Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.
1 способ – ищем коэффициенты на графике
Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.
-
Коэффициент (a) можно найти с помощью следующих фактов:
– Если (a>0), то ветви параболы направленных вверх, если (a<0), то ветви параболы направлены вниз.
– Если (a>1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.
– Аналогично с (a<-1), только график вытянут вниз.
– Если (a∈(0;1)), то график сжат в (a) раз (по сравнению с «базовым» графиком с (a=1)). Вершина при этом остается на месте.
– Аналогично (a∈(-1;0)), только ветви направлены вниз.
-
Парабола пересекает ось y в точке (c).
-
(b) напрямую по графику не видно, но его можно посчитать с помощью (x_в) – абсциссы (икса) вершины параболы:
(x_в=-frac{b}{2a})
(b=-x_вcdot 2a)
Пример (ЕГЭ):
Решение:
Во-первых, надо разобраться, где тут (f(x)), а где (g(x)). По коэффициенту (c) видно, что (f(x)) это функция, которая лежит ниже – именно она пересекает ось игрек в точке (4).
Значит нужно найти коэффициенты у параболы, которая лежит повыше.
Коэффициент (c) у неё равен (1).
Ветви параболы направлены вниз – значит (a<0). При этом форма этой параболы стандартная, базовая, значит (a=-1).
Найдем (b). (x_в=-2), (a=-1).
(x_в=-frac{b}{2a})
(-2=-frac{b}{-2})
(b=-4)
Получается (g(x)=-x^2-4x+1). Теперь найдем в каких точках функции пересекаются:
(-x^2-4x+1=-2x^2-2x+4)
(-x^2-4x+1+2x^2+2x-4=0)
(x^2-2x-3=0)
(D=4+4cdot 3=16=4^2)
(x_1=frac{2-4}{2}=-1); (x_2=frac{2+4}{2}=3).
Ответ: (3).
2 способ – находим формулу по точкам
Это самый надежный способ, потому что его можно применить практически в любой ситуации, но и самый не интересный, потому что думать тут особо не надо, только уметь решать системы линейных уравнений. Алгоритм прост:
-
Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример: -
Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.
Пример: (A(-4;5)), (B(-5;5)), (C(-6;3)).
(begin{cases}5=a(-4)^2+b(-4)+c\5=a(-5)^2+b(-5)+c\3=a(-6)^2+b(-6)+c end{cases})
-
Решаем систему.
Пример:(begin{cases}5=16a-4b+c\5=25a-5b+c\3=36a-6b+c end{cases})
Вычтем из второго уравнения первое:
(0=9a-b)
(b=9a)Подставим (9a) вместо (b):
(begin{cases}5=16a-36a+c\5=25a-45a+c\3=36a-54a+c end{cases})
(begin{cases}5=-20a+c\5=-20a+c\3=-18a+c end{cases})Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:
(2=-2a)
(a=-1)Найдем (b):
(b=-9)
Подставим в первое уравнение (a):
(5=20+c)
(c=-15).Получается квадратичная функция: (y=-x^2-9x-15).
Пример (ЕГЭ):
Решение:
Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).
Таким образом имеем систему:
(begin{cases}8=a(-1)^2+b(-1)+4\2=a+b+4 end{cases})
(begin{cases}8=a-b+4\2=a+b+4 end{cases})
(begin{cases}4=a-b\-2=a+b end{cases})
Сложим 2 уравнения:
(2=2a)
(a=1)
Подставим во второе уравнение:
(-2=1+b)
(b=-3)
Получается:
(g(x)=x^2-3x+4)
Теперь найдем точки пересечения двух функций:
(-3x+13=x^2-3x+4)
(x^2-9=0)
(x=±3)
Теперь можно найти ординату второй точки пересечения:
(f(-3)=-3cdot (-3)+13)
(f(-3)=9+13)
(f(-3)=22)
Ответ: (22).
3 способ – используем преобразование графиков функций
Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.
Главный недостаток этого способа – вершина должна иметь целые координаты.
Сам способ базируется на следующих идеях:
-
График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).
-
– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз. -
– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
– График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц. -
График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.
У вас наверно остался вопрос – как этим пользоваться? Предположим, мы видим такую параболу:
Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).
А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).
То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:
(y=x^2-10x+25-4)
(y=x^2-10x+21)
Готово.
Пример (ЕГЭ):
Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:
-
Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).
-
Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).
-
Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).
-
Получается (y=-2(x^2-4x+4)+4=)(-2x^2+8x-8+4=-2x^2+8x-4).
-
(f(6)=-2cdot 6^2+8cdot 6-4=-72+48-4=-28)
Смотрите также:
Как найти k и b по графику линейной функции?
Алгоритм
нахождения
значений коэффициентов a,
b,
c
по
графику квадратичной функции
у=ax2
+bx+c.
Автор: Храмова Ирина Михайловна
МБОУ Луговская ООШ
Источники : алгебра 9 класс, Ю.Н.
Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова под редакцией А.С.Теляковского,
Москва «Просвещение», 2013г.
I.
Нахождение коэффициента a
:
1) по графику
параболы определяем координаты вершины (m,
n)
2) по графику
параболы определяем координаты любой точки А(х1;у1)
3) подставляем эти
значения в формулу квадратичной функции, заданной в другом виде:
y=a(х-m)2+n
4) решаем
полученное уравнение.
II.
Нахождение коэффициента b:
1) Сначала
находим значение коэффициента a(шаг
I,
смотри выше)
2) В
формулу для абсциссы параболы m=
–b/2a
подставляем значения m и
a
3) Находим
значение коэффициента b.
III.
Нахождение коэффициента с:
1) Находим
ординату у точки пересечения параболы с осью Оу, это значение равно
коэффициенту с, т.е. точка (0;с) – точка пересечения параболы с
осью Оу.
