Жизнь человека невозможно представить без счета. Мы считаем постоянно – время до начала любимой передачи, сдачу в магазине, решая математические задачи. При этом для счета мы используем 10 цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Именно поэтому эту систему счисления называют десятичной – в ней 10 цифр. Комбинируя эти цифры можно получать бесконечное множество чисел. А можно ли использовать большее или меньшее количество цифр?
Конечно! Мы используем 10 цифр по простой причине – для счета удобно пользоваться пальцами рук, а у нас их 10. А вот, например, в памяти компьютера вся информация записана с помощью только двух цифр – 0 и 1. Соответственно, такая система счисления называется двоичная. Число, записанное в двоичной системе счисления можно представить в десятичной системе и наоборот. Система счисления определяет способ записи чисел и правила выполнения действий над ними. Помимо двоичной и десятичной систем счисления наиболее популярными являются восьмеричная и шестнадцатеричная. По аналогии можно предположить, что в восьмеричной системе счисления для записи чисел используют 8 цифр – 0, 1, 2, 3, 4, 5, 6, 7. А что же с шестнадцатеричной системой счисления? Ведь мы знаем только 10 цифр – от 0 до 9. А в шестнадцатеричной системе используется 16 цифр. Где взять недостающие 6 цифр? Очень просто – для записи цифр от 10 до 15 использовать… буквы A, B, C, D, E, F. И тогда число в шестнадцатеричной системе счисления можно записать используя цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Количество цифр, которые используются для записи чисел называется основанием системы счисления. Например, у двоичной системы счисления основание равно двум, а у восьмеричной – восьми. А совокупность всех чисел, которые используются для записи чисел называют алфавит. Эту информацию нагляднее представить в виде таблицы:
Название системы счисления | Основание системы счисления | Алфавит системы счисления |
двоичная | 2 | 0, 1 |
восьмеричная | 8 | 0, 1, 2, 3, 4, 5, 6, 7 |
десятичная | 10 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
шестнадцатеричная | 16 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |
А как определить в какой системе счисления записано число? Для этого после числа в нижнем индексе указывается основание системы счисления, в которой записано число. Например,
101102 – число в двоичной системе счисления,
52316 – число в шестнадцатеричной системе счисления,
538 – число в восьмеричной системе счисления,
72310 – число в десятичной системе счисления.
Все системы счисления описанные выше называются позиционными. Это значит что значение цифры зависит от позиции, на которой оно находится. К примеру, возьмем два числа в десятичной системе счисления – 237 и 723. Хотя эти числа и состоят из одних цифр, но эти числа разные, так как в первом числе цифра 2 означает сотни, а во втором – десятки и т. д.
Системы счисления, в которых значение цифры не зависит от ее положения в числе называют непозиционными. Ярчайший пример такой системы – римская запись числа. Если мы рассмотрим римское число III, то увидим, что на какой бы позиции не стояла цифра I она везде означает единицу.
Для перевода чисел из десятичной системы счисления в любую другую рекомендую использовать этот скрипт
Следующий урок на тему Перевод чисел из двоичной системы счисления в десятичную
Автор:
Модератор 3488 / 2611 / 741 Регистрация: 19.09.2012 Сообщений: 7,971 |
|
1 |
|
Определение кол-ва цифр числа в различных системах счисления18.04.2014, 19:16. Показов 7639. Ответов 6
Привет, форумчане!
0 |
4526 / 3520 / 358 Регистрация: 12.03.2013 Сообщений: 6,038 |
|
18.04.2014, 23:36 |
2 |
Формулы нет (естественно), можно только оценивать. Если число записывается в 16-чной восемью цифрами, то самое маленькое такое будет Вся магия в показателях, другой нет.
1 |
Модератор 3488 / 2611 / 741 Регистрация: 19.09.2012 Сообщений: 7,971 |
|
19.04.2014, 00:01 [ТС] |
3 |
можно только оценивать Тяжело оценивать число с лямом и более цифр.
у произвольного такого числа может быть 9 или 10 десятичных цифр Мне надо максимальное число цифр, т.е. можно считать, что все цифры = F. Печально, если это не вычисляется. Добавлено через 15 минут
0 |
4526 / 3520 / 358 Регистрация: 12.03.2013 Сообщений: 6,038 |
|
19.04.2014, 00:05 |
4 |
Гм. Вы повнимательней перечитайте моё сообщение, там всё есть. Оценивать – это значит, что однозначно число десятичных цифр не восстанавливается: восьмизначное шестнадцатиричное может быть и девятизначным и десятизначным десятеричным. А наибольшее и наименьшее количество цифр легко посчитать. Напоминаю, что операция нахождения показателя – это логарифм. Например, если не ошибаюсь, FFF…F (миллион раз) в десятичной записи будет иметь 1204120 цифр. Добавлено через 38 секунд
Как найти Х? Десятичным логарифмом. И вынесите 8 в левой части за логарифм.
