Как найти коэффициент жесткости через период

Силы упругости возникают при деформации тел.

Вычисление силы упругости производится по закону Гука :

где k — коэффициент жесткости (упругости) пружины; Δ x = | l − l 0 | — абсолютная деформация (растяжения или сжатия) пружины, l 0 — длина пружины в недеформированном состоянии, l — длина растянутой (или сжатой) пружины.

Направление силы упругости F → упр (рис. 2.9) противоположно направлению силы, вызывающей деформацию:

Формула коэффициента жесткости пружины через период

Относительная деформация определяется отношением:

ε = Δ x l 0 или ε = Δ x l 0 ⋅ 100 % ,

где Δ x = | l − l 0 | — абсолютная деформация (растяжения или сжатия) пружины, l 0 — длина недеформированной пружины, l — длина растянутой (сжатой) пружины.

Коэффициент жесткости (упругости) k нескольких пружин одинаковой длины , но разной жесткости вычисляется для последовательного соединения по формуле (рис. 2.10)

1 k = 1 k 1 + 1 k 2 + . + 1 k N ;

где k 1 , k 2 , . k N — коэффициенты жесткости (упругости) этих пружин.

Формула коэффициента жесткости пружины через период

Коэффициент жесткости (упругости) k нескольких пружин одинаковой длины , но разной жесткости (рис. 10), вычисляется для параллельного соединения по формуле (рис. 2.11)

k = k 1 + k 2 + . + k N ,

где k 1 , k 2 , . k N — коэффициенты жесткости (упругости) этих пружин.

Формула коэффициента жесткости пружины через период

  • для последовательного соединения N одинаковых пружин с коэффициентами жесткости (упругости) k 0 :

для параллельного соединения N одинаковых пружин с коэффициентами жесткости (упругости) k 0 :

Пример 16. При последовательном соединении трех пружин, коэффициенты жесткости которых относятся как 1 : 2 : 3, сила 12 Н вызвала растяжение системы на 4,0 см. Рассчитать коэффициенты жесткости указанных пружин.

Решение. Величина силы упругости, действующей на пружину, определяется формулой

F упр = k общ ∆ x ,

где k общ — коэффициент жесткости составной пружины; ∆ x — указанное в условии задачи растяжение пружины.

Величина силы упругости, с другой стороны, совпадает с величиной приложенной силы:

Значение данной силы и величина растяжения пружины под действием этой силы позволяют рассчитать коэффициент жесткости составной пружины:

k общ = F Δ x = 12 4,0 ⋅ 10 − 2 = 300 Н/м.

Для определения коэффициентов жесткости каждой пружины запишем их коэффициенты жесткости в следующем виде:

так как указанные коэффициенты по условию задачи соотносятся между собой как

k 1 : k 2 : k 3 = 1 : 2 : 3.

Для расчета величины k запишем формулу для коэффициента жесткости пружины, состоящей из трех последовательно соединенных пружин, и подставим в нее выражения k 1 , k 2 , k 3 :

1 k общ = 1 k 1 + 1 k 2 + 1 k 3 = 1 k + 1 2 k + 1 3 k = 11 6 k , или k общ = 6 k 11 .

Найденное ранее значение k общ = 300 Н/м позволяет рассчитать k = 550 Н/м.

Тогда коэффициенты жесткости каждой из пружин имеют значения:

k 2 = 2 k = 1100 Н/м;

k 3 = 3 k = 1650 Н/м.

Пример 17. Вычислить абсолютную деформацию пружины с коэффициентом жесткости 100 Н/м, присоединенной к бруску, лежащему на горизонтальной поверхности, в момент начала скольжения бруска по поверхности. Сила, вызывающая скольжение бруска, прикладывается к пружине. Коэффициент трения между бруском и поверхностью равен 0,1. Масса бруска составляет 1,0 кг.

Решение. На рисунке показаны силы, действующие на брусок.

Формула коэффициента жесткости пружины через период

Абсолютную деформацию пружины рассчитаем по формуле

где F упр = F — модуль силы упругости, возникающей в пружине (величина силы упругости равна величине приложенной силы); k — коэффициент жесткости пружины.