2) Если
по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I,
II (находим
коэффициенты a,
b)
3) Подставляем
найденные значения a,
b
, А(х1 ;у1) в уравнение у=ax2
+bx+c и находим с.
Нахождение коэффициентов квадратичной функции y=ax2 + bx +c
I Нахождение коэффициента а :
-
по графику параболы определяем координаты вершины (m,n)
-
по графику параболы определяем координаты любой точки A (x;y)
-
подставляем эти значения в формулу квадратичной функции, заданной в другом виде:
y=а(х-m)2+n
-
решаем полученное уравнение.
II. нахождение коэффициента b: b= – (х1 + х2) это для приведённого уравнения
-
Сначала находим значение коэффициента a (шаг I, смотри выше)
В формулу для абсциссы параболы m = подставляем значения m и а
-
Вычисляем значение коэффициента b.
III. нахождение коэффициента с: с = х1 ∙ х2 это для приведённого уравнения
-
Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;C)-точка пересечения графика параболы с осью Оу.
-
Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II {находим коэффициенты а,Ь)
-
Подставляем найденные значения а, b ,А(х ; у) в уравнение у=ах2 +bх+с и находим с.
I Нахождение коэффициента а :
-
по графику параболы определяем координаты вершины (m,n)
-
по графику параболы определяем координаты любой точки A (x;y)
-
подставляем эти значения в формулу квадратичной функции, заданной в другом виде:
y=а(х-m)2+n
-
решаем полученное уравнение.
II. нахождение коэффициента b:
-
Сначала находим значение коэффициента a (шаг I, смотри выше)
В формулу для абсциссы параболы m = подставляем значения m и а
-
Вычисляем значение коэффициента b.
III. нахождение коэффициента с:
-
Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;C)-точка пересечения графика параболы с осью Оу.
-
Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II {находим коэффициенты а,b)
-
Подставляем найденные значения а, b ,А(х ; у) в уравнение у=ах2 +bх+с и находим с.
Рассмотрим задачу: где невозможно по графику найти точно m и n необходимо найти все коэффициенты уравнения, задающего график:
Найти все коэффициенты по графику функции
Подставляем в уравнение: координаты выбранных точек, например, таких: (2;2), (5;2), (4;-3). Получается:
Последние два уравнения вычтем:
Данное выражение подставим в первое и второе уравнения:
Вычтем два получившихся уравнения:
Зная а, можем найти и остальные коэффициенты:
Следующая задача: найти коэффициенты уравнения, задающего график функции, изображенный на рисунке:
Найти все коэффициенты по графику функции
Здесь будет немного попроще, так как определить коэффициент с можно по рисунку: с=-5. Это значит, что потребуется только две точки, и система будет состоять только из двух уравнений. Возьмем для ее составления точки (1;-3) и (2;-3):
Вычтем получившиеся уравнения (второе – из первого) и определим коэффициенты а и b:
Найти все коэффициенты по графику функции
Наконец, еще одно такое же задание. Снова необходимо определить все коэффициенты функции, график которой представлен на рисунке:
Зададимся точками. Их будет три, уравнений тоже три, так как нам необходимо найти три коэффициента – a, b и c.
Точки будут: (-2; -3),(-5; -3) и (-3; -5) . Тогда уравнения:
Из первого уравнения вычитаем второе:
Полученное подставим в первое и третье:
Полученные уравнения вычтем вновь, и найдем искомое:
Алгоритм
нахождения значения коэффициентов a,b,c
по графику квадратичной функции
у=ax2 +bx+c.
Автор: Давыдова Галина Анатольевна
МКОУ «Кукуйская ООШ №25»
Источники : алгебра 9 класс, под редакцией А.С.Теляковского,
Москва «Просвещение», 2011г.
I.Нахождение коэффициента a :
1) по графику параболы определяем координаты вершины (m,n)
2) по графику параболы определяем координаты любой точки А (х1;у1)
3) подставляем эти значения в формулу квадратичной функции, заданной в другом виде:
У=a(х-m)2+n
4) решаем полученное уравнение.
II. нахождение коэффициента b:
- Сначала находим значение коэффициента a(шаг I, смотри выше)
- В формулу для абсциссы параболы m= -b/2a подставляем значения m и a
- Вычисляем значение коэффициента b.
III. нахождение коэффициента с:
- Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;с)-точка пересечения графика параболы с осью Оу.
- Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II(находим коэффициенты a,b)
- Подставляем найденные значения a, b ,А(х1 ;у1) в уравнение у=ax2 +bx+c и находим с.
Алгоритм
нахождения значения коэффициентов a,b,c
по графику квадратичной функции
у=ax2 +bx+c.
Автор: Давыдова Галина Анатольевна
МКОУ «Кукуйская ООШ №25»
I.Нахождение коэффициента a :
1) по графику параболы определяем координаты вершины (m,n)
2) по графику параболы определяем координаты любой точки А (х1;у1)
3) подставляем эти значения в формулу квадратичной функции,
заданной в другом виде:
У=a(х-m)2+n
4) решаем полученное уравнение.
II. нахождение
коэффициента b:
1)
Сначала
находим значение коэффициента a(шаг I, смотри выше)
2)
В
формулу для абсциссы параболы m= –b/2a подставляем значения m и
a
3)
Вычисляем
значение коэффициента b.
III. нахождение коэффициента с:
1)
Находим
координату у точки пересечения графика параболы с осью Оу, это значение равно
коэффициенту с, т.е. точка (0;с)-точка пересечения графика
параболы с осью Оу.
2)
Если
по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II(находим коэффициенты a,b)
3)
Подставляем
найденные значения a, b ,А(х1 ;у1) в уравнение у=ax2 +bx+c и
находим с.