Как найти количество делителей произведения чисел

Подскажите, как найти количество положительных делителей произведения чисел!!!!Срочно



Ученик

(160),
на голосовании



12 лет назад

Голосование за лучший ответ

Jurijus Zaksas

Искусственный Интеллект

(393147)


12 лет назад

Ну, во-первых, есть языки с поддержкой ОЧЕНЬ больших целых чисел, например Python.
Во-вторых, всем известный тип int64 спокойно хавает числа вплоть до 9223372036854775807.
А в-третьих, абсолютно незачем заниматься всеми вышеперечисленными извращениями. Достаточно найти все делители КАЖДОГО из перечисленных чисел. Что с ними делать – я точно не скажу, тут начинается комбинаторика, а я в ней традиционно не силен. Как по мне, надо найти количество комбинаций этих делителей.
Пример:
Пусть у нас есть 2 числа: 10 и 10. Произведение, ясен пень, 100.
10 делится на 1,2,5 и 10.
Соответственно искомые делители будут:
1*1=1
1*2=2
1*5=5
1*10=10
2*1=2
2*2=4
2*5=10
2*10=20
5*1=5
5*2=10
5*5=25
5*10=50
10*1=10
10*2=20
10*5=50
10*10=100
Таким образом мы выяснили, что 100 делится на 1,2,4,5,10,20,25,50 и 100.
Искать эти делители незачем, наверняка есть в комбинаторике готовая формула для определения их количества.
Но все это может быть бредом, предупреждаю сразу.

Здравствуйте, дорогие читатели! Как посчитать, сколько делителей у какого-нибудь числа? Если это число маленькое, то никаких сложностей не возникает. Например, для числа 10, мы легко можем найти все делители и посчитать их количество простым перебором. А вот как узнать, на какое количество различных чисел делится, например, число 720? Можно, конечно, опять же перебрать все делители, но это будет довольно трудоемко. При чем, 720 – еще и довольно маленькое число.

Сегодня, я Вам расскажу, как находить количество делителей любого натурального числа, зная всего лишь одну простую формулу.

Как легко найти количество натуральных делителей любого числа

На самом деле, наша сегодняшняя формула будет даже проще, чем те, которые изображены на картинке выше)

Вы находитесь на канале Trifler, где я разбираю интересные математические задачи, а также рассуждаю на некоторые околоматематические темы. Если Вы искренне увлечены математикой, но еще не подписаны на этот канал, то самое время это исправить! Подписаться

Чудо-формула

Ну что ж, пора переходить от разговоров к делу.

Мы знаем, что любое натуральное число можно представить в виде произведения простых чисел, которые являются его делителями. Так как один и тот же простой делитель может встречаться несколько раз, то любое натуральное числа можно записать так:

Как легко найти количество натуральных делителей любого числа

Если не совсем понятно, о чем идет речь, то потом посмотрите пример ниже. На самом деле, все очень просто.

Так вот, после того, как мы найдем такое представление числа n, количество его делителей можно будет посчитать по формуле:

Как легко найти количество натуральных делителей любого числа

Посмотрим, как все это считается на примере

Пример

Как легко найти количество натуральных делителей любого числа

Раскладываем это число на простые множители, чтобы получить нужное представление:

Как легко найти количество натуральных делителей любого числа

Теперь, запишем число 720 в каноническом виде:

Как легко найти количество натуральных делителей любого числа

Ну и все, остается только применить чудо-формулу:

Как легко найти количество натуральных делителей любого числа

Вот и все, получили, что у числа 720 имеется 30 различных натуральных делителей. Стоит сделать замечание:

По этой формуле мы считаем количество делителей вместе с единицей и самим числом.

Если Вам понравилась статья, то обязательно ставьте лайки и комментируйте ее. Это поспособствует тому, чтобы ее увидело много людей!

Читайте также ТОП-3 статьи, выпущенные в этом месяце на моем канале:

  1. Quincy: робот, который обучит Ваших детей математике, английскому и рисованию
  2. Почему вторая степень это квадрат, а третья – куб
  3. Необычное тригонометрическое уравнение


Загрузить PDF


Загрузить PDF

Число называется делителем (или множителем) другого числа в том случае, если при делении на него получается целый результат без остатка.[1]
Для малого числа (например, 6) определить количество делителей довольно легко: достаточно выписать все возможные произведения двух целых чисел, которые дают заданное число. При работе с большими числами определить количество делителей становится сложнее. Тем не менее, если вы разложите целое число на простые множители, то легко сможете определить число делителей с помощью простой формулы.

  1. Изображение с названием Determine the Number of Divisors of an Integer Step 1

    1

    Запишите заданное целое число вверху страницы. Вам понадобится достаточно места для того, чтобы расположить ниже числа дерево множителей. Для разложения числа на простые множители можно использовать и другие методы, которые вы найдете в статье Как разложить число на множители.

    • Например, если вы хотите узнать, сколько делителей, или множителей имеет число 24, запишите 24 вверху страницы.
  2. Изображение с названием Determine the Number of Divisors of an Integer Step 2

    2

    Найдите два числа (помимо 1), при перемножении которых получается заданное число. Таким образом вы найдете два делителя, или множителя данного числа. Проведите от данного числа две ветки вниз и запишите на их концах полученные множители.

