Для каждой из схем
включения транзисторов наиболее важными
параметрами являются коэффициенты
усиления по току, напряжению и мощности.
Как
отмечалось выше, исходное состояние
транзистора определяется выбором режима
его работы, который характеризуется
протеканием установившихся в нем токов
определенной величины и наличием
напряжений как на транзисторе, так и на
элементах, соединенных с ним. При подаче
входного сигнала ранее имевшие место
токи и напряжения в транзисторе изменяются
в соответствии с изменением входного
сигнала. Для исключения влияния положения
рабочей точки транзистора на его
коэффициенты усиления при их анализе
используются не абсолютные значения
токов и напряжений, а их приращения.
Рассмотрим в общем виде коэффициенты
усиления транзистора.
Коэффициентом
усиления по току называется
отношение приращения тока на выходе к
приращению тока на входе:
(5)
Коэффициентом
усиления по напряжению называется
отношение приращения на выходе к
приращению входного напряжения:
(6)
Коэффициентом
усиления по мощности называется
отношение приращения мощности на выходе
к приращению мощности на входе:
(7)
Входным
сопротивлением называется отношение
приращения входного напряжения к
приращению входного тока:
(8)
Выходным
сопротивлением называется
отношение приращения выходного напряжения
к приращению выходного тока:
(9)
Рассмотрим
эти параметры для двух схем включения
транзистора. На рисунке 3.16 показано
включение транзистора по схеме с О.Б. в
динамическом режиме.
Рисунок 3.16 –
Транзистор, включённый по схеме
с
общей базой в динамическом режиме
Здесь
с помощью источника E
осуществляется установка рабочей точки
на транзисторе, Uист
– источник
усиливаемого сигнала, Uвх
– входное напряжение, Uн
– выходное напряжение. В этой схеме
входным и выходным токами являются
соответственно ток эмиттера и коллектора.
Тогда, в соответствии с (5) коэффициент
усиления по току в схеме с общей базой
будет равен:
Исходя
из принципа работы транзистора, ток
коллектора заметно больше тока базы.
Поэтому значения коэффициента усиления
в схеме с О.Б. несколько меньше единицы
и принято считать, что его значения
лежат в интервале 0,9 ÷ 0,99. С целью большего
удобства коэффициент усиления по току
в схеме с О.Б. обозначают через α:
(10)
В соответствии с
(6), определим коэффициент усиления по
напряжению в схеме с О.Б.:
Здесь
под Rвх,б
понимается входное сопротивление
транзистора между эмиттером и базой в
схеме с О.Б. в динамическом режиме.
В
стабилизаторах Rн
составляет 10÷100 Ом.
Коэффициент
усиления по мощности определяется по
формуле (7):
Рассмотрим
коэффициенты усиления для транзистора,
включенного по схеме с общим эмиттером
в динамическом режиме (рисунок 3.17).
Рисунок 3.17 –
Включение транзистора по схеме
с
общим эмиттером в динамическом режиме
Здесь
входной сигнал подаётся на базу
относительно эмиттера. Во входной цепи
находится напряжение смещения E1
и источник
входного сигнала Uист.
Выходная цепь состоит из источника E2
и сопротивления нагрузки Rн.
Полярность подключения источников
такова, чтобы под действием E1
эмиттерный переход был под прямым
напряжением, а коллекторный переход
под действием E2
находился под обратным напряжением.
Как и в предыдущих случаях выполняется
условие E2>>E1.
Коэффициент
усиления по току определяем по формуле
(5), учитывая, что в этой схеме входным
током является ток базы, а выходным ток
коллектора:
Из-за
особой важности коэффициента усиления
по току в схеме транзистора с О.Э. этот
коэффициент принято обозначать
дополнительно к общему обозначению
греческой буквой β (бета).
Учитывая, что
коэффициент усиления по току в схеме с
общей базой изменяется в пределах α=0,9
– 0,99, находим, что β изменяется в пределах:
= 9÷99
Теоретически,
при α → 1, что возможно при
→
0, значение
→ ∞.