Со стороны пружины на брусок действует сила, модуль которой совпадает с силой упругости:

В момент начала скольжения величина силы трения равна силе, приложенной к бруску в направлении движения:

где µ — коэффициент трения; N = mg — модуль силы нормальной реакции опоры.

Поэтому величина силы упругости может быть вычислена по формуле

Из исходного уравнения следует, что величина деформации пружины в момент начала скольжения определяется выражением

Расчет позволяет определить ее значение:

Δ x = 0,1 ⋅ 1,0 ⋅ 10 100 = 10 − 2 м = 1,0 см .

Пример 18. Вычислить массу груза, подвешенного к пружине жесткостью 250 Н/м, если известно, что относительная деформация пружины составляет 25 %. Длину нерастянутой пружины считать равной 100 мм.

Решение. Проиллюстрируем условие задачи рисунком.

Формула коэффициента жесткости пружины через период

Сила упругости определяется формулой

где k — коэффициент жесткости (упругости) пружины; ∆ x = l − l 0 — абсолютная деформация пружины (величина ее растяжения под действием груза); l 0 — длина недеформированной пружины; l — длина пружины в деформированном состоянии.

Из определения относительной деформации

где ε = 0,25 — относительная деформация (в долях).

С учетом значения относительной деформации формула для вычисления силы упругости принимает вид:

F упр = k ε l 0 = 0,25 k l 0 .

С другой стороны, сила упругости, возникающая в пружине, численно равна весу тела, вызвавшего деформацию пружины:

где m — масса тела; g — модуль ускорения свободного падения.

Таким образом, имеем равенство

позволяющее вычислить массу груза, подвешенного к пружине:

m = 0,25 k l 0 g = 0,25 ⋅ 250 ⋅ 0,100 10 = 0,625 кг = 625 г .

Формула коэффициента жесткости пружины через период

I. Жесткость пружины

Что такое жесткость пружины?
Одним из важнейших параметров, относящимся к упругим изделиям из металла разного назначения, является жесткость пружины. Она подразумевает, насколько пружина будет устойчива к воздействию других тел и насколько сильно сопротивляется им при воздействии. Силе сопротивления равен коэффициент жесткости пружины.

На что влияет этот показатель?
Пружина – это достаточно упругое изделие, обеспечивающее передачу поступательных вращательных движений тем приборам и механизмам, в которых она находится. Надо сказать, что встретить пружину можно повсеместно, каждый третий механизм в доме оснащен пружиной, не говоря уже о количестве этих упругих элементов в приборах на производстве. При этом надежность функционирования этих приборов будет определяться степенью жесткости пружины. Эта величина, называемая коэффициентом жесткости пружины, зависит от усилия, которое нужно приложить, чтобы сжать или растянуть пружину. Распрямление пружины до исходного состояния определяется тем металлом, из которого она изготовлена, но не степенью жесткости.

От чего зависит данный показатель?
Такой простой элемент, как пружина, обладает массой разновидностей в зависимости от степени назначения. По способу передачи деформации механизму и форме выделяют спиральные, конические, цилиндрические и другие. Поэтому жесткость конкретного изделия определяется также и способом передачи деформации. Деформационная характеристика будет разделять пружинные изделия на пружины кручения, сжатия, изгиба и растяжения.

При использовании в приборе сразу двух пружин, степень их жесткости будет зависеть от способа крепления – при параллельном соединении в приборе жесткость пружин будет увеличиваться, а при последовательном – уменьшаться.

II. Коэффициент жесткости пружины

Коэффициент жесткости пружины и пружинных изделий – один из важнейших показателей, который определяет срок службы изделия. Для расчета коэффициента жесткости в ручную — существует несложная формула (см. рис. 1), а так же есть возможность воспользоваться нашим калькулятором пружин, который достаточно легко поможет произвести Вам все необходимые расчеты. Однако на срок эксплуатации всего механизма жесткость пружины будет влиять лишь косвенно – большее значение будут иметь другие качественные особенности прибора.

