplenie.ru/raschet-otopleniya/raschet-teplopoter.html

Расчет теплопотерь дома через ограждающие конструкции

Автор: eeni2008

Рассмотрим, как рассчитать теплопотери дома через ограждающие конструкции. Расчет приводится на примере одноэтажного жилого дома. Данным расчетом можно пользоваться и для расчета теплопотерь отдельного помещения, всего дома или отдельной квартиры.

Пример технического задания для расчета теплопотерь

Сначала составляем простой план дома с указанием площадей помещений, размеров и расположения окон и входной двери. Это необходимо для определения площади поверхности дома, через которую происходят теплопотери. 

План дома

Формула расчета теплопотерь

Для расчета теплопотерь применяем следующие формулы:

R = B / K – это формула расчета величины теплосопротивления ограждающих конструкций дома.

  • R – тепловое сопротивление, (м2*К)/Вт;
  • К – коэффициент теплопроводности материала, Вт/(м*К);
  • В – толщина материала, м.

Q = S • dT / R – это формула расчета теплопотерь.

  • Q – теплопотери, Вт;
  • S – площадь ограждающих конструкций дома, м2;
  • dT – разница температуры между внутренним помещением и улицой, К;
  • R – значение теплового сопротивления конструкции, м2•К/Вт

Температурный режим внутри дома для расчета берем +21..+23°С — такой режим является наиболее комфортным для человека.

Минимальная уличная температура для расчета теплопотерь взята -30°С, так как в зимний период в регионе: где построен дом (Ярославская область, Россия) такая температура может продержаться более одной недели и именно наименьший температурный показатель рекомендуется закладывать в расчеты, при этом разность температур получаем dТ = 51..53, в среднем — 52 градуса.

Общие теплопотери дома состоят из теплопотерь всех ограждающих конструкций, поэтому, используя эти формулы, выполняем:

После расчета получили такие данные:

  • Qстен – 0,49 кВт•ч,
  • Qпотолочного перекрытия — 0,49 кВт•ч,
  • Qпола – 0,32 кВт•ч,
  • Qокон – 0,38 кВт•ч.
  • Qвходной двери – 0,16 кВт•ч.

Итого: суммарный результат теплопотерь через ограждающие конструкции составил – 1,84 кВт•ч.

Отдельно выполним расчет теплопотерь помещений дома. Он пригодится при подготовке к монтажу отопления своими руками, а именно во время расчета количества секций радиаторов отопления для каждой комнаты.

Примечание: Этот расчет является приблизительным и при более точном расчете теплопотерь ограждений дома полученные значения могут иметь иной показатель, так как в своем расчете я не учитывал некоторые факторы, которые могут в той или иной степени влиять на величину теплопотерь. Если вы хотите получить точный расчет или получить консультацию специалиста по этому вопросу, то вы можете задать свой вопрос в разделе Вопрос-ответ.

Далее: Расчет теплопотерь стен.

Источник: http://www.builderclub.com/statia/raschet-teplopoter-doma-cherez-ograzhdayushchiye-konstrukcii

Простой расчет теплопотерь зданий

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания.  Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q = S * T / R,

где

Q – теплопотери, Вт

S – площадь конструкции, м2

T – разница температур между внутренним и наружным воздухом, °C

R – значение теплового сопротивления конструкции, м2•°C/Вт

Важно

Схема расчета такая – рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции.  Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол: 20 м * 40 м = 800 м2

кровля: 20,2 м * 40 м = 808 м2

окна: 1,5 м * 1,4 м * 30 шт = 63 м2

стены: (20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или  вычислить исходя из значения коэффициента теплопроводности по формуле:

R = d / ?

где

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть здесь.

пол: бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75  = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037  = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля: кровельные сэндвич панели из минеральной ваты толщиной 15 см

R (кровля) = 0.15 / 0,037  = 4,05 (м2*К)/Вт

окна:  значение теплового сопротивления окон зависит от вида используемого стеклопакета
R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4  при ?T = 40 °С

стены: стеновые сэндвич панели из минеральной ваты толщиной 15 см
R (стены) = 0.15 / 0,037  = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию

Для нагрева 1 м3 воздуха с температуры – 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт,   здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при  нормальном дыхании человеку нужно 7 м3 воздуха в час.

Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт.

А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч,  и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.

Источник: http://www.econel.ru/raschet-teplopoter-zdaniy/

Методика расчета теплопотерь для помещений

Заварзин Б. Б., Рюмин Р. В., Чукарев А. Г. Методика расчета теплопотерь для помещений // Молодой ученый. — 2017. — №43. — С. 40-43. — URL https://moluch.ru/archive/177/46071/ (дата обращения: 21.02.2019).

При расчете систем отопления для любых помещений основной целью является определение теплопотерь. Теплопотери — это тепло, бесцельно уходящее за пределы здания. Суммарные теплопотери складываются из основных и добавочных.

Основные тепловые потери определяют путем суммирования утечек теплоты через ограждающие конструкции помещения.

Добавочные же зависят от ориентации ограждающих конструкций по сторонам света, а также от расположения цеха на открытой местности, скорости ветра в данном географическом районе.