Коэффициент
усиления по напряжению определяем по
формуле (6):
Коэффициент
усиления по мощности определим как
произведение коэффициентов усиления
по току и по напряжению:
Сравнивая
коэффициенты усиления для двух
рассмотренных схем включения транзистора,
видим, что в схеме включения с общим
эмиттером коэффициенты усиления на
много больше коэффициентов усиления в
схеме включения с общей базой. Необходимо
отметить, что сомножители (дроби), стоящие
в коэффициентах усиления по току и по
мощности, мало отличаются по величине.
Поэтому понятно, что при построении
усилителей сигналов используется
включение транзистора по схеме с общим
эмиттером.
3.2.6
Эквивалентная схема транзистора.
При
расчёте электрических цепей, содержащих
транзисторы, в место транзисторов
используются их эквивалентная
электрическая схема. Для каждого способа
включения транзистора имеет место своя
эквивалентная схема. Эквивалентные
схемы отображают устройство транзистора
и его электрические свойства.
Рассмотрим
эквивалентную схему транзистора,
включённого по схеме с общей зоной. На
рисунке 3.18,а показана конструкция
транзистора, которая ранее уже
рассматривалась и представлена на
рисунке 3.1.
Рисунок
– 3.18 Эквивалентная схема транзистора,
включенного по схеме с
общей
базой, без генератора тока (а) и с
генератором тока (б)
При
изучении свойств p-n
перехода и принципа действия транзистора
было установлено, что каждый из p-n
переходов обладает определённым
омическим сопротивлением. Омическое
сопротивление эмиттерного перехода
обозначается через
.
Как
известно, одно из условий функционирования
транзистора состоит в том, чтобы
эмиттерный переход был под прямым
напряжением. В этом случае отсутствует
запирающий слой в p-n
переходе, а значит сопротивление его
мало. Поэтому величина
мала и составляет от единиц до десяток
Ом. Так же известно, что p-n
переход характеризуется барьерной
ёмкостью. Барьерная ёмкость эмиттерного
перехода обозначается через
и
в эквивалентной схеме подключается
параллельно
.
Сопротивление
коллекторного перехода обозначаются
через
.
Известно, что коллекторный переход
находится под обратным напряжением,
что создает запирающий слой, обладающий
большим омическим сопротивлением.
Поэтому величина коллекторного
сопротивления велика и составляет сотни
тысяч Ом (сотни кОм). Барьерная ёмкость
коллекторного перехода обозначается
через
и в эквивалентной схеме подключена
параллельно
.
Величина барьерной ёмкости достаточно
велика и составляет сотни пикофарад.
Представленная на рисунок 3.18,а
эквивалентная схема является пассивным
четырёхполюсником и усилительными
свойствами, как транзистор, обладать
не может. Для того, чтобы эквивалентная
схема обладала усилительными свойствами
в неё вводится генератор тока (рисунок
3.18,б). Ток, создаваемый генератором тока,
равен произведению коэффициента усиления
транзистора, включенного по схеме с
общей базой, на величину тока эмиттера,
что равно току коллектора:
Эквивалентная
схема транзистора, включенного по схеме
с общим эмиттером без генератора тока
представлена на рисунке 3.19,а. Назначение
элементов ()
Рисунок
– 3.19 Эквивалентная схема транзистора,
включенного по схеме с общей
базой,
без генератора тока (а) и с генератором
тока (б)
такое
же, как и в схеме с общей базой. Однако,
как было сказано, транзистор обладает
усилительными свойствами, поэтому
эквивалентная схема дополняется
генератором тока
(рисунок
3.19,б). Ток, создаваемый генератором тока,
равен произведению коэффициента усиления
транзистора, включенного по схеме с
О.Э., на величину тока базы, что равно
коллекторному току:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Время на прочтение
10 мин
Количество просмотров 906K
Предисловие
Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.
Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
- Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.
Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.
Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .
Список источников:
http://ru.wikipedia.org
http://www.physics.ru
http://radiocon-net.narod.ru
http://radio.cybernet.name
http://dvo.sut.ru
Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173
Биполярный транзистор.
Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления,
генерирования и преобразования электрических сигналов. Транзистор называется биполярный,
поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки.
Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.
Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток,
только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока —
основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего.
У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля.
В данной статье рассмотрим подробнее работу биполярного транзистора.
Устройство биполярного транзистора.
Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов.
Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей.
Это похоже на два диода, соединенных лицом к лицу или наоборот.
У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base).
Крайние электроды носят названия коллектор и эмиттер (collector и emitter).
Прослойка базы очень тонкая относительно коллектора и эмиттера. В
дополнение к этому, области полупроводников по краям транзистора
несимметричны. Слой полупроводника со стороны коллектора немного толще,
чем со стороны эмиттера. Это необходимо для правильной работы транзистора.
Работа биполярного транзистора.
Рассмотрим физические процессы, происходящие во время работы биполярного
транзистора. Для примера возьмем
модель NPN. Принцип работы транзистора PNP аналогичен, только
полярность напряжения между коллектором и эмиттером будет
противоположной.
Как уже говорилось в статье о типах проводимости в полупроводниках,
в веществе P-типа находятся положительно заряженные ионы —
дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В
транзисторе концентрация электронов в области N значительно превышает
концентрацию дырок в области P.
Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE).
Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора.
Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера.
Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.
Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE
(для кремниевых транзисторов минимальное необходимое VBE
— 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения
подключенного к базе, сможет «дотянуться» своим электрическим полем до
N области эмиттера. Под его действием электроны направятся к базе.
Часть из них начнет заполнять находящиеся там дырки (рекомбинировать).
Другая часть не найдет себе свободную дырку, потому что концентрация
дырок в базе гораздо ниже концентрации электронов в эмиттере.
В результате центральный слой базы обогащается свободными электронами.
Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше.
Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая,
все равно потечет в сторону плюса базы.
В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE,
и большой — от коллектора к эмиттеру ICE.
Если увеличить напряжение на базе, то в прослойке P соберется еще
больше электронов. В результате немного усилится ток базы, и
значительно усилится ток коллектора. Таким образом, при небольшом
изменении тока базы IB,
сильно меняется ток коллектора IС.
Так и происходит усиление сигнала в биполярном транзисторе.
Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току.
Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.
β = IC / IB
Простейший усилитель на биполярном транзисторе
Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы.
Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного
напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для
понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов
в приведенном ниже примере носит несколько упрощенный характер.
1.Описание основных элементов цепи
Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200).
Со стороны коллектора подключим относительно мощный источник питания в 20V,
за счет энергии которого будет происходить усиление. Со стороны базы транзистора
подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного
напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить.
Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала,
обычно обладающего слабой мощностью.
2. Расчет входного тока базы Ib
Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением,
нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin).
Назовем эти значения тока соответственно — Ibmax и Ibmin.
Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается
один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение,
при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности
вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель,
согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между
базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0),
то напряжение от базы до земли тоже 0.6V (VB = 0.6V).
Посчитаем Ibmax и Ibmin с помощью закона Ома:
2. Расчет выходного тока коллектора IС
Теперь, зная коэффициент усиления (β = 200),
можно с легкостью посчитать максимальное и
минимальное значения тока коллектора ( Icmax и Icmin).
3. Расчет выходного напряжения Vout
Осталось посчитать напряжение на выходе нашего усилителя Vout.
В данной цепи — это напряжение на коллекторе VC.
Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:
4. Анализ результатов
Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того,
что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве
случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда,
которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же,
соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя,
однако для иллюстрации процесса усиления вполне подойдет.
Итак, подытожим принцип работы усилителя на биполярном транзисторе.
Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие.
Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся».
Переменная составляющая – это, собственно, сам сигнал (полезная информация).
Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β.
В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.
Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний,
но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор
берет у источника питания VCC. Если напряжения питания будет недостаточно,
транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.
Режимы работы биполярного транзистора
В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
- Режим отсечки (cut off mode).
- Активный режим (active mode).
- Режим насыщения (saturation mode).
- Инверсный ражим (reverse mode ).
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт.
В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет,
поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе.
Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся.
В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы,
умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора,
который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора,
которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным,
который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал,
поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен».
Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном.
В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру,
и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме.
Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме.
Поэтому в инверсном режиме транзистор практически не используют.
Основные параметры биполярного транзистора.
Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB.
Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзисторов.
β — величина постоянная для одного транзистора, и зависит от физического строения прибора.
Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа,
даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного
транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах,
то коэффициентом усиления по току практически невозможно.
Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх).
Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться
источник слабого сигнала, у которого нужно потреблять как можно меньше тока.
Идеальный вариант – это когда входное сопротивление равняется бесконечность.
Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом).
Здесь биполярный транзистор очень сильно проигрывает полевому транзистору,
где входное сопротивление доходит до сотен ГΩ (гигаом).
Выходная проводимость — проводимость транзистора между коллектором и эмиттером.
Чем больше выходная проводимость, тем больше тока коллектор-эмиттер
сможет проходить через транзистор при меньшей мощности.
Также с увеличением выходной проводимости (или уменьшением выходного сопротивления)
увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных
потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью
усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ,
он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления,
но с большей выходной проводимостью, падение усиления будет меньше.
Идеальный вариант – это когда выходная проводимость равняется бесконечность
(или выходное сопротивление Rout = 0 (Rвых = 0)).
Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала.
С повышением частоты, способность транзистора усиливать сигнал постепенно падает.
Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах.
На изменения входного сигнала в базе транзистор реагирует не мгновенно,
а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей.
Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.
Коэффициент усиления транзистора
Коэффициент усиления транзистора (по току, мощности или напряжению) – отношение изменения соответствующего показателя в цепи коллектора и в цепи базы.
Коэффициент усиления транзистора по току
Для схем с общей базой этот коэффициент обозначается буквой α (hfБ или h21Б), с общим эмиттером буквой β (hfЭ или h21Э).
Коэффициент усиления по току (или, как еще указывается в литературе, коэффициент передачи тока) в первом случае (α) есть отношение силы тока в коллекторе (Iк) к силе тока эмиттера (Iэ) при неизменном напряжении в части коллектор-база:
α = IК / IЭ, при UК-Б = const
Коэффициент усиления по току во втором случае (β) – отношение величины силы тока в коллекторе (Iк) к силе тока в базе (IБ) при неизменном напряжении в переходе коллектор-эмиттер:
β = IК / IБ, при UК-Э = const
На показатель влияет не только входной ток, но и температура.
Коэффициент усиления транзистора по напряжению
Данный коэффициент вычисляется по формуле
KU = U2 / U1,
где U2 – изменение напряжения на выходе, а U1 – изменение напряжения на входе.
Коэффициент усиления триода по мощности
Это величина отношения выходной мощности (P2) к мощности, подаваемой на вход триода (P1):
КР = Р2 / Р1
Коэффициент усиления транзистора по мощности можно также определить произведением коэффициента усиления по току (КI) и коэффициента усиления по напряжению (KU):
КР = КI * KU
Транзистор: устройство и принцип работы
Биполярный транзистор – транзистор, использующийся для преобразования электрических сигналов, в котором для работы применяются 2 типа носителей заряда (электроны и дырки). Функция триода – регуляция потока заряженных частиц.
Часть транзистора, испускающая электроны, называется эмиттером Э. Вторая противоположная часть, которая собирает носители зарядов, – коллектором К. Между ними расположено основание или база Б. Соответственно, имеется три вывода. У биполярных триодов через прибор идут два тока – основной “большой” и управляющий “маленький”.