Цель работы: научиться опытным путем определять коэффициент жесткости пружины физического маятника.

Средства обучения:

· оборудование: физический маятник, штатив, секундомер, набор грузов известной массы;

· методические указания к выполнению лабораторной работы, калькулятор.

Ход выполнения лабораторной работы

Теоретическая часть

Период колебаний физического маятника можно рассчитать по формуле: Формула коэффициента жесткости пружины через период(1), где Формула коэффициента жесткости пружины через период(2); π=3,14; m – масса груза, а k – коэффициент жесткости пружины, [k]= Формула коэффициента жесткости пружины через период.

Для увеличения точности измерений необходимо взять достаточно большое число полных колебаний (например, N=30, 40, 50).

Получим расчетную формулу для определения k:

Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период(3).

Для определения коэффициента жесткости пружины необходимо знать массу груза, подвешенного на пружине m и период колебаний – Т.

Формула коэффициента жесткости пружины через период2. Вычисления и измерения

1. Закрепите физический маятник в штативе (к пружине подвесьте один груз известной массы) и приведите его в колебательное движение. Измерьте время t фиксированного числа полных колебаний N, рассчитайте период колебаний по формуле (2):

Опыт №1: Формула коэффициента жесткости пружины через период,

2. Зная массу груза, рассчитайте коэффициент жесткости пружины физического маятника k по формуле (3): Формула коэффициента жесткости пружины через период

3. Повторите измерения и вычисления п.1-2, подвесив к пружине сначала два груза той же массы и оставив первоначальное число колебаний; а затем три груза той же массы, но изменив число колебаний маятника.

Опыт №2: Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

Опыт №3: Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

4. Вычислите среднее значение коэффициента жесткости пружины: Формула коэффициента жесткости пружины через период

Формула коэффициента жесткости пружины через период

5. Результаты измерений и вычислений занесите в отчетную таблицу 1:

N t, с Т, с tср, с m, кг mср, кг k, Формула коэффициента жесткости пружины через период kср, Формула коэффициента жесткости пружины через период Δtср, с εt εm εk Δk, Формула коэффициента жесткости пружины через период

Таблица 1 –Результаты измерений и вычислений

6.

Рассчитайте абсолютную и относительную погрешности измерений:

Относительная погрешность измерения времени: Формула коэффициента жесткости пружины через период, где Формула коэффициента жесткости пружины через период, и Формула коэффициента жесткости пружины через период: Формула коэффициента жесткости пружины через период

Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

Относительная погрешность измерения массы груза: Формула коэффициента жесткости пружины через период; где Формула коэффициента жесткости пружины через период

Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

Относительная и абсолютная погрешности измерения k: εk=2εtm; Δk=kср∙ εk;

εk=______________________=____________, Δk=_________________=________ Формула коэффициента жесткости пружины через период

Окончательный результат запишите в виде: kcр–Δk≤k≤ kcр+Δk:

______________________ Формула коэффициента жесткости пружины через периодk≤_____________________ Формула коэффициента жесткости пружины через период.

Обобщите результаты своей работы. Сделайте вывод по проделанной работе.

Вывод: ______________________________________________________________________

_____________________________________________________________________________

Контрольные вопросы

1. Как зависит период колебаний физического маятника от жёсткости пружины?

2. Зависит ли частота колебаний физического маятника от массы груза на пружине и от амплитуды колебаний?

3. Каким был бы результат опыта в условиях невесомости?

Ответы:

Лабораторная работа №14

Тема: «Определение заряда и электроемкости конденсатора»

Цель работы: определить опытным путем величину заряда конденсатора и рассчитать его электроемкость.

Средства обучения:

· оборудование: источник тока, ключ, мультиметр, конденсатор 4700мкФ, резистор 20кОм, секундомер;

· методические указания к выполнению лабораторной работы, калькулятор.

Ход выполнения лабораторной работы

Теоретическая часть

Электроемкость конденсатора — это отношение величины заряда, имеющегося на его обкладках, к напряжению на конденсаторе Формула коэффициента жесткости пружины через период(1). Следовательно, для определения электроемкости необходимо знать заряд и напряжение на конденсаторе, которое можно измерить с помощью мультиметра.

