Как найти коэффициент угла функции


Загрузить PDF


Загрузить PDF

Угловой коэффициент характеризует угол наклона прямой к оси абсцисс (угловой коэффициент численно равен тангенсу этого угла). Угловой коэффициент присутствует в уравнении прямой и используется в математическом анализе кривых, где всегда равен производной функции. Для облегчения понимания углового коэффициента представьте, что он влияет на скорость изменения функции, то есть чем больше значение углового коэффициента, тем больше значение функции (при одном и том же значении независимой переменной).

  1. Изображение с названием Find the Slope of an Equation Step 1

    1

    Используйте угловой коэффициент для нахождения угла наклона прямой к оси абсцисс и направления этой прямой. Вычислить угловой коэффициент довольно легко, если вам дано уравнение прямой. Запомните, что в любом уравнении прямой:

  2. Изображение с названием Find the Slope of an Equation Step 2

    2

    Для нахождения углового коэффициента необходимо найти значение k (коэффициент при «х»). Если данное вам уравнение имеет вид y=kx+b, то для нахождения углового коэффициента вам нужно просто посмотреть на число, стоящее перед «х». Обратите внимание, что k (угловой коэффициент) всегда находится при независимой переменной (в данном случае «х»). Если вы запутались, просмотрите следующие примеры:

  3. Изображение с названием Find the Slope of an Equation Step 3

    3

    Если данное вам уравнение имеет вид, отличный от y=kx+b, обособьте зависимую переменную. В большинстве случаев зависимая переменная обозначается как «у», а для ее обособления можно выполнять операции сложения, вычитания, умножения и другие. Помните, что любая математическая операция должна быть выполнена на обеих сторонах уравнения (чтобы не менять его исходного значения). Вам необходимо привести любое данное вам уравнение к виду y=kx+b. Рассмотрим пример:

    Реклама

  1. Изображение с названием Find the Slope of an Equation Step 4

    1

    Для вычисления углового коэффициента воспользуйтесь графиком и двумя точками. Если вам дан просто график функции (без уравнения), вы все еще можете найти угловой коэффициент. Для этого вам понадобятся координаты любых двух точек, лежащих на этом графике; координаты подставляются в формулу: {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Чтобы избежать ошибок при вычислении углового коэффициента, запомните следующее:

    • Если график возрастает, то угловой коэффициент имеет положительное значение.
    • Если график убывает, то угловой коэффициент имеет отрицательное значение.
    • Чем больше значение углового коэффициента, тем круче график (и наоборот).
    • Угловой коэффициент прямой, параллельной оси абсцисс, равен 0.
    • Угловой коэффициент прямой, параллельной оси ординат, не существует (он бесконечен).[4]
  2. Изображение с названием Find the Slope of an Equation Step 5

    2

    Найдите координаты двух точек. На графике отметьте любые две точки и найдите их координаты (х,у). Например, на графике лежат точки А(2,4) и В(6,6).[5]

    • В паре координат первое число соответствует «х», а второе – «у».
    • Каждому значению «х» соответствует определенное значение «у».
  3. Изображение с названием Find the Slope of an Equation Step 6

    3

    Приравняйте x1, y1, x2, y2 к соответствующим значениям. В нашем примере с точками А(2,4) и В(6,6):

    • x1: 2
    • y1: 4
    • x2: 6
    • y2: 6[6]
  4. Изображение с названием Find the Slope of an Equation Step 7

    4

    Подставьте найденные значения в формулу для вычисления углового коэффициента. Чтобы найти угловой коэффициент, используются координаты двух точек и следующая формула: {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Подставьте в нее координаты двух точек.

  5. Изображение с названием Find the Slope of an Equation Step 8

    5

    Объяснение сути формулы. Угловой коэффициент равен отношению изменения координаты «у» (двух точек) к изменению координаты «х» (двух точек). Изменение координаты – это разность между значениями соответствующей координаты первой и второй точек.