Транзисторы с электронной проводимостью среднего слоя имеют название р-n-р транзисторы, с дырочной проводимостью – n-р-n. У первого типа транзисторов полярность включения источников обратная.
Принцип работы биполярного транзистора подробно описан на сайте hightolow.ru.
Биполярные транзисторы
Биполярный транзистор, определение и типы
Биполярный транзистор представляет собой трехвыводной полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р-n перехода. В современной электронике биполярные транзисторы уже практически не используются как силовые ключевые элементы. Причиной этого является низкое быстродействие, в сравнении с MOSFET-транзисторами, сравнительно большее энерговыделение, большие мощности управления, сложности параллельного включения и т.д. Поэтому в данной работе биполярные транзисторы будут рассматриваться с целью использования в качестве функциональных элементов (систем обратной связи, усилительных каскадов и т.д.).
Биполярные транзисторы имеют два основных типа структуры:
- n-p-n;
- p-n-p.
Достаточно подробно про внутреннюю структуру транзисторов изложено в [Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. Лань. 2002. 479 с.]. Резюмируя можно сказать, что быстродействие n-p-n транзистора существенно больше быстродействия p-n-p структуры. По этой, а также еще по нескольким причинам n-p-n транзисторов по номенклатуре существенно больше, чем p-n-p транзисторов. Вот такая ассиметрия.
Области использования биполярных транзисторов:
- в линейных стабилизаторах напряжения;
- в усилительных каскадах электронных схем;
- в генераторных устройствах;
- в качестве ключевого элемента;
- в качестве элемента логических схем;
- и т.д. и еще много где применяется, не зря за него Уильяму Шокли, Джону Бардину и Уолтер Браттейну нобелевскую премию дали.
Биполярный транзистор имеет два p-n перехода – эмиттерный и коллекторный. База у переходов общая. Биполярный транзистор управляется током.
Условное обозначение биполярных транзисторов n-p-n и p-n-p структур показано на рисунке BJT.1.
Рисунок BJT.1 – Условное обозначение n-p-n и p-n-p транзистора
Классификация биполярных транзисторов
Биполярные транзисторы условно подразделяются на различные типы в соответствии со следующими измерениями параметров:
- рабочая частота;
- рассеиваемая мощность;
- структура (обычный транзистор или составной транзистор Дарлингтона);
- и разумеется тип полупроводниковой структуры – n-p-n и p-n-p.
Основные схемы включения биполярного транзистора
Мы не будем вдаваться в подробности внутренней кухни транзистора в сложные хитросплетения взаимодействия мужественных электронов и женственных дырок. Просто рассмотрим транзистор как маленький черный ящик с тремя ножками. Существует три основных способа включения трех ножек транзистора:
- схема с общим эмиттером;
- схема с общей базой;
- эмиттерный повторитель.
Рисунок BJT.2 – Основные способы включения биполярного транзистора: а – схема с общим эмиттером; б – схема с общей базой; в – эмиттерный повторитель
Схема с общим эмиттером
Схема с общим эмиттером – самая распространённая схема включения биполярного транзистора (рисунок BJT.3). Обеспечивает усиление сигнала, как по напряжению, так и по току. Обеспечивает максимальное усиление по мощности среди всех прочих схем включения биполярного транзистора. В данной схеме протекание тока по цепи база-эмиттер IB (часто просто называемый ток базы) приводит к протеканию тока в цепи коллектор-эмиттер IC (называемый обычно просто током коллектора). Коэффициент пропорциональности между током базы и током коллектора называется коэффициент усиления транзистора по току в схеме с общим эмиттером hFE:
Еще hFE часто обозначается как β или в советской литературе как h21э.
Важным преимуществом схемы является возможность использования только одного источника питания. Кроме этого, при проектировании схем важно учитывать то, что выходное напряжение инвертируется относительно входного.