1 |
Модератор 3488 / 2611 / 741 Регистрация: 19.09.2012 Сообщений: 7,971 |
|
19.04.2014, 00:08 [ТС] |
5 |
X = 8 / log16(10)
0 |
4526 / 3520 / 358 Регистрация: 12.03.2013 Сообщений: 6,038 |
|
19.04.2014, 00:10 |
6 |
Сообщение было отмечено FIL как решение Решение гм
1 |
Модератор 3488 / 2611 / 741 Регистрация: 19.09.2012 Сообщений: 7,971 |
|
19.04.2014, 00:19 [ТС] |
7 |
гм Наизусть св-ва логарифмов не помню, а Гугл подвел
0 |
Основы систем счисления
Время на прочтение
11 мин
Количество просмотров 502K
Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.
Введение
Система счисления — это способ записи (представления) чисел.
Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палецзарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки
Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.
Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.
Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.
Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.
Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.
Непозиционные системы
Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.
Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.
Древнеегипетская десятичная система
В Древнем Египте использовались специальные символы (цифры) для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Вот некоторые из них:
Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.
Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:
Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Теперь число 3632 следует записывать, как:
Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.
Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.
Методы определения значения числа:
- Значение числа равно сумме значений его цифр. Например, число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2=32
- Если слева от большей цифры стоит меньшая, то значение равно разности между большей и меньшей цифрами. При этом, левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из «младших» может стоять только X(10), перед D(500) и M(1000) — только C(100), перед V(5) — только I(1); число 444 в рассматриваемой системе счисления будет записано в виде CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.
- Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.
Помимо цифирных, существуют и буквенные (алфавитные) системы счисления, вот некоторые из них:
1) Славянская
2) Греческая (ионийская)
Позиционные системы счисления
Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.
Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*102 + 0*101 + 3*100 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.
Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.
Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.
Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.
Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*22 + 0*21 + 1*20 = 4+0+1 = 510.
Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?
Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.
Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.
Пример восьмеричного числа: 254. Для перевода в 10-ю систему необходимо каждый разряд исходного числа умножить на 8n, где n — это номер разряда. Получается, что 2548 = 2*82 + 5*81 + 4*80 = 128+40+4 = 17210.
Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.
В качестве примера возьмем число 4F516. Для перевода в восьмеричную систему — сначала преобразуем шестнадцатеричное число в двоичное, а затем, разбив на группы по 3 разряда, в восьмеричное. Чтобы преобразовать число в 2-е необходимо каждую цифру представить в виде 4-х разрядного двоичного числа. 4F516 = (100 1111 101)2. Но в 1 и 3 группах не достает разряда, поэтому заполним каждый ведущими нулями: 0100 1111 0101. Теперь необходимо разделить полученное число на группы по 3 цифры справа налево: 0100 1111 0101 = 010 011 110 101. Переведем каждую двоичную группу в восьмеричную систему, умножив каждый разряд на 2n, где n — номер разряда: (0*22+1*21+0*20) (0*22+1*21+1*20) (1*22+1*21+0*20) (1*22+0*21+1*20) = 23658.
Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная
Позиционные системы подразделяются на однородные и смешанные.
Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Qn (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”
Опираясь на теорему, можно сформулировать правила перевода из P-й в Q-ю системы и наоборот:
- Для перевода из Q-й в P-ю, необходимо число в Q-й системе, разбить на группы по n цифр, начиная с правой цифры, и каждую группу заменить одной цифрой в P-й системе.
- Для перевода из P-й в Q-ю, необходимо каждую цифру числа в P-й системе перевести в Q-ю и заполнить недостающие разряды ведущими нулями, за исключением левого, так, чтобы каждое число в системе с основанием Q состояло из n цифр.
Яркий пример — перевод из двоичной системы счисления в восьмеричную. Возьмем двоичное число 100111102, для перевода в восьмеричное — разобьем его справа налево на группы по 3 цифры: 010 011 110, теперь умножим каждый разряд на 2n, где n — номер разряда, 010 011 110 = (0*22+1*21+0*20) (0*22+1*21+1*20) (1*22+1*21+0*20) = 2368. Получается, что 100111102 = 2368. Для однозначности изображения двоично-восьмеричного числа его разбивают на тройки: 2368 = (10 011 110)2-8.
Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева
Перевод из одной системы счисления в другую
Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Имеется число a1a2a3 в системе счисления с основанием b. Для перевода в 10-ю систему необходимо каждый разряд числа умножить на bn, где n — номер разряда. Таким образом, (a1a2a3)b = (a1*b2 + a2*b1 + a3*b0)10.
Пример: 1012 = 1*22 + 0*21 + 1*20 = 4+0+1 = 510
Преобразование из десятичной системы счисления в другие
Целая часть:
- Последовательно делим целую часть десятичного числа на основание системы, в которую переводим, пока десятичное число не станет равно нулю.
- Полученные при делении остатки являются цифрами искомого числа. Число в новой системе записывают, начиная с последнего остатка.
Дробная часть:
- Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
- Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
Пример: переведем 1510 в восьмеричную:
158 = 1, остаток 7
18 = 0, остаток 1
Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.
Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
Для перевода в восьмеричную — разбиваем двоичное число на группы по 3 цифры справа налево, а недостающие крайние разряды заполняем ведущими нулями. Далее преобразуем каждую группу, умножая последовательно разряды на 2n, где n — номер разряда.
В качестве примера возьмем число 10012: 10012 = 001 001 = (0*22 + 0*21 + 1*20) (0*22 + 0*21 + 1*20) = (0+0+1) (0+0+1) = 118
Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.
Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.
Для примера рассмотрим число 458: 45 = (100) (101) = 1001012
Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.
Преобразование дробной части любой системы счисления в десятичную
Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.
Пример: 101,0112 = (1*22 + 0*21 + 1*20), (0*2-1 + 1*2-2 + 1*2-3) = (5), (0 + 0,25 + 0,125) = 5,37510
Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.
Пример: 1001,012 = 001 001, 010 = (0*22 + 0*21 + 1*20) (0*22 + 0*21 + 1*20), (0*22 + 1*21 + 0*20) = (0+0+1) (0+0+1), (0+2+0) = 11,28
Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.
Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012
Системы счисления в математике
Содержание:
Системы счисления в математике
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр). Системы счисления бывают: непозиционными (в этих системах значение цифры не зависит от ее позиции — положения в записи числа).
Непозиционные системы счисления
Непозиционными называются такие системы счисления, в которых каждая цифра сохраняет своё постоянное значение независимо от того места, которое она занимает в записи числа.
Примером непозиционной системы счисления, которая дошла до наших дней и иногда используется, является римская система счисления. В этой системе для записи чисел используется такие цифры: I, V, X, C, D, M и т.д., они обозначают числа один, пять, десять, пятьдесят, сто, тысяча и т.д. Запись любых других чисел производится на основе определённых правил: несколько одинаковых цифр, стоящих рядом, отображают число, равное сумме чисел, которые соответствуют этим цифрам, например III — три, XX — двадцать, пара цифр в которой младшая цифра (которая обозначает меньшее число) стоит слева от старшей (которая обозначает большее число), отображает разность соответствующих чисел, например IV — четыре, XL — сорок, пара цифр, в которой младшая цифра стоит справа от старшей, отображает сумму соответствующих чисел, например XI — одиннадцать, VI — шесть, и т.п.
Позиционные системы счисления
Позиционными называются такие системы счисления, в которых значение каждой цифры определяется не только самой цифрой, но и тем местом (позицией), которое она занимает в записи числа.
Основой позиционной системы счисления называется число , которое показывает, сколько необходимо единиц любого разряда для получения единицы старшего разряда. Систему счисления с основой будем обозначать через . Очевидно, что основой системы счисления определяется количество цифр, которые используются для записи чисел в данной системе счисления. Основой десятичной системы счисления является число десять, для записи любых чисел используется только десять разных чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
В позиционной системе счисления с основой используются разных целых чисел , которые называются базой системы счисления. Различаются позиционные системы счисления с неотъемлемой и симметричной базой. В позиционных системах счисления с неотъемлемой базой цифры означают последовательные целые числа начиная с нуля; в позиционных системах счисления с симметричной базой цифры обозначают последовательные целые числа, симметрично расположенные относительно нуля и ноль. Как правило, цифры 0, 1 в позиционных системах счисления обозначают число ноль и единицу.
Числа в позиционной системе счисления с основой записывают как последовательность цифр системы , разделённых запятой на целую и дробную части. Если буквы обозначают цифры системы, то последовательность цифр означает число .
Арифметические действия над числами в любой позиции системы счисления выполняются по тем же правилам, что и в десятичной системе. Однако, при выполнении действий над числами системы, необходимо пользоваться таблицами сложения и умножения этой системы.
Чтобы различать в какой системе счисления записано то или другое число, договоримся обозначать через число х, записанное в системе счисления .
Рассмотрим наиболее внедрённые в ЭВМ системы счисления.
Двоичная система счисления
Эта система счисления использует две цифры 0, 1, которые обозначают числа ноль и единицу соответственно. Основой этой системы является число два.
Ниже дано изображения некоторых чисел в двоичной системе счисления:
При добавлении двух чисел, записанных в двоичной системе счисления, следует пользоваться таблицей сложения:
Таблица умножения в двоичной системе счисления также очень простая:
Примеры
Восьмеричная система счисления
Эта система счисления использует цифры 0, 1, 2, 3, 4, 5, 6, 7 для обозначения последовательных чисел от нуля до семи включительно. Основой этой системы является число 8. Запись произвольного числа в этой системе основывается на его разложении по степеням числа восемь с указанными выше коэффициентами.
Запишем некоторые числа в восьмеричной системе счисления:
Восьмеричные таблицы сложения и умножения имеют вид:
Примеры
Шестнадцатеричная система счисления
Эта система счисления использует шестнадцать цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, которые обозначают последовательно целые числа, начиная с нуля заканчивая числом “пятнадцать”. Основой этой системы счисления является число шестнадцать.