  3. Изображение с названием Determine the Number of Divisors of an Integer Step 3

    3

    Поищите простые множители. Простым множителем называется такое число, которое делится без остатка лишь на само себя и на 1.[2]
    Например, число 7 является простым множителем, так как оно делится без остатка лишь на 1 и 7. Для удобства обводите найденные простые множители кружком.

    • Например, 2 является простым числом, поэтому обведите  2 кружком.
  4. Изображение с названием Determine the Number of Divisors of an Integer Step 4

    4

    Продолжайте раскладывать составные (не простые) числа на множители. Проводите следующие ветки от составных чисел до тех пор, пока все множители не станут простыми. Не забывайте обводить простые числа кружками.

  5. Изображение с названием Determine the Number of Divisors of an Integer Step 5

    5

    Представьте каждый простой множитель в степенной форме. Для этого подсчитайте, сколько раз встречается каждый простой множитель в нарисованном дереве множителей. Это число и будет степенью, в которую необходимо возвести данный простой множитель.[3]

  6. Изображение с названием Determine the Number of Divisors of an Integer Step 6

    6

    Запишите разложение числа на простые множители. Первоначально заданное число равно произведению простых множителей в соответствующих степенях.

    • В нашем примере 24=2^{{3}}times 3^{{1}}.

    Реклама

  1. Изображение с названием Determine the Number of Divisors of an Integer Step 7

    1

  2. Изображение с названием Determine the Number of Divisors of an Integer Step 8

    2

    Подставьте в формулу величины степеней. Будьте внимательны и используйте степени при простых множителях, а не сами множители.

  3. Изображение с названием Determine the Number of Divisors of an Integer Step 9

    3

    Сложите величины в скобках. Просто прибавьте 1 к каждой степени.

  4. Изображение с названием Determine the Number of Divisors of an Integer Step 10

    4

    Перемножьте полученные величины. В результате вы определите количество делителей, или множителей данного числа n.

    Реклама

Советы

  • Если число представляет собой квадрат целого числа (например, 36 является квадратом числа 6), то оно имеет нечетное количество делителей. Если же число не является квадратом другого целого числа, количество его делителей четно.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 120 854 раза.

Была ли эта статья полезной?

Как найти количество делителей

В самом общем случае, количество возможных делителей произвольного числа бесконечно. Фактически, это все не равные нулю числа. Но если речь идет о натуральных числах, то под делителем числа N подразумевается такое натуральное число, на которое нацело делится число N. Количество таких делителей всегда ограничено, а найти их можно с помощью специальных алгоритмов. Также существуют простые делители числа, которые представляют собой простые числа.

Как найти количество делителей

Вам понадобится

  • – таблица простых чисел;
  • – признаки делимости чисел;
  • – калькулятор.

Инструкция

Чаще всего, нужно разложить число на простые множители. Это числа, которые делят исходное число без остатка, и при этом сами могут делиться без остатка только на само себя и единицу (к таким числам относятся 2, 3, 5, 7, 11, 13, 17 и т.д.). Причем, никакой закономерности в ряду простых чисел не найдено. Возьмите их из специальной таблицы или найдите при помощи алгоритма, который называется «решето Эратосфена».

Начинайте подбирать простые числа, на которые делится данное число. Частное снова делите на простое число и продолжаете этот процесс до тех пор, пока в качестве частного не останется простое число. Затем просто посчитайте количество простых делителей, прибавьте к нему число 1 (которое учитывает последнее частное). Результатом будет количество простых делителей, которые при умножении дадут искомое число.

Например, количество простых делителей числа 364 найдите таким образом:

364/2=182
182/2=91
91/7=13

Получите числа 2, 2, 7, 13, которые являются простыми натуральными делителями числа 364. Их количество равно 3 (если считать повторяющиеся делители за один).

Если же нужно найти общее количество всех возможных натуральных делителей числа, воспользуйтесь его каноническим разложением. Для этого по описанной выше методике разложите число на простые множители. Затем запишите число как произведение таких множителей. Повторяющиеся числа возведите в степени, например, если трижды получали делитель 5, то запишите его как 5³.

Записывайте произведение от наименьших множителей к наибольшим. Такое произведение и называется каноническим разложением числа. Каждый множитель этого разложения имеет степень, представленную натуральным числом (1, 2, 3, 4 и т.д.). Обозначьте показатели степени при множителях а1, а2, а3, и т.д. Тогда общее количество делителей будет равно произведению (a1 + 1)∙(a2 + 1)∙(a3+1)∙…

Например, возьмите то же число 364: его каноническое разложение 364=2²∙7∙13. Получите а1=2, а2=1, а3=1, тогда количество натуральных делителей этого числа будет равно (2+1)∙(1+1)∙(1+1)=3∙2∙2=12.

Источники:

  • Число и сумма натуральных делителей натурального числа

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Найти все делители числа

Онлайн калькулятор поможет найти количество делителей числа, сколько делителей имеет число, выпишет все делители числа. Все простые делители, на которые данное число делится нацело можно получить из разложения числа на простые множители.

Найдем делители следующих чисел:
делители числа 2 = 1, 2;
делители числа 5 = 1, 5 ;
делители числа 12 = 1, 2, 3, 4, 6, 12 ;
делители числа 18 = 1, 2, 3, 6, 9, 18 ;
делители числа 24 = 1, 2, 3, 4, 6, 8, 12, 24 ;
делители числа 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Смотрите также

Добавить комментарий