Рисунок BJT.3 – Схема включения биполярного транзистора с общим эмиттером
Схема с общей базой
Значительно менее распространённое включение биполярного транзистора (рисунок BJT.4).
Рисунок BJT.4 – Схема включения биполярного транзистора с общей базой
Обеспечивает усиление сигнала, но только по напряжению. Ток практически не изменяется или немного уменьшается. Ток в цепи коллектора связан с током эмиттера IE коэффициентом передачи ток α близким к единице, но меньшим её:
Коэффициент передачи тока рассчитывается исходя из соотношения:
1
где hFE – все тот же коэффициент усиления транзистора по току в схеме с общим эмиттером.
Фактически силовой ток течет по цепи коллектор-эмиттер, то есть ток нагрузки полностью втекает в управляющий источник E. Это определяет малое входное сопротивление схемы Rin, фактически равное дифференциального сопротивления эмиттерного перехода
где:
VBE – напряжение база-эмиттер
Соответственно ток базы мал и равен:
Эмиттерный повторитель
Эмиттерный повторитель потому и называется повторителем, что он не усиливает входной сигнал по напряжению, а «повторяет» его. Или почти повторяет. В схеме сопротивление нагрузки включено так, что напряжение не нем вычитается из приложенного напряжения, чем реализуется отрицательная обратная связь. Схема включения биполярного транзистора в режиме эмиттерного повторителя представлена на рисунке BJT.5.
Рисунок BJT.5 – Эмиттерный повторитель
Усиление достигается только по току:
Соответственно входное сопротивление повторителя равно:
где:
hFE – коэффициент усиления транзистора по току в схеме с общим эмиттером;
Rload – сопротивление нагрузки.
В реальности выходное напряжение отстает от входного на величину падения напряжения на переходе «база-эмиттер» (приблизительно равное 0,6 В):
Вольт-амперная характеристика биполярного транзистора
Форма вольт-амперных характеристик биполярного транзистора, включенного по схеме с общим эмиттером представлена на рисунке BJT.6. Поскольку в схемах включения транзистора присутствуют две цепи (два контура) – цепь управления и цепь нагрузки то имеют место две характеристики – входная и выходная. Входная характеристика (рисунок BJT.6, а) представляет собой зависимость тока базы от напряжения на переходе «база-эмиттер» при различных напряжениях «коллектор-эмиттер». При увеличении напряжения «коллектор-эмиттер» характеристика смещается вправо – ток базы уменьшается при том же значении напряжения «база-эмиттер». Выходная характеристика представляет собой зависимость тока коллектора от напряжения «коллектор-эмиттер» при различных токах базы, что образует семейство кривых. С ростом тока базы возрастает и ток коллектора пропорционально значению hFE (справедливо для малых сигналов). При постоянном токе базы ток коллектора несколько возрастает при увеличении напряжения «коллектор-эмиттер» (рисунок BJT.6, б).
Рисунок BJT.6. Форма вольт-амперных характеристик биполярного транзистора, включенного по схеме с общим эмиттером: а) входные характеристики; б) выходные характеристики
Основные параметры биполярного транзистора
- Максимальное напряжение коллектор-эмиттер (Collector-Emitter Voltage) VCEO – максимально допустимое напряжение между коллектором и эмиттером транзистора. Один из наиболее важных параметров транзистора.
- Максимальное напряжение коллектор-база (Collector-Base Voltage) VCBO – максимально допустимое напряжение между коллектором и базой транзистора. Это напряжение несколько выше (на 20-30%) чем максимальное напряжение коллектор-эмиттер.
- Максимальный постоянный ток коллектора (Collector Current – Continuous) IC – максимальная величина тока через коллекторный переход в стационарном режиме.
- Максимальное обратное напряжение эмиттер-база (Emitter-Base Voltage) VEBO – максимально допустимое напряжение между управляющего перехода база-эмиттер транзистора.
- Ток утечки коллекторного перехода (Collector Cut-Off Current) ICEX – ток, протекающий через закрытый коллекторный переход под действием приложенного обратного напряжения.