Заряд на обкладках появляется в процессе зарядки конденсатора, т. е. при протекании тока в электр. цепи. Т. к. сила тока – это заряд, протекающий через проводник в единицу времени, то величину заряда, прошедшего по цепи, можно найти, умножив силу тока на время: Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период(2).

По мере зарядки конденсатора сила тока в цепи изменяется, поэтому для подсчета заряда весь период зарядки разбивают на малые интервалы времени Δt, в течение которых можно считать силу тока I постоянной. Величина заряда Δq, на которую изменился заряд конденсатора за Δt, рассчитывается по формуле (2). Просуммировав Δq, можно получить величину заряда конденсатора q: Формула коэффициента жесткости пружины через период(3).

Формула коэффициента жесткости пружины через период2. Вычисления и измерения

1. Соберите электрическую цепь по схеме, представленной на рис.1.

2. Переведите мультиметр в режим измерения постоянного напряжения. Установите диапазон 20 В.

3. Убедитесь в том, что конденсатор разряжен. Для этого подключите мультиметр к выводам конденсатора и убедитесь, что его показания равны нулю. Если это не так, замкните выводы конденсатора проводником на короткое время.

4. Подключите мультиметр параллельно сопротивлению R.

5. Замкните ключ и одновременно начните отсчет времени. Через каждые 15 с фиксируйте в табл.1 показания вольтметра на протяжении 3,5 минут зарядки конденсатора.

6. Спустя указанное время с начала зарядки разомкните ключ.

7. Отключите мультиметр от резистора и измерьте с его помощью напряжение Uк, до которого зарядился конденсатор: Формула коэффициента жесткости пружины через период.

8. Используя закон Ома Формула коэффициента жесткости пружины через период, рассчитайте силу тока в цепи и вычислите величины зарядов Δq, накапливаемые конденсатором каждые 15с: Формула коэффициента жесткости пружины через период, Δt=15с:

1) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

2) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

3)

Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

4) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

5) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

6) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

7) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

8) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

9) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

10) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

11) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

12) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

13) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

14) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

15) Формула коэффициента жесткости пружины через периодФормула коэффициента жесткости пружины через период

9. Определите заряд qна обкладках конденсатора Формула коэффициента жесткости пружины через период:

Формула коэффициента жесткости пружины через период.

10. Рассчитайте электроемкость конденсатора Формула коэффициента жесткости пружины через период: Формула коэффициента жесткости пружины через период.

11. Сравните полученное значение электроемкости с величиной, указанной на конденсаторе: ________________________________________________________________________________.

12. Результаты измерений и вычислений занесите в отчетную таблицу 1.

3. Таблица 1 –Результаты измерений и вычислений

4.Обобщите результаты своей работы. Сделайте вывод по проделанной работе.

Вывод:___________________________________________________________________________________________________________________________________________________

Контрольные вопросы

1. Дайте определение конденсатора.

2. От чего зависит величина тока зарядки конденсатора?

3. Как вычислить электроемкость двух конденсаторов, соединенных последовательно?

4. Как рассчитать электроемкость трех конденсаторов, соединенных параллельно?

Ответы:

Лабораторная работа №15

Формула коэффициента жесткости пружины через период

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Формула коэффициента жесткости пружины через период

Формула коэффициента жесткости пружины через период

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Содержание:

  • Сила упругости и закон Гука
  • Определение коэффициента жесткости
  • Расчет жесткости системы
    • Последовательное соединение системы пружин
    • Параллельное соединение системы пружин
  • Вычисление коэффициента жесткости опытным методом
  • Примеры задач на нахождение жесткости
  • Видео

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

F = – k·x;

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение силы упругости

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

k = F/x.

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.

Коэффициент жесткости пружин

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем – в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

F = — k·x;

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип – запасать энергию упругой деформации и возвращать ее.

Попробуй обратиться за помощью к преподавателям

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

k = F/x.