Запишем некоторые числа в шестнадцатеричной системе счисления:
Примеры
Переведение чисел из одной системы в другую
При решении задач на ЭВМ начальные данные, как правило, задаются в десятичной системе счисления, в той же системе необходимо получить результат. Однако почти все машины работают не в десятичной системе, а в какой-нибудь другой, например в двоичной. Поэтому возникает необходимость переведения чисел из одной системы в другую. При рассмотрении правил перевода чисел из одной системы счисления в другую ограничимся только системами счисления с неотъемлемой базой. Поскольку переведение отрицательных чисел сводится к переводу абсолютных величин и приписыванием им знака минус, то достаточно рассмотреть перевод положительных чисел.
Перевод чисел системы в систему с помощью арифметики системы .
Такой перевод будем обозначать символами .
Для того, чтобы число , записанное в системе .
перевести в систему , пользуясь арифметикой системы , необходимо:
а) записать число в виде:
б) заменить основу 10 и все цифры системы их изображениями в системе ;
в) сделать вычисления, пользуясь арифметикой системы .
Примеры:
Проведя вычисления, пользуясь арифметикой десятичной системы счисления, получаем число 22,7510.
б) Перевести число 27,510 из десятичной системы счисления в двоичную
то, заменив основу 10 и цифры 2, 7, 5 их изображением в двоичной системе счисления, получаем:
Сделав вычисления, пользуясь арифметикой двоичной системы счисления, получим число .
Следовательно,
в) Перевести число 634,528 из восьмеричной системы счисления в десятичную (8 → 10(10)).
Подав это число в виде
и заменив основу 10 — числом 8 (цифры 6, 3, 4, 5, 2 имеют тот же вид в десятичной системе счисления) получаем:
Сделав вычисления, пользуясь арифметикой десятичной системы счисления, получаем число 412,9375010.
Следовательно, 634,528 = 412,9375010.
г) Перевести число 98,610 из десятичной системы счисления в восьмеричную (10 →8(8)).
Представив это число в виде
и заменив основу числа 10 и цифры 9, 8, 6 их видом в восьмеричной системе счисления, получим:
Сделав вычисления, руководствуясь арифметикой восьмеричной системы счисления получим число 142,48. Следовательно, 98,610 = 142,48.
Перевод чисел системы в систему с помощью арифметики системы
Перевод чисел системы в систему с помощью арифметики системы .
Такой перевод будем обозначать символами . Поскольку для перевода любого числа достаточно уметь переводить его дробную и целую части, то можно рассмотреть эти оба случая отдельно.
Перевод целых чисел
Пусть целое число , записанное в системе , необходимо перевести в систему . Поскольку — целое число, то его вид в системе будет таким:
где цифры системы , которые необходимо определить, а 10 — основа системы .
Заменим цифры и основу 10 системы их видом в системе . Пусть является изображением цифры изображением основы системы в системе .
Разделив обе части полученного равенства на , получим остаток и частное
Если теперь частное разделить на , то получим остаток и частное
Повторяя этот процесс раз, мы последовательно найдём все числа , причём последнее частное Деление выполняем, пользуясь арифметикой системы .
Таким образом, при последовательном делении числа и частных, которые получаем при делении, на основу системы, записанную в системе, то есть на , получим в виде остатков от деления цифры, необходимое для изображения числа в системе , записанные в системе . Последовательное деление производится до тех пор, пока не одержим частное, меньше чем . Это последнее частное даст нам цифру числа , записанную в системе. При делении пользуются арифметикой системы .
Примеры
а) Перевести число 6510 из десятичной системы счисления в двоичную (10 → 2(10)).
и десятичные цифры 0, 1 имеют тоже самое изображение в двоичной системе счисления, то 6510 = 10000012
б) Перевести число 32510 из десятичной системы счисления в восьмеричную (10 → 8(10)).
и десятичные цифры 5, 0 имеют тоже самое изображение в восьмеричной системе счисления, то 32510 = 5058.
в) Перевести число 306010 из десятичной системы в шестнадцатеричную (10→16(10)).
а десятичные цифры 15, 11 изображаются в шестнадцатеричной системе счисления как F и B, 306010 = BF416.
г) Перевести число 1110112 из двоичной системы счисления в десятичную (2→10(2)).
Пользуясь арифметикой двоичной системы счисления, получим:
Двоичные числа 101 и 1001 в десятичной системе счисления имеют изображение 5 и 9 соответственно, 1110112 = 5910.
Переведение правильных дробей
Пусть D — правильная дробь, записанная в системе P. Допустим, что необходимо перевести дробь в систему . Пусть изображение D в системе найдём и она имеет изображение
Умножим две части полученного равенства на . Получим число, целая часть которого и дробная часть
Умножим на , получим число, целая часть которого и дробная
Повторяя умножение необходимое нам количество раз, мы найдём одну за одной цифры, необходимые нам для изображения числа D в системе . При умножении пользуемся арифметикой системы P.