Теплопотери на стены

Совет

Расчет теплопотерь помещения через ограждающие конструкции производится по формуле:

(1)

Где:

Q — дополнительные и основное теплопотери, Вт

А — расчетная площадь ограждающих конструкций,

К — коэффициент теплопередачи отдельного ограждения,

— температура помещения, °С

— температура наружного воздуха для холодного периода года, °С

В — добавочные потери теплоты в долях от основных потерь, Вт

n — коэффициент учета положения наружной поверхности ограждения по отношению к наружному воздуху

Коэффициент К определяется по форуме:

(2)

Где:

— коэффициент теплоотдачи со стороны наружного пространства,

— коэффициент теплоотдачи со стороны внутреннего помещения,

— толщина ограждающей конструкции, м

— теплопроводность ограждающей конструкции

Определение коэффициентов  происходит по формуле:

(3)

Где:

Nu — число Нуссельта

— теплопроводность воздуха

l — длина характерного участка, м

Число Нуссельта находится по следующей формуле:

(4)

Где:

Re — критерий Рейнольдса

Pr — число Прандтля

Критерий Re задается формулой:

(5)

Где:

W — скорость среды,

 — кинематическая вязкость

l — длина участка, м

Коэффициент теплоотдачи для внутренней поверхности принимаем из СП 50.13330.2012.

Теплопотери со стороны грунта

Необходимо найти коэффициент теплоотдачи со стороны грунта

(6)

Где:

— теплопроводность материала

— толщина фундамента, м

— глубина заложения фундамента, м

Теплопотери воконные заполнения

Нахождение теплопотерь в оконные заполнения находятся по формуле 1. Для расчетов необходимо знать следующие параметры: количество камер и переплетов, наличие покрытия и заполнение газом. Приведенное сопротивление теплопередаче для выбранных окон представлено в СП 23–101–2004.

Теплопотери на двери

При расчете заполнения дверных проемов необходимо учитывать добавку на врывание холодного воздуха через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при открывании их на короткие периоды времени. Эта добавка относится к теплопотерям дверей и учитывает потребность в расходе тепла на подогрев врывающегося через открытые двери наружного воздуха.

Перечисленные добавки не учитываются, если двери являются летними или запасными, т. е. не открываются постоянно.

В промышленных зданиях врывание холодного воздуха через ворота при открывании их в общей сложности не более чем на 15 мин в смену учитывается тем, что теплопотери через ворота утраиваются. При большом времени открытия ворот врывание холодного воздуха должно локализоваться путем устройства специальных воздушных завес или тамбуров.

Инфильтрация воздуха через ограждающие конструкции

Инфильтрация — это перемещение воздуха через ограждающие конструкции из окружающей среды в помещения за счет ветрового и теплового напоров, формируемых разностью температур и перепадом давления воздуха снаружи и внутри помещений.

Она происходит через небольшие щели в дверных и оконных рамах. Воздух поступает в помещение также из неотапливаемых частей здания — чердаков, подвалов и так далее. Он проникает через отверстия в стенах, полах и потолках, таких как трещины в местах сопряжения двух стен или стены и потолка.

Обратите внимание

Для определения количества фильтрующегося воздуха через окна и стены необходимо найти разность давлений воздуха на наружной и внутренней стороне ограждающей конструкции:

Где

H — высота здания, м

— высота расчетной конструкции от уровня земли, м

— плотность воздуха на наружной поверхности, которая определяется по формуле:

— Плотность воздуха на внутренней поверхности, определяемая по формуле:

g — ускорение свободного падения,

— скорость ветра в январе,

— аэродинамические коэффициенты, 0.8 и -0.6 соответственно

k — коэффициент учета изменений давлений ветра, 0.58

— условно-постоянное давление воздуха, которое находится по формуле:

Расход инфильтрующегося воздуха через ограждения находится по формуле:

Где

— сопротивление воздухопроницанию, которое находится из формулы:

Где:

— разность давлений воздуха на наружной и внутренней поверхностях ограждающих конструкций

— 10 Па — разность давлений воздуха на наружной и внутренней поверхностях светопрозрачных ограждающих конструкций, при которой экспериментально определяется сопротивление воздухопроницанию конструкций выбранного типа

— поперечная воздухопроницаемость

Литература:

  1. Михайлов Федор Семенович ОТОПЛЕНИЕ И ОСНОВЫ ВЕНТИЛЯЦИИ — М.: Стройиздат, 1972
  2. СНиП 3.05.04–85 Наружние сети и канализация.
  3. СНиП 23–02–2003 Тепловая защита зданий.
  4. СНиП 41–01–2003 Отопление, вентиляция и кондиционирование
  5. СП 23–101–2004 Проектирование тепловой защиты зданий.

Основные термины (генерируются автоматически): внутренняя поверхность, коэффициент теплоотдачи, формула, теплопотеря, разность давлений воздуха, ограждающая конструкция, холодный воздух, Плотность воздуха, скорость ветра, наружный воздух.

н — коэффициент теплоотдачи от наружной поверхности покровного слоя

где w, м/с — скорость воздуха (ветра), которая при отсутствии данных принимается 10 м/с.