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Что такое жесткость

Жесткость – это характеристика детали, которая показывает, просто или легко будет ее сжать, насколько большую силу нужно для этого приложить. Оказывается, что возникающая под нагрузкой деформация тем больше, чем больше прилагаемая сила (ведь возникающая в противовес ей сила упругости по модулю имеет то же значение). Потому определить степень деформации можно, зная силу упругости (прилагаемое усилие) и наоборот, зная необходимую деформацию, можно вычислить, какое требуется усилие.

Физические основы понятия жесткость/упругость

Сила, воздействуя на пружину, изменяет ее форму. Например, пружины растяжения/сжатия под влиянием внешнего воздействия укорачиваются или удлиняются. Согласно закону Гука (так называется позволяющая рассчитать коэффициент жесткости пружины формула), сила и деформация между собой пропорциональны в пределах упругости конкретного вещества. В противодействие приложенной извне нагрузке возникает сила, такая же по величине и противоположная по знаку, которая направлена на восстановление исходных размеров детали и ее форму.

Природа этой силы упругости – электромагнитная, возникает она как следствие особого взаимодействии между структурными элементами (молекулами и атомами) материала, из которого изготовлена данная деталь. Таким образом, чем жесткость больше, то есть чем труднее упругую деталь растянуть/сжать, тем больше коэффициент упругости. Этот показатель используется, в частности, при выборе определенного материала для изготовления пружин для использования в различных ситуациях.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Особенности расчета жесткости соединений пружин

Приведенная выше информация указывает на то, что коэффициент жесткости является довольно важным параметром, который должен рассчитываться при выборе наиболее подходящего изделия и во многих других случаях. Именно поэтому довольно распространенным вопросом можно назвать то, как найти жесткость пружины. Среди особенностей соединения отметим следующее:

  1. Провести определение растяжения пружины можно при вычислении, а также на момент теста. Этот показатель может зависеть в зависимости от проволоки и других параметров.
  2. Для расчетов могут применяться самые различные формулы, при этом получаемый результат будет практически без погрешностей.
  3. Есть возможность провести тесты, в ходе которых и выявляются основные параметры. Определить это можно исключительно при применении специального оборудования.

Как ранее было отмечено, выделяют последовательный и параллельный метод соединения. Оба характеризуются своими определенными особенностями, которые должны учитываться.

В заключение отметим, что рассматриваемая деталь является важной частью конструкции различных механизмов. Неправильный вариант исполнения не сможет прослужить в течение длительного периода. При этом не стоит забывать о том, что слишком сильная деформация становится причиной ухудшения эксплуатационных характеристик.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или

равной ему по модулю силы упругости). Выглядит эта формула так: F = –kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности – величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения – Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости – коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

Например:

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

От чего зависит упругость пружины

Жёсткость такой детали находится в прямой зависимости от следующих факторов:

  • Из какого материала она изготовлена. Показателем здесь служит модуль сдвига (G), показывающий, как материал противостоит деформации в виде сжатия, растяжения, кручения или изгиба.
  • Диаметра проволоки (d), которая использовалась для её изготовления.
  • Среднего диаметра самой спираль (D ср), определяемого делением суммы внешнего и внутреннего диаметров на два.
  • Количества витков (n).

Если в устройстве используется нескольких упругих элементов, то их суммарная упругость будет зависеть от вида соединения. Так, если они соединены параллельно, то общая жёсткость возрастает, а если последовательно – снижается.

Физические характеристики пружин

Цилиндрические пружины характеризуются рядом параметров, сочетание которых обуславливает их жесткость — способность сопротивляться деформации:

  1. материал; пружины чаще всего изготавливают из стальной проволоки, причем сталь в них применялася особая, ее характеризует среднее или высокое содержание углерода, низкое содержание других примесей (низколегированный сплав) и особая термообработка (закалка), придающая материалу дополнительную упругость;
  2. диаметр проволоки; чем он меньше, тем эластичнее пружина, но тем меньше ее способность запасать энергию; пружины сжатия изготавливают, как правило, из более толстой проволоки, чем пружины растяжения;
  3. форма сечения проволоки; не всегда проволока, из которой намотана пружина, имеет круглое сечение; уплощенное сечение имеют пружины сжатия, чтобы при максимальном сокращении длины (виток «садится» на соседний виток) конструкция была более устойчивой;
  4. длина и диаметр пружины; длину пружины следует отличать от длины проволоки, из которой она намотана; эти два параметра согласуются через количество витков и диаметр пружины, который, в свою очередь, не следует путать с диаметром проволоки.