- Ток утечки эмиттерного перехода (Base Cut-Off Current) IBL – ток, протекающий через эмиттерный переход под действием приложенного обратного напряжения. При этом к коллекторному переходу также приложено напряжение.
- Коэффициент передачи тока (DC Current Gain) hFE – усилительная характеристика транзистора. Коэффициент равен отношению следствия – тока коллекторного перехода к причине – току эмиттерного перехода.
- Напряжение насыщения между коллектором и эмиттером (Collector-Emitter Saturation Voltage) VCE(sat) – минимальное напряжение между коллектором и эмиттером в открытом состоянии (в «совсем открытом» состоянии при большом токе базы). Обычно составляет 0,2-0,4 В.
- Напряжение насыщения эмиттерного перехода (Base-Emitter Saturation Voltage) VBE(sat) – напряжение между базой и эмиттером при заданном токе базы.
- Максимальная частота работы транзистора (Current Gain – Bandwidth Product) fT – при этой частоте транзистор уже не усиливает сигнал, и коэффициент передачи тока становится равным единице.
- Выходная емкость, емкость коллектор-база (Output Capacitance, Collector-Base Capacitance) CCBO – емкость коллекторного перехода.
- Входная емкость, емкость эмиттер-база (Input Capacitance, Emitter-Base Capacitance) CEBO – емкость эмиттерного перехода.
- Уровень шумов (Noise Figure) NF – уровень собственных шумов транзистора.
- Время задержки включения (Delay Time) td – время задержки начала переходных процессов в выходной цепи транзистора при включении.
- Время задержки выключения (Storage Time) ts – время задержки начала переходных процессов в выходной цепи транзистора при выключении.
- Время включения (Rise Time) tr – время переходных процессов в выходной цепи транзистора при включении (время нарастания тока). Указывается при конкретных условиях коммутации.
- Время включения (Fall Time) tf – время переходных процессов в выходной цепи транзистора при включении (время спада тока). Указывается при конкретных условиях коммутации.
- Максимально выводимая тепловая мощность (Total Device Dissipation) PD – максимальное количество энергии, которую можно отвести от транзистора, выполненного в том или ином корпусе.
- Тепловое сопротивление кристалл-корпус (Thermal Resistance, Junction to Case) RθJC – тепловое сопротивление между полупроводниковым кристаллом транзистора и его корпусом.
- Тепловое сопротивление кристалл-воздух (Thermal Resistance, Junction to Case) RθJA – тепловое сопротивление между полупроводниковым кристаллом транзистора и воздушной средой при условии свободной конвекции.
- Время включения, время выключения, времена задержки включения выключения – описывают динамические свойства транзистора при тех или иных конкретных условиях.
Комплементарность транзисторов
В ряде типовых схемотехнических решений необходимо одновременное использование транзисторов n-p-n и p-n-p структуры имеющих практически идентичные параметры. Такие транзисторы называют комплементарными. Ниже приведена таблица наиболее широко используемых пар комплементарных транзисторов.
n-p-n | p-n-p |
---|---|
КТ3102 | КТ3107 |
2N3904 | 2N3906 |
BC237 (238,239) | BC307 (308,309) |
2N4401 | 2N4403 |
2N2222A | 2N2907 (* почти) |
2N6016 | 2N6015 |
2N6014 | 2N6013 |
BC556 (557, 558, 559, 560) |
BC546 (547,548, 549, 550) |
Поиск пар комплементарных транзисторов можно осуществлять на ресурсе [http://www.semicon-data.com/transistor/tc/2n/tc_2n_208.html].
Измерение коэффициента усиления по току
Транзисторы в пределах каждого конкретного типа имеют значительный разброс по коэффициенту усиления тока. В случае необходимости точного измерения коэффициента усиления по току использую тестеры с опцией измерения hFE.
