Как найти коэффициент угла наклона графика

  1. Изображение с названием Understand Slope (in Algebra) Step 1

    1

    Угловой коэффициент равен тангенсу угла между прямой и положительным направлением оси абсцисс. Чем больше угловой коэффициент, тем быстрее растет функция.

  2. Изображение с названием Understand Slope (in Algebra) Step 2

    2

    Отрицательный угловой коэффициент свидетельствует об убывающей функции, а положительный – о возрастающей.

  3. Изображение с названием Understand Slope (in Algebra) Step 3

    3

    Угловой коэффициент прямой, параллельной оси Х, всегда равен нулю, а угловой коэффициент прямой, параллельной оси Y, не существует.

    Реклама

  1. Изображение с названием Understand Slope (in Algebra) Step 4

    1

    На графике отметьте любые две точки, координаты которых вы сможете найти.

  2. Изображение с названием Understand Slope (in Algebra) Step 5

    2

    Через точки проведите прямые, параллельные оси Х и оси Y.

    • Точки пересечения этих прямых будут лежать над и под графиком, образуя два прямоугольных треугольника. Рассмотрите любой из этих треугольников.

      Изображение с названием Understand Slope (in Algebra) Step 5Bullet1

  3. 3

    Выберите точку, лежащую на графике справа, и найдите расстояние между этой точкой (исходная точка) и точкой пересечения (конечная точка) прямых, параллельных координатным осям.

    • То есть вам нужно посчитать количество делений на оси Y от исходной точки до конечной точки. Например, количество делений равно 5.

      Изображение с названием Understand Slope (in Algebra) Step 6Bullet1

    • Теперь выберите точку, лежащую на графике слева, и найдите расстояние между этой точкой (исходная точка) и точкой пересечения (конечная точка) прямых, параллельных координатным осям. То есть вам нужно посчитать количество делений на оси Х от исходной точки до конечной точки. Например, количество делений равно 7.

      Изображение с названием Understand Slope (in Algebra) Step 6Bullet2

  4. Изображение с названием Understand Slope (in Algebra) Step 7

    4

    Угловой коэффициент равен отношению количества делений на оси Y к количеству делений на оси Х; в нашем примере угловой коэффициент равен 5/7.

  5. Изображение с названием Understand Slope (in Algebra) Step 8

    5

    Если возможно, упростите полученную дробь.

    Реклама

  1. Изображение с названием Understand Slope (in Algebra) Step 9

    1

    Если вы знаете координаты точек ((x1, y1) и (x2, y2)), лежащих на графике, то вы можете вычислить угловой коэффициент по формуле:

    (y2y1) / (x2x1)

    или

    (y1y2) / (x1x2)Обе формулы эквивалентны.

  2. Изображение с названием Understand Slope (in Algebra) Step 10

    2

    Допустим, даны точки с координатами (-4, 7) и (-1, 3).

  3. Изображение с названием Understand Slope (in Algebra) Step 11

    3

    Подставьте координаты в формулу.

  4. Изображение с названием Understand Slope (in Algebra) Step 12

    4

    Упростите полученную дробь (если это возможно).

    Реклама

Советы

  • Если вы не знакомы, почему (-4) – (-1) = -3, то прочитайте эту статью.
  • Формула: k = (y2y1)/(x2x1)
    где k – угловой коэффициент, (x1, y1) и (x2, y2) – координаты двух точек.

Реклама

Об этой статье

Эту страницу просматривали 27 193 раза.

Была ли эта статья полезной?

Что такое линейная функция и как выглядит ее график мы подробно разбирали здесь.

В этой статье мы остановимся на том, как находить коэффициент наклона прямой.

Как мы знаем, уравнение прямой имеет вид y=kx+b. В этом уравнении коэффициент при x отвечает за наклон прямой и называется коэффициентом наклона. Он равен тангенсу угла между прямой и положительным направлением оси OX.

Внимание! Не просто между прямой и осью OX, а именно между прямой и положительным направлением оси OX.

Например, в прямой y=3x-1 коэффициент наклона равен 3, в прямой y=2-5x коэффициент наклона равен -5.

В уравнении прямой y=-1 слагаемое, содержащее x отсутствует, следовательно, коэффициент при x равен нулю. Угол наклона этой прямой к оси OX равен нулю – прямая y=-1 параллельна оси OX.

Если прямая наклонена вправо, то угол между прямой и положительным направлением оси OX – острый, соответственно, тангенс этого угла больше нуля, и коэффициент k>0.