Таким образом, при последовательном умножении числа D и дробных частей произведения, которые получаются при умножении на основу , записанную в системе P, то есть на , получим в виде целых частей произведений цифры, необходимые для изображения числа D в системе . Умножение выполняем, пользуясь арифметикой системы P.
Примеры:
а) Перевести число 0,562510 из десятичной системы исчисления в восьмеричную (10→8(10)).
и десятичная цифра 4 имеет то же самое изображение в восьмеричной системе счисления, то 0,562510 = 0,448.
б) Перевести число 0,37510 из десятичной системы исчисления в двоичную (10→2(10)).
и десятичные цифры 0, 1 имеют то же самое изображение в двоичной системе счисления, то 0,37510 = 0,0012.
в) Перевести число 0,5B416 из шестнадцатеричной системы исчисления в десятичную (16→10(16)).
и шестнадцатеричные цифры 5, 5, 5, 6, 0, 1, 2 имеют то же самое изображение в десятичной системе счисления, то 0,5B416 = 0,356901562510.
Замечание: Удобнее всего, при переводе чисел из системы счисления P в систему , пользоваться арифметикой системы P, если
Перевод чисел системы в систему и наоборот, если .
Пусть , где целые положительные числа. В этом случае общие правила перевода значительно упрощаются.
Для того, чтобы перевести число системы в систему при , достаточно каждую цифру этого числа заменить соответствующим -разрядным числом в системе .
Для того, чтобы перевести число системы в систему при , достаточно, двигаясь от запятой влево и вправо, разбить все цифры числа на группы по цифр в каждой (крайние группы дополняются нулями, если это необходимо) и каждую группу заменить соответствующей цифрой системы .
Примеры:
Трёхразрядное двоичное число, которое соответствует определённой восьмеричной цифре, называется триадой. Соответствие между восьмеричными цифрами и триадами такое:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Как определить систему счисления уравнение
Задание 1. Какому числу в десятичной системе счисления соответствует число 2416?
2416 = 2 * 16 1 + 4 * 16 0 = 32 + 4 = 36
Задание 2. Известно, что X = 124 + 45 + 1012. Чему равно число X в десятичной системе счисления?
Переведем каждое слагаемое в десятичную систему счисления:
124 = 1 * 41 + 2 * 40 = 4 + 2 = 6
45 = 4 * 5 0 = 4
1012 = 1 * 2 2 + 0 * 2 1 + 1 * 2 0 = 4 + 0 + 1 = 5
Находим число: X = 6 + 4 + 5 = 15
Задание 3. Вычислите значение суммы 102 + 458 + 1016 в десятичной системе счисления.
Переведем каждое слагаемое в десятичную систему счисления:
102 = 1 * 2 1 + 0 * 2 0 = 2
458 = 4 * 8 1 + 5 * 8 0 = 37
1016 = 1 * 16 1 + 0 * 16 0 = 16
Сумма равна: 2 + 37 + 16 = 55
Перевод в двоичную систему счисления
Задание 1. Чему равно число 37 в двоичной системе счисления?
Можно выполнить преобразование делением на 2 и комбинацией остатков в обратном порядке.
Другой способ – это разложить число на сумму степеней двойки, начиная со старшей, вычисляемый результат которой меньше данного числа. При преобразовании пропущенные степени числа следует заменять нулями:
3710 = 32 + 4 + 1 = 2 5 + 2 2 + 2 0 = 1 * 2 5 + 0 * 2 4 + 0 * 2 3 + 1 * 2 2 + 0 * 2 1 + 1 * 2 0 = 100101
Задание 2. Сколько значащих нулей в двоичной записи десятичного числа 73?
Разложим число 73 на сумму степеней двойки, начиная со старшей и умножая пропущенные степени в дальнейшем на нули, а существующие на единицу:
7310 = 64 + 8 + 1 = 2 6 + 2 3 + 2 0 = 1 * 2 6 + 0 * 2 5 + 0 * 2 4 + 1 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 1001001
Ответ. В двоичной записи десятичного числа 73 присутствует четыре значащих нуля.
Задание 3. Вычислите сумму чисел x и y при x = D216, y = 378. Результат представьте в двоичной системе счисления.
Вспомним, что каждая цифра шестнадцатеричного числа формируется четырьмя двоичными разрядами, каждая цифра восьмеричного числа – тремя:
Сложим полученные числа:
Ответ. Сумма чисел D216 и y = 378, представленная в двоичной системе счисления равна 11110001.
Задание 4. Дано: a = D716, b = 3318. Какое из чисел c, записанных в двоичной системе счисления, отвечает условию a Задания на определение значений в различных системах счисления и их оснований
Задание 1. Для кодирования символов @, $, &, % используются двухразрядные последовательные двоичные числа. Первому символу соответствует число 00. С помощью данных символов была закодирована такая последовательность: $%&&@$. Декодируйте данную последовательность и переведите результат в шестнадцатеричную систему счисления.