Существуют и другие физические характеристики, влияющие на работоспособность пружин. Например, при повышении температуры металл становится менее упругим, а при существенном ее понижении может стать хрупким. При интенсивной эксплуатации пружина со временем теряет часть упругости по причине постепенного разрушения связей между атомами кристаллической решетки.

Что такое коэффициент жёсткости пружины

Коэффициент упругости (Гука) – это число, которое используется для связи величины удлинения пружины и силы упругости, возникающей при этом. Обозначается он буквой «C» и вычисляется по формуле. Где: d – диаметр проволоки, использованной для изготовления изделия; G – модуль сдвига (для меди он равен 45 Гпа, обычной стали – 80 Гпа, а пружинной – 78 500 Гпа); n – количество витков; D ср – средний диаметр. Для упрощения вычислений существуют специальные онлайн-калькуляторы, позволяющий быстро определить главные параметры изделия. Из формулы видно, что для получения элемента с нужными характеристиками необходимо менять радиус пружины и проволоки, а также количество витков.

Определение

Жесткость — способность твёрдого тела, конструкции или её элементов сопротивляться деформации от приложенного усилия вдоль выбранного направления в заданной системе координат.

Сила жесткости — сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в исходное состояние.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

От чего зависит жесткость

Жесткость пружины зависит от нескольких параметров:

  • геометрии пружины;
  • типа материала;
  • коэффициента;
  • срока эксплуатации.

Геометрия пружины

На жесткость витой пружины влияет:

  • количество витков;
  • их диаметр;
  • диаметр проволоки.

Диаметр намотки измеряется от оси пружины. Так как длина проволоки в пружине значительно больше длины упругого стержня, сопротивляемость внешней деформации многократно возрастает.

Волновые пружины состоят из металлических лент, навитых ребром по окружности заданного диаметра.

Их основные геометрические параметры:

  • количество витков;
  • количество волн на виток;
  • сечение ленты.

Тип материала

У каждого материала есть условный предел упругости, характеризующий его способность восстанавливаться после деформации. Если этот предел превышается, в структуре материала возникают необратимые изменения.

Определение

Предел упругости — механическая характеристика материала, показывающая максимальное напряжение, при котором имеют место только упругие, обратимые деформации.

Предел упругости измеряют в паскалях и определяют по формуле:

(sigma_{у;}=;frac FS)

где F — действие внешней силы на исследуемый образец, приводящее к повреждениям, а S — его площадь.

Кроме предела упругости, существуют такие характеристики упругости материалов, как модули упругости (модуль Юнга) и сдвига, коэффициент жесткости и другие. Все они взаимосвязаны, поэтому, выяснив значение одной из величин с помощью справочной таблицы, можно вычислить другие.

Коэффициент

Определение

Согласно закону Гука, при малой деформации абсолютная величина силы упругости прямо пропорциональна величине деформации.

Эта линейная зависимость описывается формулой:

(F=;k;times;x)

где k — коэффициент жесткости, а х — величина, на которую сжалась или растянулась пружина.

Примечание

Деформация считается малой в том случае, когда изменение размеров тела значительно меньше его первоначальных размеров.

Срок эксплуатации

Нахождение под напряжением приводит к постепенной необратимой деформации, называемой ослаблением пружины.

Жесткость пружины влияет на срок ее эксплуатации, как и сила воздействия. Конструкторы пружин, предварительно рассчитав эти параметры, проводят тесты на прототипах, прежде чем начать массовое производство. В специальных установках для испытания на усталость материала их сжимают и отпускают определенное количество циклов, отдельно проверяя поведение пружин при максимальной и минимальной нагрузке.