  6. Изображение с названием Find the Slope of an Equation Step 9

    6

    Другой вид формулы для вычисления углового коэффициента. Стандартная формула для вычисления углового коэффициента: k = {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Но она может иметь следующий вид: k = Δy/Δx, где Δ – это греческая буква «дельта», обозначающая в математике разность. То есть, Δx = x_2 – x_1, а Δy = y_2 – y_1.[8]

    Реклама

  1. Изображение с названием Find the Slope of an Equation Step 10

    1

    Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

    • Прочитайте статью Как брать производную.
    • Как брать простейшие производные, например, производную показательного уравнения, описано этой статье. Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.
  2. Изображение с названием Find the Slope of an Equation Step 11

    2

    Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  3. Изображение с названием Find the Slope of an Equation Step 12

    3

    Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции f(x)=2x^{2}+6x. Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная: f'(x)=4x+6
  4. Изображение с названием Find the Slope of an Equation Step 13

    4

    В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f'(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

  5. Изображение с названием Find the Slope of an Equation Step 14

    5

    Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).

    Реклама

Об этой статье

Эту страницу просматривали 144 060 раз.

Была ли эта статья полезной?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 декабря 2021 года; проверки требуют 2 правки.

Угловой коэффициент: k = frac{Delta y}{Delta x} = mathrm{tg},theta

Углово́й коэффицие́нт прямо́й (также накло́н)  — коэффициент k в уравнении y=kx+b прямой на координатной плоскости, численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой.[1]

Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему. k всегда равен frac{Delta y}{Delta x}, то есть производной уравнения прямой по x.

Угловой коэффициент не существует (иногда формально говорят «обращается в бесконечность») для прямых, параллельных оси Oy.

При положительных значениях углового коэффициента k и нулевом значении коэффициента сдвига b прямая будет лежать в первом и третьем квадрантах (в которых x и y одновременно положительны и отрицательны). При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим — более пологая.

Прямые y=k_1x+b_1 и y=k_2x+b_2 перпендикулярны, если k_1k_2=-1, а параллельны при k_{1}=k_{2}.

Примечания[править | править код]

  1. Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

Линейная функция — функция вида y = x+b. График линейной функции — прямая.

Для построения графика линейной функции достаточно двух точек — потому что через две несовпадающие точки всегда можно провести прямую, причем единственную.

Угловой коэффициент прямой

Величина k в формуле линейной функции y = kx+b называется угловым коэффициентом прямой

Если k textgreater 0, линейная функция возрастает. Чем больше х, тем больше у, то есть график идет вправо и вверх.

Если k textless 0, линейная функция убывает. Чем больше х, тем меньше у, то есть график идет вправо и вниз.

Угловой коэффициент k равен тангенсу угла наклона графика линейной функции к положительному направлению оси Х.

k= tg alpha.

Пусть k textgreater 0. Чем больше k, тем круче вверх идет график функции.

А что же будет, если k=0? Мы получим горизонтальную прямую y = b. На рисунке показан график функции y = 3.

Заметим, что прямая x = 3 (также изображенная на рисунке) не является графиком функции в нашем обычном, школьном смысле слова. В самом деле — мы помним, что функция — это соответствие между двумя множествами, причем каждому элементу множества Х соответствует один и только один элемент множества Y.

Для прямой x = 3 это не выполняется: значению x = 3 соответствует бесконечно много значений у.

Если k_1{=k}_2, прямые параллельны.

При этом, чем больше b, тем выше расположен на координатной плоскости график функции.

Например, прямые y = 4 x + 3 и y = 4 x + 9 параллельны. Их угловые коэффициенты равны.

Если k_1, k_2=-1, прямые перпендикулярны. Например, прямые y = 4x + 3 и y = - 0,25 x - 1 пересекаются под прямым углом. Произведение их угловых коэффициентов равно — 1.

Построение графика линейной функции 

График линейной функции построить легко — достаточно двух точек.

Оказывается, что привычный нам вид уравнения прямой y = kx+b — не единственно возможный.

Уравнение прямой можно записать также в виде Ax + By + C = 0.

Построим, например, прямую, заданную уравнением 3x + 4y - 12 = 0.

При x = 0 получаем, что y = 3.

При y = 0 получаем, что x = 4.

Значит, наша прямая проходит через точки M (0; 3) и N (4; 0).

Выразив у из уравнения Ax + By + C = 0, получим уравнение прямой вида y = kx+b.

Если вы поступаете в вуз на специальность, связанную с математикой, – уже на первом курсе вы познакомитесь и с другими видами уравнения прямой.

Зачем изучать линейную функцию? 

Дело в том, что многие зависимости в природе и технике описываются формулой виде y = kx+b.

Например, закон Ома для участка цепи: U = I R. Напряжение U прямо пропорционально силе тока I.