1. Сопоставим двоичные числа кодируемым ими символам:
00 – @, 01 – $, 10 – &, 11 – %
2. Декодируем заданную последовательность:
$%&&@$ = 01 11 10 10 00 01
3. Переведем двоичное число в шестнадцатеричную систему счисления:
0111 1010 0001 = 7A1
Задание 2. В саду 100x фруктовых деревьев, из которых 33x – яблони, 22x – груши, 16x – сливы, 17x – вишни. Чему равно основание системы счисления (x).
1. Заметим, что все слагаемые – двузначные числа. В любой системе счисления их можно представить так:
a * x 1 + b * x 0 = ax + b, где a и b – это цифры соответствующих разрядов числа.
Для трехзначного числа будет так:
a * x 2 + b * x 1 + c * x 0 = ax 2 + bx + c
2. Условие задачи таково:
33x + 22x + 16x + 17x = 100x
Подставим числа в формулы:
3x + 3 + 2x +2 + 1x + 6 + 1x + 7 = 1x 2 + 0x + 0
7x + 18 = x 2
3. Решим квадратное уравнение:
-x2 + 7x + 18 = 0
D = 7 2 – 4 * (-1) * 18 = 49 + 72 = 121. Квадратный корень из D равен 11.
Корни квадратного уравнения:
x = (-7 + 11) / (2 * (-1)) = -2 или x = (-7 – 11) / (2 * (-1)) = 9
4. Отрицательное число не может быть основанием системы счисления. Поэтому x может быть равен только 9.
Ответ. Искомое основание системы счисления равно 9.
Задание 3. В системе счисления с некоторым основанием десятичное число 12 записывается как 110. Найдите это основание.
Сначала распишем число 110 через формулу записи чисел в позиционных системах счисления для нахождения значения в десятичной системе счисления, а затем найдем основание методом перебора.
110 = 1 * x 2 + 1 * x 1 + 0 * x 0 = x 2 + x
Нам надо получить 12. Пробуем 2: 2 2 + 2 = 6. Пробуем 3: 3 2 + 3 = 12.
Значит основание системы счисления равно 3.
Ответ. Искомое основание системы счисления равно 3.
Задание 4. В какой системе счисления десятичное число 173 будет представлено как 445?
Решение.
Обозначим неизвестное основание за Х. Запишем следующее уравнение:
17310 = 4*Х 2 + 4*Х 1 + 5*Х 0
С учетом того, что любое положительное число в нулевой степени равно 1 перепишем уравнение (основание 10 не будем указывать).
173 = 4*Х 2 + 4*Х + 5
Конечно, подобное квадратное уравнение можно решить с помощью дискриминанта, но есть более простое решение. Вычтем из правой и левой части по 4. Получим
169 = 4*Х 2 + 4*Х + 1 или 13 2 = (2*Х+1) 2
Отсюда получаем 2*Х +1 = 13 (отрицательный корень отбрасываем). Или Х = 6.
Ответ: 17310 = 4456
Задачи на нахождение нескольких оснований систем счисления
Есть группа задач, в которых требуется перечислить (в порядке возрастания или убывания) все основания систем счисления, в которых представление данного числа заканчивается на заданную цифру. Эта задача решается довольно просто. Сначала нужно из исходного числа вычесть заданную цифру. Получившееся число и будет первым основанием системы счисления. А все другие основания могут быть только делителями этого числа. (Данное утверждение доказывается на основе правила перевода чисел из одной системы счисления в другую – см. п.4). Помните только, что основание системы счисления не может быть меньше заданной цифры!
Пример
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 24 оканчивается на 3.
Решение
24 – 3 =21 – это первое основание (1321= 13*21 1 +3*21 0 = 24).
21 делится на 3 и на 7. Число 3 не подходит, т.к. в системе счисления с основанием 3 нет цифры 3.
Ответ: 7, 21
Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.
Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.
Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:
Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.
Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.
Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).
Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.
Аналогичное утверждение справедливо для любой системы счисления:
Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.
1. Поиск основания системы счисления
Пример 1.
В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.
Решение:
Обозначим искомое основание x. Тогда .Т.е. x = 9.
Пример 2.
В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.
Решение:
Обозначим искомое основание x. Тогда
Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.
Ответ: 3
Пример 3
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.
Решение:
Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,
Ответ: 6, 8, 12, 24
Пример 4
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.
Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).
Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.
Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.
2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:
68:4 = 17; 17:4 = 4 (ост 1) – подходит
68:17 = 4; 4:17 = 0 (ост 4) – не подходит
68:34 = 2; 2:17 = 0 (ост 2) – не подходит
68:68 = 1; 1:68 = 0 (ост 1) – подходит
2. Поиск чисел по условиям
Пример 5
Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?
Решение:
Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.
. Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:
3. Решение уравнений
Пример 6
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Переведем все числа в десятичную систему счисления:
Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .
Ответ: 20
4. Подсчет количества единиц (нулей) в двоичной записи значения выражения
Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:
При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.
При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.