Например:

Здесь k=tg{alpha}=2>0

Если прямая наклонена влево, то угол между прямой и положительным направлением оси OX – тупой, соответственно, тангенс этого угла меньше нуля, и коэффициент k<0:

Здесь k=tg{alpha}=-3<0.

Решим две задачи на нахождение коэффициента наклона прямой.

1. Най­ди­те уг­ло­вой ко­эф­фи­ци­ент пря­мой, про­хо­дя­щей через точки с ко­ор­ди­на­та­ми (-1;-1) и (1;3).

Решим эту задачу  двумя способами.

А). Так как прямая проходит через точки (-1;-1) и (1;3), координаты этих точек удовлетворяют уравнению прямой y=kx+b. То есть если мы координаты каждой точки подставим в уравнение прямой, то получим верное равенство. Так как у нас две точки, получаем систему:

delim{lbrace}{matrix{2}{1}{{-1=k(-1)+b} {3=k*(1)+b} }}{ }

или

delim{lbrace}{matrix{2}{1}{{-k+b=-1} {k+b=3} }}{ }

Вычтем из второго уравнения первое, и получим 2k=4, отсюда k=2.

Б). Построим график этой функции. Для этого нанесем данные точки А(-1;-1) и В(1;3) на координатную плоскость и проведем через них прямую:

Коэффициент k равен тангенсу угла наклона между прямой и положительным направлением оси OX, на чертеже это угол alpha:

Чтобы найти tg{alpha} рассмотрим прямоугольный треугольник АВС с вершинами в данных точках.

Угол beta прямоугольного треугольника АВС равен углу alpha (соответственные углы, полученный при пересечении параллельных прямых АС и ОХ секущей АВ):

tg{beta} равен отношению противолежащего катета к прилежащему, то есть tg{beta}={BC}/{AC}=4/2=2

Отсюда tg{alpha}=2

2. Най­ди­те уг­ло­вой ко­эф­фи­ци­ент пря­мой, про­хо­дя­щей через точки с ко­ор­ди­на­та­ми (4;0) и (0;8).

Решение с помощью системы уравнений абсолютно аналогично решению предыдущей задачи, можете воспроизвести его самостоятельно.

Выполним это задание с помощью графика.

Нанесем данные токи на координатную плоскость и проведем через них прямую:

Угол между прямой и положительным направлением оси ОХ – это угол alpha:

Коэффициент наклона прямой  k=tg{alpha}. Чтобы найти tg{alpha}, построим прямоугольный треугольник ВОА: 

В этом прямоугольном треугольнике угол  alpha  – внешний. Мы можем найти тангенс внутреннего угла  beta.  tg{alpha}=-tg{beta}.

tg{beta}={OB}/{OA}=8/4=2. Отсюда  k=tg{alpha}=-tg{beta}=-2.

Еще раз! Если прямая наклонена влево, то коэффициент наклона прямой отрицательный.

И.В. Фельдман, репетитор по математике.

На прошлых уроках мы рассмотрели линейную функцию и научились строить ее график на координатной плоскости. На этом уроке мы углубимся в теорию и разберем, почему график выглядит именно так.

Вспомним, что линейная функция имеет вид $y = kx+b$, где $x$ – переменная, а $k$ и $b$ – некоторые числа, называемые коэффициентами.

Например,

  • $y = textcolor{blue}{5}x + color{green}{10}$ – линейная функция
  • $color{blue} k = 5$
  • $color{green} b = 10$.

График линейной функции – прямая линия, а ее положение на плоскости зависит от того, какие у функции $k$ и $b$.

Коэффициент $k$ называют угловым, так как он показывает угол наклона линейной функции на графике относительно оси $Ox$

угловой коэффициент линейной функции

При $k > 0$ угол между графиком и осью $Ox$ меньше $90 degree$ (острый)

угловой коэффициент линейной функции

При $k < 0$ угол между графиком и осью $Ox$ больше $90 degree$ (тупой)

Коэффициент b

Коэффициент $b$ называют свободным. На графике он показывает длину отрезка, который отсекает линия функции по оси ординат относительно начала координат. 

Другими словами, коэффициент $b$ показывает, насколько график выше или ниже оси $Oy$.

  • Если $b > 0$, график сдвинут вверх,
  • если $b < 0$, то график сдвинут вниз.

На нашем графике функции из примера про копилку видно, что прямая пересекает ось $Oy$ выше начала координат на $500$ единиц (этому числу и равен коэффициент $b$).

График функции $y=50x + 500$

Частные случаи. b = 0

Если коэффициент $b = 0$, функция приобретает вид $y = kx + 0$, что можно сократить до $y = kx$.