Мероприятия по снижению теплопотерь через ограждения и по экономии энергии на эксплуатацию зданий.

Так как циркуляция воздуха обусловлена разностью плотностей нагретых и холодных слоев и определяется произведением , то.

(2). Плотность теплового потока в прослойке, вычисляли по формуле. ,(3). где — толщина воздушной прослойки, м; -температурный перепад в…

Тепловая нагрузка абонентов меняется в зависимости от множества факторов. Отопление и вентиляция относятся к сезонным нагрузкам и зависят, в основном, от температуры наружного воздуха, а также от направления и скорости ветра, солнечного излучения…

‒ температуру наружного воздуха

‒ в холодных чердачных помещениях по расчету, исключающий конденсацию влаги на ограждающих конструкциях (разница температуры наружного воздуха и воздуха чердачного помещения составляет 2–4 ºС)

3.3 Суммарный коэффициент теплоотдачи плоской наружной поверхности (. На рисунке 2 приведен график изменения

– температура наружного воздуха ( ºС); Рис. 4. Теплоотдача плоской поверхности. 4. Теплопередача от продуктов сгорания квнутренней стенке печи.

Однако расчёт вентиляционной части тепловой нагрузки основывается на нормативной кратности воздухообмена и не учитывает влияние изменения температуры наружного воздуха и скорости ветра в течение отопительного периода.

Побудителем естественного воздухообмена служит наличие теплового и ветрового напоров.

Тепловой напор создается при разности плотностей наружного и внутреннего воздуха [7].

Температура воздуха является скалярной величиной.

на улицу, а в теплый период с улицы, постоянно перетекает определенное количество тепла, величина которого зависит от толщины и материала стенок, типа ограждения, от разности температур между воздухом помещения и наружным воздухом, от скорости наружного

Внешними возмущающими воздействиями являются изменения наружной температуры, скорости ветра, солнечной радиации.

Важно

Расчётная температура для проектирования отопления в Новосибирске tно=-37 С, расчётная температура внутреннего воздуха tвр = 20 С, в…

Источник: https://moluch.ru/archive/177/46071/

Формулы для расчёта теплопотерь дома

Обеспечение жилища теплом — очень сложная задача в суровых климатических условиях. На главе семейства лежит ответственность решить её с минимальными финансовыми затратами.

Чтобы этого добиться, нужен расчёт теплопотерь.

Точные вычисления помогут подобрать для отопления помещения максимально эффективную систему обогрева, избежать лишних потерь тепла и напрасного расхода материальных средств.

Точный расчет теплопотерь дома позволяет подобрать действенную систему отопления

Основные факторы теплопотерь

Чтобы точно рассчитать теплопотери дома, необходимо знать, что на них влияет. Учитывая факторы потерь, домовладелец сможет максимально точно определить искомую величину. Есть два основных показателя, от которых зависят размеры теплопотерь:

  1. Тепловые потери через домовое ограждение. Сюда входит учёт потерь через стены, пол, потолок, оконные и дверные проёмы.
  2. Затраты энергии на нагрев воздуха при вентиляции. Вычисляются расходы при открытии окон, дверей и вентиляционных каналов.

В этом видео вы увидите удобную программу для расчета теплопотерь и мощности котла:

Кроме основных величин, на конечный результат влияет:

  • точное геодезическое положение дома;
  • климатические условия местности;
  • материалы, из которых построено здание.

Базовые формулы

Основная цифра подсчёта состоит из двух составляющих. Чтобы посчитать теплопотери дома, надо вычислить каждую из них, а затем сложить результаты. Расход теплопотерь через ограждения вычисляют по такой формуле: Q = 1/R * (tв — tн) * S * (1 + ∑β).

Теплопотери дома рассчитываются по формуле

Вот что обозначают основные переменные уравнения:

  • определяемая величина — это потери тепловой энергии, вычисляется в Вт;
  • R — сопротивление материала конструкции окружающей температуре (м2*С/Вт);
  • tв — внутренняя температура — её средний показатель вычисляется в градусах по Цельсию;
  • tн — температура снаружи, берётся самый низкий показатель, измеряется в градусах;
  • S — площадь ограждения вычисляется по наружным размерам в квадратных метрах;
  • β — дополнительные теплопотери из-за ориентации здания на местности.

Имея формулу, приступают к вычислениям. Для этого надо иметь справочные таблицы со следующими показателями:

  • низкие температуры по регионам;
  • коэффициенты дополнительных теплопотерь из-за расположения здания на местности;
  • значения тепловодности строительных материалов;
  • личные наблюдения или специальные таблицы со средними показателями температур в помещениях здания.

Измерение вентиляционных показателей

Ещё одной важной составляющей расчёта теплопотерь помещения является величина энергии, уходящей на обогрев вентиляционного воздуха. Она может составлять до 30% общих потерь, поэтому обязательно вычисляется и прибавляется к результату основных расчётов. Формулу для такого вычисления берут из учебника физики для определения теплоёмкости воздуха: Q возд. = c * m * (tв — tн).