Формула для равномерного прямолинейного движения: S= vt. Пройденное расстояние S прямо пропорционально времени.

Закон теплового расширения lleft(tright)=l_0left(1+ alpha cdot tright), который вам встретится в одной из задач под номером 10 варианта Профильного ЕГЭ по математике — тоже линейная функция. И таких примеров можно привести очень много.

Обратите внимание, что в формулу линейной функции y = kx+b аргумент х входит в первой степени. Мы просто умножаем х на угловой коэффициент k и прибавляем b.

Если в формулу функции входит аргумент в любой другой степени — например, в квадрате или в кубе, если мы делим на х, если в формуле присутствует sin x, frac{1}{x} или sqrt{x}, или показательные или логарифмические выражения, зависящие от х, – график функции уже не будет прямой линией.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Линейная функция» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси Ох с их угловым коэффициентом. Допустим, что задана декартова система координат Ох на плоскости.

Определение 1

Угол наклона прямой к оси Ох, расположенный в декартовой системе координат Оху на плоскости, это угол, который отсчитывается от положительного направления Ох к прямой против часовой стрелки.

Угол наклона прямой и угловой коэффициент прямой

Когда прямая параллельна Ох или происходит совпадение в ней, угол наклона равен 0. Тогда угол наклона заданной прямой α определен на промежутке [0, π).

Определение 2

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k. Из определения получим, что k=tg α. Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Угол наклона прямой и угловой коэффициент прямой

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Пример 1

Посчитать угловой коэффициент прямой при угле наклона равном 120°.

Решение

Из условия имеем, что α=120°. По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k=tg α=120=-3.

Ответ: k=-3.

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k>0, тогда угол прямой острый и находится по формуле α=arctg k. Если k<0, тогда угол тупой, что дает право определить его по формуле α=π-arctgk.

Пример 2

Определить угол наклона заданной прямой к Ох при угловом коэффициенте равном 3.

Решение

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к Ох меньше 90 градусов. Вычисления производятся по формуле α=arctg k=arctg 3.

Ответ: α=arctg 3.

Пример 3

Найти угол наклона прямой к оси Ох, если угловой коэффициент = -13.

Решение

Если принять за обозначение углового коэффициента букву k, тогда α является углом наклона к заданной прямой по положительному направлению Ох. Отсюда k=-13<0, тогда необходимо применить формулу α=π-arctgkПри подстановке получим выражение:

α=π-arctg-13=π-arctg 13=π-π6=5π6.

Ответ: 5π6.

Уравнение с угловым коэффициентом

Уравнение вида y=k·x+b, где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси Оу.

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y=k·x+b.  В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М, M1(x1, y1),  в уравнениеy=k·x+b, тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Пример 4

Задана прямая с угловым коэффициентом y=13x-1. Вычислить, принадлежат ли точки M1(3, 0) и M2(2, -2) заданной прямой.

Решение

Необходимо подставить координаты точки M1(3, 0)  в заданное уравнение, тогда получим 0=13·3-1⇔0=0. Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M2(2, -2), тогда получим неверное равенство вида -2=13·2-1⇔-2=-13. Можно сделать вывод, что точка М2 не принадлежит прямой.

Ответ: М1 принадлежит прямой, а М2 нет.

Известно, что прямая определена уравнением y=k·x+b, проходящим через M1(0, b), при подстановке получили равенство вида b=k·0+b⇔b=b. Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y=k·x+b на плоскости определяет прямую, которая проходит через точку 0, b. Она образует угол αс положительным направлением оси Ох, где k=tg α.

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y=3·x-1. Получим, что прямая пройдет через точку с координатой 0, -1 с наклоном в α=arctg3=π3 радиан по положительному направлению оси Ох. Отсюда видно, что коэффициент равен 3.

Уравнение с угловым коэффициентом

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M1(x1, y1).

Равенство y1=k·x+b можно считать справедливым, так как прямая проходит через точку M1(x1, y1). Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y-y1=k·(x-x1).  Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M1(x1, y1).

Пример 5

Составьте уравнение прямой, проходящей через точку М1 с координатами (4,-1), с угловым коэффициентом равным -2.

Решение

По условию имеем, что x1=4, y1=-1, k=-2. Отсюда уравнение прямой запишется таким образом y-y1=k·(x-x1)⇔y-(-1)=-2·(x-4)⇔y=-2x+7.