Пример 7
Сколько единиц содержится в двоичной записи значения выражения: ?
Представим все числа выражения, как степени двойки:
В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:
Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.
Теперь прибавляем к получившемуся числу 1:
Видим, что у результата 2013+1+1=2015 единиц.
[spoiler title=”источники:”]
http://www.sites.google.com/site/evshuval/skolnikam/podgotovka-k-ege/primery-resenia-zadac/sistemy-scislenia
http://ege-study.ru/ru/ege/materialy/informatika/zadacha-16-razbor-razlichnyx-tipov-zadach/
[/spoiler]
3.1.
Основные понятия систем счисления
3.2.
Виды систем счисления
3.3.
Правила перевода чисел из одной системы
счисления в другую
3.4.
Иллюстрированный вспомогательный
материал
3.5.
Тестирование
3.6.
Контрольные вопросы
Разные народы в разные
времена использовали разные системы
счисления. Следы древних систем счета
встречаются и сегодня в культуре многих
народов. К древнему Вавилону восходит
деление часа на 60 минут и угла на 360
градусов. К Древнему Риму – традиция
записывать в римской записи числа I, II,
III и т. д. К англосаксам – счет дюжинами:
в году 12 месяцев, в футе 12 дюймов, сутки
делятся на 2 периода по 12 часов.
По современным данным,
развитые системы нумерации впервые
появились в древнем Египте. Для записи
чисел египтяне применяли иероглифы
один, десять, сто, тысяча и т.д. Все
остальные числа записывались с помощью
этих иероглифов и операции сложения.
Недостатки этой системы – невозможность
записи больших чисел и громоздкость.
В конце концов, самой
популярной системой счисления оказалась
десятичная система. Десятичная система
счисления пришла из Индии, где она
появилась не позднее VI в. н. э. В ней всего
10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию
несет не только цифра, но также и место
позиция, на которой она стоит. В числе
444 три одинаковых цифры обозначают
количество и единиц, и десятков, и сотен.
А вот в числе 400 первая цифра обозначает
число сотен, два 0 сами по себе вклад в
число не дают, а нужны лишь для указания
позиции цифры 4.
3.1. Основные понятия систем счисления
Система счисления
– это совокупность правил и приемов
записи чисел с помощью набора цифровых
знаков. Количество цифр, необходимых
для записи числа в системе, называют
основанием системы
счисления. Основание
системы записывается в справа числа в
нижнем индексе:
;;и
т. д.
Различают два типа систем счисления:
позиционные, когда значение каждой
цифры числа определяется ее позицией
в записи числа;
непозиционные, когда значение цифры
в числе не зависит от ее места в записи
числа.
Примером непозиционной системы счисления
является римская: числа IX, IV, XV и т.д.
Примером позиционной
системы счисления является десятичная
система, используемая повседневно.
Любое целое число в позиционной системе
можно записать в форме многочлена:
где S –
основание системы счисления;
–
цифры числа, записанного в данной системе
счисления;
n – количество разрядов числа.
Пример. Число
запишется
в форме многочлена следующим образом:
3.2. Виды систем счисления
Римская система счисленияявляется
непозиционной системой. В ней для записи
чисел используются буквы латинского
алфавита. При этом буква I всегда означает
единицу, буква – V пять, X – десять, L –
пятьдесят, C – сто, D – пятьсот, M – тысячу
и т.д. Например, число 264 записывается в
виде CCLXIV. При записи чисел в римской
системе счисления значением числа
является алгебраическая сумма цифр, в
него входящих. При этом цифры в записи
числа следуют, как правило, в порядке
убывания их значений, и не разрешается
записывать рядом более трех одинаковых
цифр. В том случае, когда за цифрой с
большим значением следует цифра с
меньшим, ее вклад в значение числа в
целом является отрицательным. Типичные
примеры, иллюстрирующие общие правила
записи чисел в римской система счисления,
приведены в таблице.
Таблица 2.
Запись чисел в римской
системе счисления
1 |
2 |
3 |
4 |
5 |
I |
II |
III |
IV |
V |
6 |
7 |
8 |
9 |
10 |
VI |
VII |
VIII |
IX |
X |
11 |
13 |
18 |
19 |
22 |
XI |
XIII |
XVIII |
XIX |
XXII |
34 |
39 |
40 |
60 |
99 |
XXXIV |
XXXIX |
XL |
LX |
XCIX |
200 |
438 |
649 |
999 |
1207 |
CC |
CDXXXVIII |
DCXLIX |
CMXCIX |
MCCVII |
2045 |
3555 |
3678 |
3900 |
3999 |
MMXLV |
MMMDLV |
MMMDCLXXVIII |
MMMCM |
MMMCMXCIX |
Недостатком римской системы
является отсутствие формальных правил
записи чисел и, соответственно,
арифметических действий с многозначными
числами. По причине неудобства и большой
сложности в настоящее время римская
система счисления используется там,
где это действительно удобно: в литературе
(нумерация глав), в оформлении документов
(серия паспорта, ценных бумаг и др.), в
декоративных целях на циферблате часов
и в ряде других случаев.