Энергия, уходящая на обогрев вентиляционного воздуха рассчитывается по формуле

Вот расшифровка основных показателей:

  • Q возд. — количество энергии, потраченное на обогрев воздуха, измеряется в Вт;
  • tв — средняя внутренняя температура измеряется в градусах по Цельсию;
  • tн — самая низкая температура снаружи измеряется в градусах;
  • c — теплоёмкость воздуха равна 0.28 Вт / (кг °С);
  • m — масса воздуха, попадающего в помещение снаружи, измеряют в кг.

Для более точного подсчёта массы поступающего воздуха пользуются простой формулой: умножают объём всех вычисляемых помещений на плотность воздуха.

Вычисление объёма производят по внутренним данным, перемножая длину, ширину и высоту комнат, а потом сложив все объёмы в единый. Значение плотности воздуха находят в специальной таблице, где он указан в зависимости от температуры.

За отправную температуру берётся наружный показатель, самый низкий для местности.

Для определения конечного результата складывают итоговые значения двух основных формул. Полученный результат будет наиболее точным показателем теплопотерь здания.

Наглядный пример расчётов

Для определения теплопотерь вычисляют величину для каждой комнаты в отдельности, потом их складывают. Вот схема последовательности вычислений для одной комнаты:

  1. Вычисляют площадь окна или окон на северной стене.
  2. Вычисляют площадь северной стены. Для этого умножают её наружную высоту на ширину. Ширину определяют до середины смежной стены или до её конца, если она крайняя. Отнимают от этой площади площадь окон, расположенных на стене.Для расчета теплопотерь сначала высчитывают величину для каждой комнаты, затем показатели складывают
  3. Вычисляют термическое сопротивление каждого окна.
  4. Вычисляют показания для стены термического сопротивления. Для этого просчитывают показания для каждого слоя конструкции, а потом их складывают.
  5. Подставляют все данные в формулу для вычисления теплопотерь стены. Добавляют из таблицы дополнительных теплопотерь коэффициент для северной стороны.
  6. Также вычисляют теплопотери окон на этой стене.
  7. Вычисляют теплопотери остальных стен по той же схеме. У внутренних стен показания внутренней и внешней температур обычно равны. За внешнюю температуру берутся показания за стеной.
  8. Вычисляют теплопотери потолка. Учитывают, что внутренняя температура на чердаке может отличаться от внешней температуры, поэтому берут для формулы расчёта показатели температуры за перекрытием.От правильных расчетов зависит комфорт и уют в доме
  9. По тому же принципу вычисляют теплопотери через пол комнаты.
  10. Складывают все данные и получают расход энергии через ограждения.
  11. Вычисляют объём комнаты, перемножив её высоту, длину и ширину.
  12. Вычисляют расход энергии на обогрев вентиляционного воздуха, подставив данные в формулу.
  13. Складывают энергию, потраченную на ограждения и вентиляцию. Получают конечный результат.
  14. По той же схеме вычисляют все комнаты и помещения здания и находят общую сумму всех показателей. Полученная величина будет наиболее точным мерилом теплопотерь всего дома.

Источник: https://kaminguru.com/sooruzhenija/formuly-dlja-raschjota-teplopoter.html

Расчет теплопотерь дома через ограждающие конструкции и инженерные коммуникации

Проектирование системы отопления «на глазок» с большой вероятностью может привести либо к неоправданному завышению расходов на ее эксплуатацию, либо к недогреву жилища.

Чтобы не случилось ни того ни другого, необходимо в первую очередь грамотно выполнить расчет теплопотерь дома.

И только на основании полученных результатов подбирается мощность котла и радиаторов. Наш разговор пойдет о том, каким способом производятся эти вычисления и что при этом нужно учитывать.

Авторы многих статей сводят расчет теплопотерь к одному простому действию: предлагается умножить площадь отапливаемого помещения на 100 Вт. Единственное условие, которое при этом выдвигается, относится к высоте потолка — она должна составлять 2,5 м (при других значениях предлагается вводить поправочный коэффициент).

На самом деле такой расчет является настолько приблизительным, что полученные с его помощью цифры можно смело приравнивать к «взятым с потолка». Ведь на удельную величину теплопотерь влияет целый ряд факторов: материал ограждающих конструкций, наружная температура, площадь и тип остекления, кратность воздухообмена и пр.

Теплопотери дома

Более того, даже для домов с различной отапливаемой площадью при прочих равных условиях ее значение будет разным: в маленьком доме — больше, в большом — меньше. Так проявляется закон квадрата-куба.

Совет

Поэтому владельцу дома крайне важно освоить более точную методику определения теплопотерь. Такой навык позволит не только подобрать отопительное оборудование с оптимальной мощностью, но и оценить, к примеру, экономический эффект от утепления. В частности, можно будет понять, превзойдет ли срок службы теплоизолятора период его окупаемости.

Первое, что необходимо сделать исполнителю — разложить общие теплопотери на три составляющие:

  • потери через ограждающие конструкции;
  • обусловленные работой вентиляционной системы;
  • связанные со сбросом нагретой воды в канализацию.

Рассмотрим каждую из разновидностей подробно.