Ответ: y=-2x+7.

Пример 6

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М1 с координатами (3,5), параллельную прямой y=2x-2.

Решение

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y=2x-2, отсюда следует, что k=2. Составляем уравнение с угловым коэффициентом и получаем:

y-y1=k·(x-x1)⇔y-5=2·(x-3)⇔y=2x-1

Ответ: y=2x-1.

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y=k·x+b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x-x1ax=y-y1ay. Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y=k·x+b⇔y-b=k·x⇔k·xk=y-bk⇔x1=y-bk.

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Пример 7

Привести уравнение прямой с угловым коэффициентом y=-3x+12к каноническому виду.

Решение

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y=-3x+12⇔-3x=y-12⇔-3x-3=y-12-3⇔x1=y-12-3

Ответ: x1=y-12-3.

Общее уравнение прямой проще всего получить из y=k·x+b, но для этого необходимо произвести преобразования: y=k·x+b⇔k·x-y+b=0. Производится переход из общего уравнения прямой к уравнениям другого вида.

Пример 8

Дано уравнение прямой видаy=17x-2. Выяснить, является ли вектор с координатами a→=(-1, 7) нормальным вектором прямой?

Решение

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y=17x-2⇔17x-y-2=0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n→=17, -1, отсюда 17x-y-2=0. Понятно, что вектор a→=(-1, 7) коллинеарен вектору n→=17, -1, так как имеем справедливое соотношение a→=-7·n→. Отсюда следует, что исходный вектор a→=-1, 7 – нормальный вектор прямой 17x-y-2=0, значит, считается нормальным вектором для прямой y=17x-2.

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения Ax+By+C=0, где B≠0, к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим Ax+By+C=0⇔-AB·x-CB.

Результат и является уравннием с угловым коэффициентом, который равняется -AB.

Пример 9

Задано уравнение прямой вида 23x-4y+1=0 . Получить уравнение данной прямой с угловым коэффициентом.

Решение

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

23x-4y+1=0⇔4y=23x+1⇔y=14·23x+1⇔y=16x+14.

Ответ: y=16x+14.

Аналогичным образом решается уравнение вида xa+yb=1, которое называют уравнение прямой в отрезках, или каноническое вида x-x1ax=y-y1ay. Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

xa+yb=1⇔yb=1-xa⇔y=-ba·x+b.

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x-x1ax=y-y1ay⇔ay·(x-x1)=ax·(y-y1)⇔⇔ax·y=ay·x-ay·x1+ax·y1⇔y=ayax·x-ayax·x1+y1

Пример 10

Имеется прямая, заданная уравнением x2+y-3=1. Привести к виду уравнения с угловым коэффициентом.

Решение.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на -3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y-3=1-x2⇔-3·y-3=-3·1-x2⇔y=32x-3.

Ответ: y=32x-3.

Пример 11

Уравнение прямой вида x-22=y+15 привести к виду с угловым коэффициентом.

Решение

Необходимо выражение x-22=y+15 вычислить как пропорцию. Получим, что 5·(x-2)=2·(y+1). Теперь необходимо полностью его разрешить, для этого:

5·(x-2)=2·(y+1)⇔5x-10=2y+2⇔2y=5x-12⇔y=52x

Ответ: y=52x-6.

Для решения таких заданий следует приводит параметрические уравнения прямой вида x=x1+ax·λy=y1+ay·λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Пример 12

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x=λy=-1+2·λ.

Решение

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x=λy=-1+2·λ⇔λ=xλ=y+12⇔x1=y+12.

Теперь необходимо разрешить данное равенство относительно y, чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x1=y+12⇔2·x=1·(y+1)⇔y=2x-1

Отсюда следует, что угловой коэффициент прямой равен 2. Это записывается как k=2.

Ответ: k=2.

На этой странице вы узнаете:

  • За что отвечают коэффициенты в записи линейной функции?
  • Как пронумерованы четверти на координатной плоскости?
  • Чем отличается график функции квадратного корня от графика квадратичной функции и почему?

Линейная функция

Любую функцию можно изобразить на графике (рисунке) и наглядно определить многие её свойства. Этим пользуются люди, составляя графики движения транспорта, посещения соцсетей или просмотра видеороликов на канале.  

Вспомним, что функция – это зависимость одной переменной от другой, а график функции – это представление данной зависимости на координатной плоскости. 