Подставим в формулу $x = 0$, получим: $$y = k times 0$$

Значит, график будет проходить через начало координат $O(0;0)$.

Для построения графика функции вида $y = kx$ достаточно найти одну точку, вторая – начало координат.

k = 0

Если коэффициент $k = 0$, угол наклона также будет равен $0$.

Функция при этом принимает вид $y = 0 times x + b$, то есть $y = b$.

Куда делась переменная $x$? Она нам больше не нужна, так как какой бы $x$ мы не подставили, значение $y$ не изменится.

Пример. График функции $y = 2$

Таблица

Цель:
Составить уравнение касательной к
графику функции в заданной точке.

Теоретический материал:

Углом наклона
прямой
y
= kx+b
называют
угол

,
отсчитываемый от положительного
направления оси абсцисс до прямой y
= kx+b
в
положительном направлении (то есть,
против часовой стрелки). Угловым
коэффициентом прямой

y = kx+b
называют числовой коэффициент k.
Угловой коэффициент
прямой равен тангенсу угла наклона
прямой, то
есть,

.

Угол наклона прямой
равен нулю, когда прямая параллельна
оси абсцисс. В этом случае нулю равен и
угловой коэффициент, так как тангенс
нуля есть ноль. Следовательно, уравнение
прямой будет иметь вид y
= b
.

Когда угол наклона
прямой y =
kx+b
является
острым (

),
то угловой коэффициент k
является положительным числом (так как
тангенс острого угла

принимает
положительные значения

)
и указывает на возрастание графика
прямой.

В случае, когда
прямая располагается перпендикулярно
оси абсцисс (параллельно оси ординат)
и задается равенством x
= c
, где c
– некоторое действительное число.

Когда угол наклона
прямой y =
kx+b
является
тупым (

),
то угловой коэффициент k
является отрицательным числом и указывает
на убывание графика прямой.

Касательной к
графику функции
y
= f(x)
в
точке


называют
прямую, проходящую через точку

,
с отрезком которой практически сливается
график функции при значениях х
сколь угодно близких к

.
Для этого покажем, что будет происходить
с секущей АВ,
если точку В
бесконечно приближать к точке А.

Рисунок ниже
иллюстрирует этот процесс.

Секущая АВ
(показана синей пунктирной прямой) будет
стремиться занять положение касательной
прямой (показана синей сплошной линией),
угол наклона секущей

(показан
красной прерывистой дугой) будет
стремиться к углу наклона касательной

(изображен
красной сплошной дугой). Таким образом,
касательная
к графику функции y
= f(x)
в точке
А
– это предельное положение секущей
AB
при

.

Геометрический смысл производной функции в точке.

Рассмотрим секущую
АВ
графика функции y
= f(x)
такую,
что точки А
и В
имеют соответственно координаты

и

,
где


приращение аргумента. Обозначим через

приращение
функции. Отметим все на чертеже:

Из прямоугольного
треугольника АВС
имеем

.
Так как по определению касательная –
это предельное положение секущей, то

.
Вспомним определение
производной функции в точке:
производной функции y
= f(x)
в точке

называется
предел отношения приращения функции к
приращению аргумента при

,
обозначается

.
Следовательно,

,
где


угловой коэффициент касательной. Таким
образом, существование производной
функции y =
f(x)
в точке

эквивалентно
существованию касательной к графику
функции y =
f(x)
в точке
касания

,
причем угловой
коэффициент касательной равен значению
производной в точке

,
то есть


.

Составление уравнения касательной прямой

Для записи уравнения
любой прямой на плоскости достаточно
знать ее угловой коэффициент и точку,
через которую она проходит. Уравнение
касательной к графику функции y
= f(x)
в точке

имеет
вид:


.

Алгоритм
составления уравнения касательной к
графику функции y = f(x)

1. Обозначить
буквой a абсциссу точки касания.

2. Найти
f(a).

3. Найти f ‘(x) и f ‘(a).

4. Подставить
найденные числа a, f(a), f ‘(a) в общее
уравнение касательной y – f(a) = f ‘(a)(x
– a).

Примеры составления
уравнения касательной
.

Пример 1. Составьте
уравнение касательной в точке M(3; – 2)
к графику функции

.

Решение. Точка
M(3; – 2) является точкой касания, так
как

1. a = 3 – абсцисса
точки касания.

2. f(3) = – 2.

3. f ‘(x)
= x2
– 4, f ‘(3) = 5.

y = – 2 + 5(x – 3), y = 5x –
17 – уравнение касательной.