Расчет теплопотерь

Вот как следует производить вычисления:

Теплопотери через ограждающие конструкции

Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).

Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

Для многослойных конструкций сопротивления всех слоев нужно сложить.

Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

Где:

  • А — площадь ограждающей конструкции, кв. м;
  • dT — разность наружной и внутренней температур.
  • dT следует определять для самой холодной пятидневки.

Теплопотери через вентиляцию

Для этой части расчета необходимо знать кратность воздухообмена.

В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

Теплопотери через вентиляцию определим по формуле:

Qв = (V*Кв / 3600) * р * с * dT,

Где

  • V — объем помещения, куб. м;
  • Кв — кратность воздухообмена;
  • Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
  • С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

  • понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
  • на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
  • предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.

Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта.

К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х.

На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

W = ((Q + Qв) * 24 * N)/1000,

Где:

  • W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
  • N — количество дней в отопительном сезоне.

Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

Теплопотери через канализацию

Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

Qк = (Vв * T * р * с * dT) / 3 600 000,

Где:

  • Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
  • Р — плотность воды, принимаем р = 1000 кг/куб. м;
  • С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
  • dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
  • 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.

Рассчитаем теплопотери 2-этажного дома высотой 7 м, имеющего размеры в плане 10х10 м.

Стены имеют толщину 500 мм и выстроены из теплой керамики (Кт = 0,16 Вт/м*С), снаружи утеплены минеральной ватой толщиной 50 мм (Кт = 0,04 Вт/м*С).

В доме имеется 16 окон площадью по 2,5 кв. м.

Наружная температура в самую холодную пятидневку составляет -25 градусов.

Средняя наружная температура за отопительный период — (-5) градусов.

Внутри дома требуется обеспечить температуру +23 градуса.

Потребление воды — 15 куб. м/мес.

Продолжительность отопительного периода — 6 мес.

Определяем теплопотери через ограждающие конструкции (для примера рассмотрим только стены)

Термическое сопротивление:

  • основного материала: R1 = 0,5 / 0,16 = 3,125 кв. м*С/Вт;
  • утеплителя: R2 = 0,05/0,04 = 1,25 кв. м*С/Вт.

То же для стены в целом: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м*С/Вт.

Определяем площадь стен: А = 10 х 4 х 7 – 16 х 2,5 = 240 кв. м.

Теплопотери через стены составят:

Qс = (240 / 4.375) * (23 – (-25)) = 2633 Вт.

Аналогичным образом рассчитываются теплопотери через крышу, пол, фундамент, окна и входную дверь, после чего все полученные значения суммируются. Термическое сопротивление дверей и окон производители обычно указывают в паспорте на изделие.

Обратите внимание на то, что при расчете теплопотерь через пол и фундамент (при наличии подвала) разность температур dT будет намного меньшей, так как при ее вычислении учитывается температура не воздуха, а грунта, который зимой является гораздо более теплым.

Теплопотери через вентиляцию

Определяем объем воздуха в помещении (для упрощения расчета толщина стен не учитывается):

V = 10х10х7 = 700 куб. м.

Принимая кратность воздухообмена Кв = 1, определяем теплопотери:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-25)) = 11300 Вт.

Вентиляция в доме

Теплопотери через канализацию

С учетом того, что жильцы потребляют 15 куб. м воды в месяц, а расчетный период составляет 6 мес., теплопотери через канализацию составят:

Qк = (15 * 6 * 1000 * 4183 * 23) / 3 600 000 = 2405 кВт*ч

Оценка полного объема энергозатрат

Для оценки всего объема энергозатрат за отопительный период необходимо пересчитать теплопотери через вентиляцию и ограждающие конструкции с учетом средней температуры, то есть dT составит не 48, а только 28 градусов.

Тогда средняя мощность потерь через стены составят:

Qс = (240 / 4.375) * (23 – (-5)) = 1536 Вт.

Предположим, что через крышу, пол, окна и двери дополнительно теряется в среднем 800 Вт, тогда совокупная средняя мощность теплопотерь через ограждающие конструкции составит Q = 1536 + 800 = 2336 Вт.

Средняя мощность теплопотерь через вентиляцию составит:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-5)) =6592 Вт.

Тогда за весь период на отопление придется затратить:

W = ((2336 + 6592)*24*183)/1000 = 39211 кВт*ч.

К этой величине нужно прибавить 2405 кВт*ч потерь через канализацию, так что общий объем энергозатрат за отопительный период составит 41616 кВт*ч.

Если в качестве энергоносителя используется только газ, из 1-го куб. м которого удается получить 9,45 кВт*ч тепла, то его понадобится 41616 / 9,45 = 4404 куб. м.

Видео на тему

Источник: https://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/raschet-teplopoter-doma.html

Расчёт теплопотерь частного дома с примерами

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов.

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов.

Без предварительного расчёта тепловой проницаемости и влагонакопления теряется вся суть жилищного строительства.

Физика теплотехнических процессов

Обратите внимание

Различные области физики имеют много схожего в описании явлений, которые ими изучаются.

Так и в теплотехнике: принципы, описывающие термодинамические системы, наглядно перекликаются с основами электромагнетизма, гидродинамики и классической механики.