С помощью графика функции можно изучать поведение функции: возрастает или убывает, имеет ли нули, на каких промежутках значения положительные, а на каких отрицательные, наибольшее и наименьшее значение, является ли симметричной относительно OY.

Теперь давайте рассмотрим основные элементарные функции.

Что же такое линейная функция? 

Линейная функция – это функция вида y=kx+b, где k и b – известные числа, графиком которой является прямая.

y = kx + b, где
k – коэффициент
b – свободный член
x – переменная 

С линейной функцией мы встречаемся, когда оплачиваем проезд  в общественном транспорте.

Коэффициент и переменная определяют стоимость билета в зависимости от дальности поездки. Свободным членом может выступать доплата за комфортное место или за поезд-экспресс.

Пункт назначения Станция 200 км Станция 300 км Станция 400 км
Цена поездки в обычном вагоне (kx) 500 руб. 750 руб. 1000 руб.
Цена за вагон “Люкс” (kx + b) 750 руб. 1000 руб. 1250 руб.

Рассмотрим пример такой функции и ее график:
y = 2x + 3

Составим таблицу значений.

Теперь отметим найденные точки на координатной плоскости и проведём через них прямую.

Полученный нами график является графиком данной линейной функции.

Также можно составить уравнение линейной функции самостоятельно при наличии графика.

За что отвечают коэффициенты в записи линейной функции?

Коэффициент b – это длина отрезка по оси OY, на который происходит сдвиг от начала координат (может быть отрицательным, если пересечение графика с осью Y в точке с отрицательным значением).

Коэффициент k – это угол наклона прямой, он равен отношению разностей координат двух произвольных точек.

На графике найдем сначала коэффициент b , после определим координаты двух произвольных точек прямой и вычислим коэффициент k.

Подставим найденные коэффициенты в формулу линейной функции и получим
(y = frac{1}{2}x + 2)

Свойства линейной функции:

  1. Область определения: D(y) = (-∞; +∞)
  2. Область значений функции: E(y) = (-∞; +∞)
  3. Наименьшего и наибольшего значения не существует.
  4. Непериодическая.
  5. Возрастает при  k > 0, убывает при k < 0.

Квадратичная функция

Квадратичная функция – это функция вида y = ax2, где a – известное число и a ≠ 0, графиком которой является парабола.

y = ax2, где 
a – известное число 
a ≠ 0
x – переменная

Для примера построим график функции y = 2x2

Параболой можно описать полет мяча в баскетбольную корзину.

Какой вид имеет парабола в зависимости от коэффициента a ?

При a > 0 – ветви параболы вверх

При a < 0 – ветви параболы вниз

Сдвиг параболы по оси Y

y = ax2 + c

При c > 0 – сдвиг параболы вверх 

При c < 0 – сдвиг параболы вниз 

Сдвиг параболы по оси X

y = a(x — n)2

При n > 0 – сдвиг параболы вправо 

При n < 0 – сдвиг параболы влево 

Свойства квадратичной функции:

  1. Область определения: D(y) = (-∞; +∞)
  2. Область значений функции: E(y) = [0; +∞)
  3. При a > 0 – наименьшее значение y = 0.
    При a < 0 – наибольшее значение y=0.
  4. Непериодическая.
  5. На (-∞; 0] – убывает при  a > 0 и возрастает при a < 0.
    На [0; +∞) — убывает при a < 0 и возрастает при a > 0.
  6. Нуль функции x=0.
  7. Четная (симметричная относительно OY).

Функция обратной пропорциональности

Функция обратной пропорциональности – это функция вида y = (frac{k}{x}), где k – известное число и k ≠ 0, графиком которой является гипербола.

(y = frac{k}{x}), где 
k – известное число 
k ≠ 0
x – переменная

Рассмотрим пример такой функции (y = frac{2}{x})

Как коэффициент k влияет на расположение гиперболы?

Как пронумерованы четверти на координатной плоскости?

Вспомним четверти плоскостей. Они идут против часовой стрелки начиная с четверти, где и x, и y — положительные.

Гипербола при k > 0 – в первой и третьей плоскостях

Гипербола при k< 0 – во второй и четвертой плоскостях

Гипербола может также двигаться по оси X или по оси Y

Движение графика по оси Y

(y = frac{k}{x} + n) при k> 0

При n < 0, сдвиг вниз
При n > 0, сдвиг вверх

По графику выше можно сделать вывод, что n = 3.