В чем измеряется жесткость

Жесткость пружины в системе СИ измеряется в ньютонах на метр, Н/м. Также встречается единица измерения ньютон на миллиметр, Н/мм. Численно жесткость равна величине силы, изменяющей размер пружины на метр длины.

Как обозначается

Коэффициент жесткости пружины обозначают буквой k.

Коэффициент жесткости пружины

Определение

Коэффициент жесткости — коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу жесткости.

Применяется в механике твердого тела в разделе упругости.

Формула расчета через массу и длину

Используя закон Гука, коэффициент жесткости можно вычислить по формуле:

(k;=;frac Fx)

Чтобы выяснить силу тяжести, воздействующую на пружину, нужно воспользоваться формулой:

(F;=;m;times;g)

где m — масса подвешенного на пружине тела, а g — величина свободного ускорения, равная 9,8.

Чтобы найти х, нужно дважды измерить длину пружины и вычислить разницу между этими двумя значениями.

При соединении нескольких пружин общая жесткость системы меняется. Коэффициенты каждой из пружин суммируются при параллельном соединении. При последовательном соединении общая жесткость вычисляется по формуле:

(frac1k;=;(frac1{k_1};+;frac1{k_2};+;…;+;frac1{k_n}))

Как можно измерить жесткость

Измерительные приборы

Приборы для испытания пружин на сжатие-растяжение контролируют приложенное усилие с помощью тензометрического датчика, а также изменение их длины, выводя показатели на дисплей. Без специального прибора измерить осевую жесткость можно, используя динамометр и линейку.

Существуют приборы и для измерения поперечной жесткости пружин. Для этого нужно измерить смещение нескольких точек пружины, определив расстояние и угол между ними.

Практическая задача

Самый простой способ измерить жесткость пружины — провести стандартный школьный опыт со штативом и подвешенными на пружине грузиками.

Для измерения осевой жесткости спиральной пружины используют:

  • штатив, на котором закрепляют пружину;
  • крючок, который крепят на свободный ее конец;
  • грузики с известной массой, которые подвешивают на свободный конец пружины;
  • линейку, чтобы измерить длину пружины с грузом и без груза.

Проведя несколько измерений с грузиками разной массы и вычислив силу тяжести, воздействовавшую на пружину в каждом из них, можно построить график зависимости длины пружины от приложенного усилия и узнать среднее значение коэффициента жесткости.

Альтернативные способы определения жесткости

Жесткость пружины можно определить и через период ее колебания, воспользовавшись формулой:

(Т;=;2mathrmpisqrt{frac{mathrm m}{mathrm k}})

Или через частоту колебаний по формуле:

(omega=;sqrt{frac{mathrm k}{mathrm m}})

Проводя опыт с пружиной, закрепленной на штативе, и грузиками с известной массой, можно не измерять длину пружины, а привести ее в колебательное движение и сосчитать количество колебаний в период времени.

Формула расчета через длину, дающая более точные результаты и применимая к пружинам со значительной деформацией, различается для пружин разных геометрических параметров. Например, жесткость витой цилиндрической пружины, упруго деформируемой вдоль оси, вычисляется по формуле:

(k=;frac{d_D^4;times;G}{8;times;d_F^3;times;n})

где (d_D) — диаметр проволоки, (d_F) — диаметр намотки, (G) — модуль сдвига, который зависит от материала, а (n) — число витков.

Задача

Рассчитайте коэффициент жесткости пружины, если известно, что ее диаметр 20 мм, диаметр проволоки 1 мм, число витков — 25. Модуль сдвига равен (8times;10^{10};) Па.