В конце концов, речь идёт об описании одного и того же мира, поэтому не удивительно, что модели физических процессов характеризуются некоторыми общими чертами во многих областях исследований.

Лучшие публикации в Telegram-канале Econet.ru. Подписывайтесь! 

Суть тепловых явлений понять легко. Температура тела или степень его нагрева есть не что иное, как мера интенсивности колебаний элементарных частиц, из которых это тело состоит. Очевидно, что при столкновении двух частиц та, у которой энергетический уровень выше, будет передавать энергию частице с меньшей энергией, но никогда наоборот.

Однако это не единственный путь обмена энергией, передача возможна также посредством квантов теплового излучения. При этом базовый принцип обязательно сохраняется: квант, излученный менее нагретым атомом, не в состоянии передать энергию более горячей элементарной частице. Он попросту отражается от неё и либо пропадает бесследно, либо передаёт свою энергию другому атому с меньшей энергией.

Термодинамика хороша тем, что происходящие в ней процессы абсолютно наглядны и могут интерпретироваться под видом различных моделей. Главное — соблюдать базовые постулаты, такие как закон передачи энергии и термодинамического равновесия. Так что если ваше представление соответствует этим правилам, вы легко поймёте методику теплотехнических расчётов от и до.

Понятие сопротивления теплопередаче

Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.

 Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов.

Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии.

Важно

Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:

Rt = (T2 – T1) / P

где:

  • Rt — термическое сопротивление участка, К/Вт;
  • T2 — температура начала участка, К;
  • T1 — температура конца участка, К;
  • P — тепловой поток, Вт.

В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.

Rt = l / (λ·S)

где:

  • Rt — термическое сопротивление участка цепи, К/Вт;
  • l — длина участка тепловой цепи, м;
  • λ — коэффициент теплопроводности материала, Вт/(м·К);
  • S — площадь поперечного сечения участка, м2.

Факторы, влияющие на теплопотери

Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне.

В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения.

Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

  • через толщу бетона
  • через стальные стержни
  • от стальных стержней к бетону

Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом.

Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.

Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было.

При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки.

Соответственно, три основных метода борьбы с таким явлением — это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

Дифференцированные схемы расчёта

Простейший способ установить размер тепловых потерь здания — суммировать значения теплового потока через конструкции, которыми это здание образовано.

Совет

Такая методика полностью учитывает разницу в структуре различных материалов, а также специфику теплового потока сквозь них и в узлах примыкания одной плоскости к другой.

Такой дихотомический подход сильно упрощает задачу, ведь разные ограждающие конструкции могут существенно отличаться в устройстве систем теплозащиты. Соответственно, при раздельном исследовании определить сумму теплопотерь проще, ведь для этого предусмотрены различные способы вычислений:

  • Для стен утечки теплоты количественно равны общей площади, умноженной на отношение разницы температур к тепловому сопротивлению. При этом обязательно берётся во внимание ориентация стен по сторонам света для учёта их нагрева в дневное время, а также продуваемость строительных конструкций.
  • Для перекрытий методика та же, но при этом учитывается наличие чердачного помещения и режим его эксплуатации. Также за комнатную температуру принимается значение на 3–5 °С выше, расчётная влажность тоже увеличена на 5–10%.
  • Теплопотери через пол рассчитывают зонально, описывая пояса по периметру здания. Связано это с тем, что температура грунта под полом выше у центра здания по сравнению с фундаментной частью.
  • Тепловой поток через остекление определяется паспортными данными окон, также нужно учитывать тип примыкания окон к стенам и глубину откосов.

Q = S · (ΔT / Rt)

где:

  • Q —тепловые потери, Вт;
  • S — площадь стен, м2;
  • ΔT — разница температур внутри и снаружи помещения, ° С;
  • Rt — сопротивление теплопередаче, м2·°С/Вт.

Пример расчёта

Прежде чем перейти к демонстрационному примеру, ответим на последний вопрос: как правильно рассчитать интегральное термическое сопротивление сложных многослойных конструкций? Это, конечно, можно сделать вручную, благо, что в современном строительстве используется не так много типов несущих оснований и систем утепления.

Однако учесть при этом наличие декоративной отделки, интерьерной и фасадной штукатурки, а также влияние всех переходных процессов и прочих факторов достаточно сложно, лучше воспользоваться автоматизированными вычислениями. Один из лучших сетевых ресурсов для таких задач — smartcalc.

ru, который дополнительно составляет диаграмму смещения точки росы в зависимости от климатических условий.

Для примера возьмём произвольное здание, изучив описание которого читатель сможет судить о наборе исходных данных, необходимых для расчёта. Имеется одноэтажный дом правильной прямоугольной формы размерами 8,5х10 м и высотой потолков 3,1 м, расположенный в Ленинградской области.

В доме выполнен неутеплённый пол по грунту досками на лагах с воздушным зазором, высота пола на 0,15 м превышает отметку планирования грунта на участке.

Материал стен — шлаковый монолит толщиной 42 см с внутренней цементно-известковой штукатуркой толщиной до 30 мм и наружной шлаково-цементной штукатуркой типа «шуба» толщиной до 50 мм.