Движение графика по оси X

(y = frac{k}{x + c}) при k> 0

При c < 0, сдвиг вправо
При c > 0, сдвиг влево

По графику выше можно сделать вывод, что c = 3.

Свойства функции обратной пропорциональности:

  1. Область определения: D(y) = (-∞; 0) U (0; +∞)
  2. Область значений функции: E(y) = (-∞; 0) U (0; +∞)
  3. Наименьшего и наибольшего значений не существует.
  4. Непериодическая.
  5. При k > 0 убывает на (-∞;0) и (0; +∞).
    При k < 0 возрастает на (-∞; 0) и (0; +∞).
  6. Нулей нет.
  7. Нечетная.

Где же в реальной жизни мы можем встретить эту функцию? 

Самый простой пример – движение автомобиля: чем выше его скорость, тем меньше времени потребуется, чтобы преодолеть одно и то же расстояние.

Функция квадратного корня

Функция квадратного корня – это функция вида (y = sqrt{x}), где x ≥ 0 .

(y = sqrt{x}), где
x – переменная
x ≥ 0

В жизни такая функция часто используется для определения стороны квадрата при известной площади. Например: при проектировании дома или разбиения участка земли на квадраты.

Рассмотрим график такой функции.

Чем отличается график функции квадратного корня от графика квадратичной функции и почему?

По графику квадратного корня уже видно, что это половина параболы, изображенной вдоль оси х. А график квадратичной функции — это целая парабола, изображенная вдоль оси y.
Так как корень всегда положительный, у функции квадратного корня (y = sqrt{x}) , всегда y ≥ 0.  А значит не будет части параболы, где y < 0. 
Если возвести обе части функции квадратного корня в квадрат, то получим y2 = x. Получившаяся функция будет уже квадратичной функцией относительно y, следовательно, будет строиться относительно х.

Какие бывают сдвиги функции квадратного корня?

Сдвиг по оси Y

(y = sqrt{x} + n)

При n < 0, сдвиг вниз
При n > 0, сдвиг вверх

По графику выше можно утверждать, что n = -2.

Сдвиг по оси X

(y = sqrt{x + c})

При c < 0, сдвиг вправо
При c > 0, сдвиг влево

Сделаем вывод, что для рисунка выше c = -2.

Свойства функции квадратного корня:

  1. Область определения: D(y) = [0; +∞)
  2. Область значений функции: E(y) = [0; +∞)
  3. Наименьшее значение при y = 0.
  4. Непериодическая.
  5. Возрастает на всей области определения.
  6. Нуль функции x = 0.

Фактчек

  • Линейная функции y = kx + b.
  • Квадратичная функции y = ax2.
  • Функция обратной пропорциональности (y = frac{k}{x}).
  • Функция квадратного корня (y = sqrt{x}).

Термины

Элементарная функция – это функция вида y = f(x) , где f(x) – это формула, содержащая конечное число арифметических операций. 

Парабола – это незамкнутая линия, точки на которой равноудалены от оси ординат.

Проверь себя

Задание 1.
Определите какая из функций является линейной

  1. (y = 2x^2 + frac{1}{2})
  2. (y = sqrt{x + 2})
  3. (y = frac{1}{2}x + 3)
  4. (y = frac{1}{x — 2})

Задание 2.
Определите какая из функций является квадратичной

  1. y = 4(x — 1)2
  2. y = 2x + 11
  3. (y = frac{x}{2} + 1)
  4. (y = sqrt{x} + 3)

Задание 3.
Определите какая функция является обратной пропорциональностью

  1. (y = frac{x}{2} + 5)
  2. (y = frac{1}{x + 2})
  3. (y = sqrt{x + 1})
  4. y = x2

Задание 4.
Определите какая функция является функцией квадратного корня

  1. y = x2
  2. (y = sqrt{x — 1} — 4)
  3. (y = 6x + frac{1}{3})
  4. y = 2x2 + 3

Задание 5.
В какую сторону будет сдвиг у параболы y = (x + 4)2?

  1. Вправо
  2. Вниз
  3. Вверх
  4. Влево

Ответы: 1. – 3; 2. – 1; 3. – 2; 4. – 2; 5. – 4

Добавить комментарий