Задание для
практической работы по теме
«Нахождение
углового коэффициента касательной к
графику функции в указанной точке.
Составление уравнения касательной».
Составить уравнения касательных к
графикам функции в заданной точке с
абсциссой а=2:

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Уровень А. Уровень
А.

Y=3x3-x

Уровень
B Уровень
B

Уровень А. Уровень
А.

Y=-x3+x

Уровень
B Уровень
B

Уровень А. Уровень
А.

Y=2x2-8x

Уровень
B Уровень
B

Уровень А. Уровень
А.

Y=-3x2+12x

Уровень
B Уровень
B

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Уровень А. Уровень
А.

Y=x2+5x+4

Уровень
B Уровень
B

Уровень А. Уровень
А.

Y=-x2+2x+15

Уровень
B Уровень
B

Уровень А. Уровень
А.

Y=1/3x3-9

Уровень
B
Уровень B

Уровень А. Уровень
А.

Y=x3-3x

Уровень
B Уровень
B

Практическое
Занятие №3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Линейная функция — функция вида y = x+b. График линейной функции — прямая.

Для построения графика линейной функции достаточно двух точек — потому что через две несовпадающие точки всегда можно провести прямую, причем единственную.

Угловой коэффициент прямой

Величина k в формуле линейной функции y = kx+b называется угловым коэффициентом прямой

Если k textgreater 0, линейная функция возрастает. Чем больше х, тем больше у, то есть график идет вправо и вверх.

Если k textless 0, линейная функция убывает. Чем больше х, тем меньше у, то есть график идет вправо и вниз.

Угловой коэффициент k равен тангенсу угла наклона графика линейной функции к положительному направлению оси Х.

k= tg alpha.

Пусть k textgreater 0. Чем больше k, тем круче вверх идет график функции.

А что же будет, если k=0? Мы получим горизонтальную прямую y = b. На рисунке показан график функции y = 3.

Заметим, что прямая x = 3 (также изображенная на рисунке) не является графиком функции в нашем обычном, школьном смысле слова. В самом деле — мы помним, что функция — это соответствие между двумя множествами, причем каждому элементу множества Х соответствует один и только один элемент множества Y.

Для прямой x = 3 это не выполняется: значению x = 3 соответствует бесконечно много значений у.

Если k_1{=k}_2, прямые параллельны.

При этом, чем больше b, тем выше расположен на координатной плоскости график функции.

Например, прямые y = 4 x + 3 и y = 4 x + 9 параллельны. Их угловые коэффициенты равны.

Если k_1, k_2=-1, прямые перпендикулярны. Например, прямые y = 4x + 3 и y = - 0,25 x - 1 пересекаются под прямым углом. Произведение их угловых коэффициентов равно — 1.

Построение графика линейной функции 

График линейной функции построить легко — достаточно двух точек.

Оказывается, что привычный нам вид уравнения прямой y = kx+b — не единственно возможный.

Уравнение прямой можно записать также в виде Ax + By + C = 0.

Построим, например, прямую, заданную уравнением 3x + 4y - 12 = 0.

При x = 0 получаем, что y = 3.

При y = 0 получаем, что x = 4.

Значит, наша прямая проходит через точки M (0; 3) и N (4; 0).

Выразив у из уравнения Ax + By + C = 0, получим уравнение прямой вида y = kx+b.

Если вы поступаете в вуз на специальность, связанную с математикой, – уже на первом курсе вы познакомитесь и с другими видами уравнения прямой.

Зачем изучать линейную функцию? 

Дело в том, что многие зависимости в природе и технике описываются формулой виде y = kx+b.

Например, закон Ома для участка цепи: U = I R. Напряжение U прямо пропорционально силе тока I.

Формула для равномерного прямолинейного движения: S= vt. Пройденное расстояние S прямо пропорционально времени.

Закон теплового расширения lleft(tright)=l_0left(1+ alpha cdot tright), который вам встретится в одной из задач под номером 10 варианта Профильного ЕГЭ по математике — тоже линейная функция. И таких примеров можно привести очень много.

Обратите внимание, что в формулу линейной функции y = kx+b аргумент х входит в первой степени. Мы просто умножаем х на угловой коэффициент k и прибавляем b.

Если в формулу функции входит аргумент в любой другой степени — например, в квадрате или в кубе, если мы делим на х, если в формуле присутствует sin x, frac{1}{x} или sqrt{x}, или показательные или логарифмические выражения, зависящие от х, – график функции уже не будет прямой линией.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Линейная функция» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Добавить комментарий