Общая площадь остекления — 9,5 м2, в качестве окон использован двухкамерный стеклопакет в теплосберегающем профиле с усреднённым термическим сопротивлением 0,32 м2·°С/Вт.

Обратите внимание

Перекрытие выполнено на деревянных балках: снизу оштукатурено по дранке, заполнено доменным шлаком и сверху укрыто глиняной стяжкой, над перекрытием — чердак холодного типа. Задача расчёта теплопотерь — формирование системы теплозащиты стен.

Пол

Первым делом определяются тепловые потери через пол. Поскольку их доля в общем оттоке тепла наименьшая, а также по причине большого числа переменных (плотность и тип грунта, глубина промерзания, массивность фундамента и т. д.

), расчёт теплопотерь проводится по упрощённой методике с использованием приведённого сопротивления теплопередаче.

По периметру здания, начиная от линии контакта с поверхностью земли, описывается четыре зоны — опоясывающих полосы шириной по 2 метра.

Для каждой из зон принимается собственное значение приведённого сопротивления теплопередаче. В нашем случае имеется три зоны площадью по 74, 26 и 1 м2.

Пусть вас не смущает общая сумма площадей зон, которая больше площади здания на 16 м2, причина тому — двойной пересчёт пересекающихся полос первой зоны в углах, где теплопотери значительно выше по сравнению с участками вдоль стен.

Применяя значения сопротивления теплопередаче в 2,1, 4,3 и 8,6 м2·°С/Вт для зон с первой по третью, мы определяем тепловой поток через каждую зону: 1,23, 0,21 и 0,05 кВт соответственно.

Стены

Используя данные о местности, а также материалы и толщину слоёв, которыми образованы стены, на упомянутом выше сервисе smartcalc.ru нужно заполнить соответствующие поля.

По результатам расчёта сопротивление теплопередаче оказывается равным 1,13 м2·°С/Вт, а тепловой поток через стену — 18,48 Вт на каждом квадратном метре.

Важно

При общей площади стен (за вычетом остекления) в 105,2 м2 общие теплопотери через стены составляют 1,95 кВт/ч. При этом потери тепла через окна составят 1,05 кВт.

Перекрытие и кровля

Расчёт теплопотерь через чердачное перекрытие также можно выполнить в онлайн-калькуляторе, выбрав нужный тип ограждающих конструкций. В результате сопротивление перекрытия теплопередаче составляет 0,66 м2·°С/Вт, а потери тепла — 31,6 Вт с квадратного метра, то есть 2,7 кВт со всей площади ограждающей конструкции.

Итого суммарные теплопотери согласно расчётам составляют 7,2 кВт·ч. При достаточно низком качестве строительных конструкций здания этот показатель очевидно сильно ниже реального. На самом деле такой расчёт идеализирован, в нём не учтены специальные коэффициенты, продуваемость, конвекционная составляющая теплообмена, потери через вентиляцию и входные двери.

В действительности, из-за некачественной установки окон, отсутствия защиты на примыкании кровли к мауэрлату и плохой гидроизоляции стен от фундамента реальные теплопотери могут быть в 2 или даже 3 раза больше расчётных. Тем не менее, даже базовые теплотехнические исследования помогают определиться, будут ли конструкции строящегося дома соответствовать санитарным нормам хотя бы в первом приближении.

Напоследок дадим одну важную рекомендацию: если вы действительно хотите получить полное представление о тепловой физике конкретного здания, необходимо использовать понимание описанных в этом обзоре принципов и специальную литературу.

Например, очень хорошим подспорьем в этом деле может стать справочное пособие Елены Малявиной «Теплопотери здания», где весьма подробно объяснена специфика теплотехнических процессов, даны ссылки на необходимые нормативные документы, а также приведены примеры расчётов и вся необходимая справочная информация.опубликовано econet.ru  

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Источник: https://econet.ru/articles/180516-raschyot-teplopoter-chastnogo-doma-s-primerami

Калькулятор теплопотерь дома позволяет выполнить расчет тепловых потерь здания или отдельного помещения через ограждающие конструкции по СНиП – теоретическое обоснование указано ниже. Для начала расчета укажите город проживания или ближайшую столицу субъекта (только Россия), чтобы получить значения температуры воздуха наиболее холодной пятидневки по СП 131.13330.2012 «Строительная климатология» (можно указать значения самостоятельно). Далее требуется выбрать ограждения, которые необходимо учитывать при подсчете (стены, окна, потолок, пол), также можно рассчитать потери на инфильтрацию (вентиляцию). Для каждого параметра можно выбрать два слоя (внешний, внутренний). Чтобы получить результат, нажмите кнопку «Рассчитать».

Калькулятор теплопотерь предназначен для расчета примерного количества тепла, теряемого помещением через ограждающие конструкции в единицу времени в самую холодную пятидневку выбранного населенного пункта (по актуализированной редакции СП 131.13330.2012).

Информация актуальна на 2023 год для всех регионов Российской Федерации.