Составной транзистор
Для увеличения коэффициента усиления используется схема включения двух и более биполярных транзисторов. Существует две разновидности схем составных транзисторов: схема Дарлингтона и схема Шиклаи (рисунок BJT.7). Каждая из представленных схем включает управляющий транзистор и силовой, через который протекает основная доля тока нагрузки.
Рисунок BJT.7 – Составные транзисторы Дарлингтона и Шиклаи
В схемы может быть введен дополнительный резистор для изменения рабочих характеристик составного транзистора и улучшения динамических свойств схемы.
Функционально в схеме Дарлингтона резистор обеспечивает протекание постоянного тока через эмиттер управляющего транзистора, поскольку напряжение база-эмиттер силового транзистора слабо зависит от тока базы.
Ниже представлены расчеты коэффициента передачи тока составного транзистора для схем Дарлингтона и Шиклаи.
Расчет схемы Дарлингтона
- Выбираем ток коллектора силового транзистора IC2 и соответственно этому выбираем его конкретный тип;
- Определяем по справочному листу коэффициент передачи тока hFE2 выбранного силового транзистора в соответствии с выбранным током коллектора;
- В соответствии с током коллектора IC2 и коэффициентом передачи тока силового транзистора hFE2 определяем рабочий ток базы силового транзистора IB2:
- В соответствии с рабочим током базы силового транзистора IB2 по справочному листу определяем напряжение насыщения база-эмиттер VBE2.
- Рассчитываем интегральный коэффициент передачи тока составного силового транзистора Дарлингтона IC2/IB1.
Выведем выражение для расчета:
Сопротивление резистора следует из выражения:
Ток эмиттера первого транзистора:
Отсюда:
Проводим ряд преобразований:
где:
hFE1 – коэффициент передачи тока первого транзистора;
hFE2 – коэффициент передачи тока силового (второго) транзистора;
VBE2 – напряжение насыщения база-эмиттер транзистора;
R – сопротивление резистора;
IC2 – ток коллектора второго транзистора (выходной ток составного транзистора);
IB1 – ток базы первого транзистора (входной ток составного транзистора).
Полученное соотношение определяет коэффициент передачи тока составного силового транзистора Дарлингтона. При больших значениях сопротивления R (или при его отсутствии в схеме) выражение упрощается:
Из выражения видно, что в коэффициент передачи тока составного транзистора фактически равен произведению коэффициентов передачи тока дискретных транзисторов его составляющих.
Расчет схемы Шиклаи
- Выбираем ток коллектора силового транзистора IC2 и соответственно этому выбираем его конкретный тип.
- В соответствии с током коллектора IC2 и коэффициентом передачи тока выбранного силового транзистора hFE2 определяем рабочий ток базы силового транзистора IB2:
- В соответствии с рабочим током базы силового транзистора IB2 по справочному листу определяем напряжение насыщения база-эмиттер VBE2.
- Рассчитываем интегральный коэффициент передачи тока составного силового транзистора Дарлингтона IC2/IB1.
Выведем выражение для расчета:
Сопротивление резистора следует из выражения:
Ток коллектора первого транзистора:
Отсюда:
где:
hFE1 – коэффициент передачи тока первого транзистора;
hFE2 – коэффициент передачи тока силового (второго) транзистора;
VBE2 – напряжение насыщения база-эмиттер транзистора;
R – сопротивление резистора;
IC2 – ток коллектора второго транзистора (выходной ток составного транзистора);
IB1 – ток базы первого транзистора (входной ток составного транзистора).
Полученное соотношение определяет коэффициент передачи тока составного силового транзистора Шиклаи. При больших значениях сопротивления R (или при его отсутствии в схеме) выражение упрощается:
Из выражения видно, что в коэффициент передачи тока составного транзистора равен произведению коэффициентов передачи тока дискретных транзисторов его составляющих.
Функционально в схеме Шиклаи резистор обеспечивает протекание постоянного тока через коллектор управляющего транзистора, поскольку напряжение база-эмиттер силового p-n-p транзистора слабо зависит от тока базы.