Решение

Переведем числовые значения в систему СИ и подставим в формулу:

(k;=;frac{{(10^{-3})}^{4;}times8;times;10^{10}}{8;times;left(2;times;10^{-2}right)^3;times;25})

(k = 100 frac Нм)

Жесткость при деформации кручения существенно отличается от жесткости сжатия-растяжения. Предел прочности при кручении у любого материала будет меньше, чем предел прочности при сжатии-растяжении или изгибе. Торсионная жесткость, также называемая крутильной, в системе СИ измеряется в ньютон-метрах на радиан, сокращенно Н-м/рад. Ее можно определить по формуле:

(k;=;frac Malpha)

где (М) — крутящий момент, приложенный к телу, а (alpha) — угол закручивания тела по оси приложения крутящего момента.

Пружинный маятник .

Пружинный маятник представляет из себя груз на пружине.

(T=2 pi sqrt{dfrac{m}{k}} )


(k) – жесткость пружины маятника

(m) – масса груза


Задача 1.

Вычислить период (T) пружинного маятника, если жесткость его пружины (k=8 Н/м ), а масса его груза
(m=0,5 кг ) ,
(pi=3,14 )


Показать ответ
Показать решение
Видеорешение


Задача 2.

Вычислить период (T) пружинного маятника, если жесткость его пружины (k=81 Н/м ), а масса его груза
(m=1 кг ) ,
(pi=3,14 )
Ответ округлить до десятых


Показать ответ
Показать решение
Видеорешение


Задача 3.

Вычислить период (T) пружинного маятника, если жесткость его пружины (k=400 Н/м ), а масса его груза
(m=0,25 кг ) ,
(pi=3,14 )
Ответ округлить до сотых


Показать ответ
Показать решение
Видеорешение


Задача 4.

Найти массу груза пружинного маятника, если его период ( T=1 с )
, а коэффициент жесткости пружины ( k=400 Н/м ; )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 5.

Найти массу груза пружинного маятника, если его период ( T=0,3 с )
, а коэффициент жесткости пружины ( k=350 Н/м ; )
(pi=3,14 ).
Ответ округлить до десятых.

Показать ответ
Показать решение
Видеорешение


Задача 6.

Найти массу груза пружинного маятника, если его период ( T=0,07 с )
, а коэффициент жесткости пружины ( k=150 Н/м ; )
(pi=3,14 ).
Ответ округлить до сотых.

Показать ответ
Показать решение
Видеорешение


Задача 7.

Найти коэффициент жесткости пружины пружинного маятника, если его период ( T=0,07 с )
, а масса груза ( m=0,0186 кг )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 8.

Найти коэффициент жесткости пружины пружинного маятника, если его период ( T=0,32 с )
, а масса груза ( m=0,8 кг )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 9.

Найти коэффициент жесткости пружины пружинного маятника, если его период ( T=0,6 с )
, а масса груза ( m=4 кг )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 10.

Найти частоту колебаний ( nu ) пружинного маятника, если жесткость его пружины (k=400 Н/м ), а масса его груза
(m=0,25 кг ) ,
(pi=3,14 )
Ответ округлить до сотых


Показать ответ
Показать решение
Видеорешение


Задача 15.

Массу груза пружинного маятника увеличили в 4 раза. Во сколько раз увеличился период колебаний этого
пружинного маятника?


Показать ответ
Показать решение
Видеорешение


Задача 16.

Массу груза пружинного маятника увеличили в 25 раза. Во сколько раз увеличился период колебаний этого
пружинного маятника?


Показать ответ
Показать решение
Видеорешение


Задача 25.

Пружинный маятник совершает гармонические колебания с периодом (T_1=0,4 с. ;; )
Масса его груза (m_1=1 кг ).
В какой-то момент
к грузу пружинного маятника жестко прикрепили дополнительный груз массой (m_2=3 кг. ; )

Вычислить период колебаний пружинного маятника после присоединения дополнительного груза.


Показать ответ
Показать решение
Видеорешение


Задача 30.

Пружинный маятник совершает гармонические колебания с периодом (T_1=0,15 с. ;; )
Масса его груза (m_1= 0,6 кг ).
В какой-то момент
к грузу пружинного маятника жестко прикрепили дополнительный груз , после чего
его период стал равен (T_2=0,45 с )

Найти массу (m_2 ) дополнительного груза.


Показать ответ
Показать решение
Видеорешение


Добавить комментарий