Данные расчеты являются достаточно приблизительными, так как невозможно учесть абсолютно все факторы, влияющие на тепловые потери, а полученные результаты необходимо проверять экспериментально, для подтверждения расчетов. Ошибки в конструкции стен так же могут значительным образом повлиять на фактические теплопотери. Например, образование конденсата внутри стеновой конструкции может значительно увеличить теплопроводность теплоизолирующего материала в зимний период.

Также на общие теплопотери влияют разность наружной и внутренней температур, солнечная радиация, атмосферные осадки, ветра и другие факторы. Моделирование процессов тепловых потерь целого здания является актуальной проблемой. Зная теплопотери здания, можно переходить к выбору мощности и вариантов системы отопления.

Теплопотери в доме

Схема: Тепловые потери в доме

Для снижения тепловых потерь здания необходимо использовать максимально эффективные теплоизоляционные материалы. Особенно стоит уделить внимание кровле, так как именно через нее наружу уходит наибольшее количество тепла из помещения. Для поддержания комфортного внутреннего микроклимата, а так же снижения финансовых затрат на отопление, необходимо соблюдать правильный баланс утепления всех ограждающих конструкций.

Примерное минимальное качество утепления наружных стен

Хорошее:

  • 300 мм Дерево + 100 мм Полистирол/Каменная Вата
  • 500 мм Газо- и пенобетон
  • 300 мм Газо- и пенобетон + 100 мм Полистирол/Каменная Вата
  • 400 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата
  • 250 мм Кирпич + 200 мм Полистирол/Каменная Вата

Среднее:

  • 300 мм Дерево + 50 мм Полистирол/Каменная Вата
  • 400 мм Газо- и пенобетон
  • 300 мм Газо- и пенобетон + 50 мм Полистирол/Каменная Вата
  • 200 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата
  • 250 мм Кирпич + 100 мм Полистирол/Каменная Вата

Плохое:

  • 200 мм Дерево
  • 200 мм Газо- и пенобетон
  • 100 мм Газо- и пенобетон + 120 мм Кирпич
  • 300 мм Керамзитобетон
  • 250 мм Кирпич

Как сделать дом энергоэффективным

Формулы расчета тепловых потерь

Для расчета потерь теплоты через ограждающие конструкции помещений используют законченную формулу из СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Q = S × ((tв — tн) / R)

  • S – площадь помещения, м2;
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • R – термическое сопротивление материала, (м2 × °С)/Вт.

Для расчета общего термического сопротивления стен дополнительно применяются поправочные коэффициенты:

Rобщ = Rм + Rв + Rн

  • Rм – термическое сопротивление материала, Вт/(м2 × °С);
  • Rв – термическое сопротивление внутренней поверхности стены, Вт/(м2 × °С);
  • Rн – термическое сопротивление наружной поверхности стены, Вт/(м2 × °С).

В свою очередь, показатели термического сопротивления равны:

Rм = L / λ

Rв = 1 / αв

Rн = 1 / αн

  • L – толщина материала, м;
  • λ – теплопроводность материала, Вт/(м × °С)
  • αв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 × °С);
  • αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м2 × °С).

Все параметры подбираются согласно СНиП II-3-79* «Строительная теплотехника».

Теплопотери для многослойных стен рассчитываются аналогичным образом, за исключением того, что значение суммарного термического сопротивление складывается для каждого слоя:

Rобщ = Rв + R1 + R2 + .. + Rн

Иным способом производится расчет тепловых потерь на инфильтрацию, формулу можно найти в СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Qi = 0.28 × Gi × c × (tв — tн) × k

  • Gi – расход воздуха, м3/ч;
  • c – удельная теплоемкость воздуха, 1.006 кДж/(кг × °С)
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • k – коэффициент учета влияния встречного теплового потока в конструкциях (по умолчанию 0.8).

Расход удаляемого воздуха Gi, не компенсируемый приточным воздухом определяется следующим образом:

Gi = 3 × S

  • 3 – норма воздухообмена для жилых квартир, м3/ч (по СНиП 2.08.01-89* «Жилые здания»);
  • S – площадь помещения, м2.

Сравнение теплоизоляции стен

Общие сведения по результатам расчетов

1. Теплопотери помещения — Общее количество тепла, измеряемое в Ваттах, которое теряет расчетное помещение в единицу времени через ограждающие конструкции.

2. Удельные теплопотери помещения — Теплопотери помещения отнесенные к его площади.

3. Температура воздуха наиболее холодных суток

4. Температура воздуха наиболее холодной пятидневки

5. Продолжительность отопительного сезона

6. Средняя температура воздуха отопительного сезона

Смежные нормативные документы:

  • СП 50.13330.2010 «Тепловая защита зданий»
  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
  • СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»
  • СНиП 2.04.07-86* «Тепловые сети»
  • СНиП 2.08.01-89* «Жилые здания»
  • СНиП II-3-79* «Строительная теплотехника»
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»
  • ГОСТ 22270-76 «Оборудование для кондиционирования воздуха, вентиляции и отопления»
  • ГОСТ 31311-2005 «Приборы отопительные»

Для более точного расчета теплопотерь обязательно обратитесь к квалифицированным специалистам в вашем регионе!

Добавить комментарий