Десятичня система счисления– в
настоящее время наиболее известная и
используемая. Изобретение десятичной
системы счисления относится к главным
достижениям человеческой мысли. Без
нее вряд ли могла существовать, а тем
более возникнуть современная техника.
Причина, по которой десятичная система
счисления стала общепринятой, вовсе не
математическая. Люди привыкли считать
в десятичной системе счисления, потому
что у них по 10 пальцев на руках.
Древнее изображение
десятичных цифр (рис. 1) не случайно:
каждая цифра обозначает число по
количеству углов в ней. Например, 0 –
углов нет, 1 – один угол, 2 – два угла и т.д.
Написание десятичных цифр претерпело
существенные изменения. Форма, которой
мы пользуемся, установилась в XVI веке.
Десятичная система впервые
появилась в Индии примерно в VI веке
новой эры. Индийская нумерация использовала
девять числовых символов и нуль для
обозначения пустой позиции. В ранних
индийских рукописях, дошедших до нас,
числа записывались в обратном порядке
– наиболее значимая цифра ставилась
справа. Но вскоре стало правилом
располагать такую цифру с левой стороны.
Особое значение придавалось нулевому
символу, который вводился для позиционной
системы обозначений. Индийская нумерация,
включая нуль, дошла и до нашего времени.
В Европе индусские приёмы десятичной
арифметики получили распространение
в начале ХIII в. благодаря работам
итальянского математика Леонардо
Пизанского (Фибоначчи). Европейцы
заимствовали индийскую систему счисления
у арабов, назвав ее арабской. Это
исторически неправильное название
удерживается и поныне.
Десятичная система использует
десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также
символы “+” и “–” для обозначения
знака числа и запятую или точку для
разделения целой и дробной частей числа.
В вычислительных машинах
используется двоичная
система счисления,
её основание – число 2. Для записи чисел
в этой системе используют только две
цифры – 0 и 1. Вопреки распространенному
заблуждению, двоичная система счисления
была придумана не инженерами-конструкторами
ЭВМ, а математиками и философами задолго
до появления компьютеров, еще в ХVII – ХIХ
веках. Первое опубликованное обсуждение
двоичной системы счисления принадлежит
испанскому священнику Хуану Карамюэлю
Лобковицу (1670 г.). Всеобщее внимание к
этой системе привлекла статья немецкого
математика Готфрида Вильгельма Лейбница,
опубликованная в 1703 г. В ней пояснялись
двоичные операции сложения, вычитания,
умножения и деления. Лейбниц не
рекомендовал использовать эту систему
для практических вычислений, но
подчёркивал её важность для теоретических
исследований. Со временем двоичная
система счисления становится хорошо
известной и получает развитие.
Выбор двоичной системы для применения
в вычислительной технике объясняется
тем, что электронные элементы – триггеры,
из которых состоят микросхемы ЭВМ, могут
находиться только в двух рабочих
состояниях.
С помощью двоичной системы кодирования
можно зафиксировать любые данные и
знания. Это легко понять, если вспомнить
принцип кодирования и передачи информации
с помощью азбуки Морзе. Телеграфист,
используя только два символа этой азбуки
– точки и тире, может передать практически
любой текст.
Двоичная система удобна
для компьютера, но неудобна для человека:
числа получаются длинными и их трудно
записывать и запоминать. Конечно, можно
перевести число в десятичную систему
и записывать в таком виде, а потом, когда
понадобится перевести обратно, но все
эти переводы трудоёмки. Поэтому
применяются системы счисления, родственные
двоичной – восьмеричная
и шестнадцатеричная.
Для записи чисел в этих системах требуется
соответственно 8 и 16 цифр. В 16-теричной
первые 10 цифр общие, а дальше используют
заглавные латинские буквы. Шестнадцатеричная
цифра A соответствует десятеричному
числу 10, шестнадцатеричная B – десятичному
числу 11 и т. д. Использование этих систем
объясняется тем, что переход к записи
числа в любой из этих систем от его
двоичной записи очень прост. Ниже
приведена таблица соответствия чисел,
записанных в разных системах.
Таблица 3. Соответствие чисел, записанных
в различных системах счисления
Десятичная |
Двоичная |
Восьмеричная |
Шестнадцатеричная |
1 |
001 |
1 |
1 |
2 |
010 |
2 |
2 |
3 |
011 |
3 |
3 |
4 |
100 |
4 |
4 |
5 |
101 |
5 |
5 |
6 |
110 |
6 |
6 |
7 |
111 |
7 |
7 |
8 |
1000 |
10 |
8 |
9 |
1001 |
11 |
9 |
10 |
1010 |
12 |
A |
11 |
1011 |
13 |
B |
12 |
1100 |
14 |
C |
13 |
1101 |
15 |
D |
14 |
1110 |
16 |
E |
15 |
1111 |
17 |
F |
16 |
10000 |
20 |
10 |
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #