Популярные ответы
- Когда буквы е, ё, ю, я обозначают два звука?
- Каким членом предложения может быть местоимение?
- Как правильно произносятся слова термин, шинель, темп?
- Как найти точки экстремума функции по графику производной?
- Как правильно: по средам (ударение на «а» или на «е»)?
- Какой официальный сайт Московского энергетического института (МЭИ)?
- На какие вопросы отвечает наречие?
- Где найти примеры сравнительных оборотов и других конструкций со словом «как»?
- Как в физике обозначается скорость движения?
- Где скачать задания по английскому языку олимпиады для школьников «Покори Воробьевы горы!»?
Диагональ в многоугольнике (многограннике) — отрезок, соединяющий любые две несмежные вершины, то есть, вершины, не принадлежащие одной стороне многоугольника (одному ребру многогранника).
У многогранников различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за пределы граней. У многогранников, имеющих треугольные грани есть только пространственные диагонали.
Подсчет диагоналей
Диагоналей нет у треугольника на плоскости и у тетраэдра в пространстве, поскольку все вершины этих фигур попарно связаны сторонами (ребрами).
Количество диагоналей N у многоугольника легко вычислить по формуле:
N = n·(n – 3)/2,
где n — число вершин многоугольника. По этой формуле нетрудно найти, что
- у треугольника — 0 диагоналей
- у прямоугольника — 2 диагонали
- у пятиугольника — 5 диагоналей
- у шестиугольника — 9 диагоналей
- у восьмиугольника — 20 диагоналей
- у 12-угольника — 54 диагонали
- у 24-угольника — 252 диагонали
Количество диагоналей многогранника с числом вершин n легко подсчитать только для случая, когда в каждой вершине многогранника сходится одинаковое число ребер k. Тогда можно пользоваться формулой:
N = n·(n – k – 1)/2,
которая даем сумманое число пространственных и граневых диагоналей. Отсюда можно найти, что
- у тетраэдра (n=4, k=3) — 0 диагоналей
- у октаэдра (n=6, k=4) — 3 диагонали (все пространственные)
- у куба (n=8, k=3) — 16 диагоналей (12 граневых и 4 пространственных)
- у икосаэдра (n=12, k=5) — 36 диагоналей (все пространственные)
- у додекаэдра (n=20, k=3) — 160 диагоналей (25 граневых и 135 пространственных)
Если в разных вершинах многогранника сходится разное число ребер, подсчет заметно усложняется и должен проводится индивидуально для каждого случая.
Фигуры с равными диагоналями
На плоскости существует два правильных многоугольника, у которых все диагонали равны между собой. Это квадрат и правильный пятиугольник. У квадрата две одинаковых диагонали, пересекающихся в центре под прямым углом. У правильного пятиугольника пять одинаковых диагоналей, которые вместе образуют рисунок пятиконечной звезды (пентаграммы).
Единственный правильный многогранник, у которого все диагонали равны между собой — правильный восьмигранник октаэдр. У него три диагонали, которые попарно перпендикулярно пересекаются в центре. Все диагонали октаэдра — пространственные (диагоналей граней у октаэдра нет, т.к. у него треугольные грани).
Помимо октаэдра есть еще один правильный многогранник, у которого все пространственные диагонали равны между собой. Это куб (гексаэдр). У куба четыре одинаковых пространственных диагонали, которые также пересекаются в центре. Угол между дигоналями куба состаляет либо arccos(1/3) ≈ 70,5° (для пары диагоналей, проведенных к смежным вершинам), либо arccos(–1/3) ≈ 109,5° (для пары диагоналей, проведенных к несмежным вершинам).
Ссылки:
- ru.wikipedia.org — Википедия: Диагональ
- dic.academic.ru — иллюстрация разницы между граневой и пространственной диагоналями многогранника
Дополнительно в базе данных Генона:
- Как найти диагональ прямоугольника?
- Сколько вершин, ребер и граней у тетраэдра?
- Сколько вершин, ребер и граней у куба (гексаэдра)?
Загрузить PDF
Загрузить PDF
Нахождение числа диагоналей является важнейшим навыком, который пригодится при решении геометрических задач. Это не так сложно, как кажется – просто нужно запомнить формулу. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника.[1]
Многоугольник – это любая фигура с как минимум тремя сторонами. При помощи несложной формулы можно найти количество диагоналей в любом многоугольнике, например, с 4 сторонами или с 4000 сторон.
-
1
Запомните названия многоугольников. Сначала нужно найти число сторон многоугольника. Это можно сделать по названию любого многоугольника. Вот названия самых распространенных многоугольников:[2]
- Четырехугольник: 4 стороны
- Пятиугольник: 5 сторон
- Шестиугольник: 6 сторон
- Семиугольник: 7 сторон
- Восьмиугольник: 8 сторон
- Девятиугольник: 9 сторон
- Десятиугольник: 10 сторон
- Обратите внимание, что у треугольника диагоналей нет.[3]
-
2
Нарисуйте многоугольник. Чтобы найти число диагоналей в квадрате, нарисуйте его. Самый простой способ найти число диагоналей – это нарисовать правильный многоугольник (в таком многоугольнике все стороны равны) и посчитать количество диагоналей. Запомните: неправильный многоугольник будет иметь такое же количество диагоналей, что и правильный (при одинаковом числе сторон).[4]
- Чтобы нарисовать многоугольник, воспользуйтесь линейкой; нарисуйте замкнутую фигуру со сторонами одинаковой длины.
- Если вы не знаете, как выглядит многоугольник, поищите картинки в интернете. Например, знак «Стоп» – это восьмиугольник.
-
3
Нарисуйте диагонали. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника.[5]
Из одной (любой) вершины многоугольника проведите диагонали к другим (несмежным) вершинам.- В квадрате проведите одну диагональ из нижнего левого угла в правый верхний угол, а вторую – из нижнего правого угла в левый верхний угол.
- Нарисуйте диагонали разных цветов, чтобы быстрее посчитать их.[6]
- Обратите внимание, что применять этот метод к многоугольникам, у которых больше 10 сторон, довольно сложно.
-
4
Посчитайте диагонали. Можно считать диагонали во время того, как вы рисуете их, или после того, как они нарисованы. Отмечайте диагонали, которые уже посчитаны, чтобы не запутаться (особенно когда диагоналей много и они пересекаются).
- У квадрата всего две диагонали – по одной на каждые две вершины.[7]
- У шестиугольника 9 диагоналей: по три диагонали на каждые три вершины.
- У семиугольника 14 диагоналей. Если у многоугольника больше семи сторон, посчитать диагонали довольно сложно, потому что их слишком много.
- У квадрата всего две диагонали – по одной на каждые две вершины.[7]
-
5
Каждую диагональ считайте только один раз. Из каждой вершины выходит несколько диагоналей, но это не значит, что число диагоналей равно произведению числа вершин на число диагоналей, выходящих из каждой вершины. Поэтому аккуратно считайте диагонали.[8]
- Например, у пятиугольника (5 сторон) только 5 диагоналей. Из каждой вершины выходит 2 диагонали; если умножить число вершин на число диагоналей, выходящих из каждой вершины, получите 10. Это неверный ответ, как если бы вы посчитали каждую диагональ дважды.
-
6
Попрактикуйтесь в определении числа диагоналей на некоторых примерах. Нарисуйте разные многоугольники и посчитайте их диагонали. Этот метод применим и к неправильным многоугольникам. В случае вогнутого многоугольника некоторые диагонали лежат вне границ фигуры.[9]
- У шестиугольника 9 диагоналей.
- У семиугольника 14 диагоналей.
Реклама
-
1
Запишите формулу. Формула для вычисления числа диагоналей многоугольника: d = n(n-3)/2, где d – число диагоналей, n – число сторон многоугольника.[10]
Используя распределительное свойство, эту формулу можно записать так: d = (n2 – 3n)/2. Можно пользоваться любой формой представленной формулы.- Эта формула для вычисления числа диагоналей многоугольника.
- Обратите внимание, что эта формула не применима к треугольникам, потому что у треугольников диагоналей нет.[11]
-
2
Определите число сторон многоугольника. Чтобы использовать приведенную формулу, нужно знать число сторон многоугольника. Число сторон можно выяснить по названию многоугольника. Ниже приведены части названий многоугольников.[12]
- Четырех (4), пяти (5), шести (6), семи (7), восьми (8), девяти (9), десяти (10), одиннадцати (11), двенадцати (12), тринадцати (13 ), четырнадцати (14), пятнадцати (15) и так далее.
- Если сторон слишком много, то в название многоугольника включается цифра. Например, если у многоугольника 44 стороны, он называется 44-угольником.
- Если дан рисунок многоугольника, просто посчитайте его стороны.
-
3
Подставьте число сторон в формулу. Сделайте это после того, как найдете число сторон многоугольника. Число сторон подставьте вместо n.[13]
- Например. У двенадцатиугольника 12 сторон.
- Запишите формулу: d = n(n-3)/2
- Подставьте число сторон: d = (12(12 – 3))/2
-
4
Решите уравнение. Для этого не забудьте про определенный порядок выполнения математических операций. Начните с вычитания, затем умножьте, а потом разделите. В итоге вы получите число диагоналей многоугольника.[14]
- Например: (12(12 – 3))/2
- Вычитание: (12*9)/2
- Умножение: (108)/2
- Деление: 54
- У двенадцатиугольника 54 диагонали.
-
5
Попрактикуйтесь на других примерах. Чем больше задач вы решите, тем лучше уясните процесс вычисления. Также вы наверняка запомните формулу для вычисления числа диагоналей, что пригодится на экзамене. Не забывайте, что представленная формула применима к многоугольнику, у которого больше трех сторон.
- Шестиугольник (6 сторон): d = n(n-3)/2 = 6(6-3)/2 = 6*3/2 = 18/2 = 9 диагоналей.
- Десятиугольник (10 сторон): d = n(n-3)/2 = 10(10-3)/2 = 10*7/2 = 70/2 = 35 диагоналей.
- Двадцатиугольник (20 сторон): d = n(n-3)/2 = 20(20-3)/2 = 20*17/2 = 340/2 = 170 диагоналей.
- 96-угольник (96 сторон): 96(96-3)/2 = 96*93/2 = 8928/2 = 4464 диагоналей.
Реклама
Об этой статье
Эту страницу просматривали 175 985 раз.
Была ли эта статья полезной?
Download Article
Download Article
Finding diagonals in a polygon is a necessary skill to develop in math. It may seem difficult at first, but is pretty simple once you learn the basic formula. A diagonal is any line segment drawn between vertices of a polygon that doesn’t include the sides of that polygon.[1]
A polygon is any shape that has more than three sides. Using a very simple formula, you can calculate the number of diagonals in any polygon, whether it has 4 sides or 4,000 sides.
-
1
Know the names of polygons. You may need to first identify how many sides are present in the polygon. Each polygon has a prefix that indicates the number of sides it has. Here are the names of polygons with up to twenty sides:[2]
- Quadrilateral/tetragon: 4 sides
- Pentagon: 5 sides
- Hexagon: 6 sides
- Heptagon: 7 sides
- Octagon: 8 sides
- Nonagon/Enneagon: 9 sides
- Decagon: 10 sides
- Hendecagon: 11 sides
- Dodecagon: 12 sides
- Triskaidecagon/tridecagon: 13 sides
- Tetrakaidecagon/tetradecagon: 14 sides
- Pentadecagon: 15 sides
- Hexadecagon: 16 sides
- Heptadecagon: 17 sides
- Octadecagon: 18 sides
- Enneadecagon: 19 sides
- Icosagon: 20 sides
- Note that a triangle has no diagonals.[3]
-
2
Draw the polygon. If you wanted to know how many diagonals were present in a square, you would start by drawing the square. The easiest way to find diagonals and count them is to draw the polygon symmetrically, each side has the same length. It’s important to note that even if the polygon is not symmetrical, it will still have the same number of diagonals.[4]
- To draw the polygon, use a ruler and draw each side the same length, connecting all of the sides together.
- If you’re unsure what the polygon will look like, search for pictures online. For example, a stop sign is an octagon.
Advertisement
-
3
Draw the diagonals. A diagonal is a line segment drawn from one corner of the shape to another, excluding the sides of the polygon.[5]
Starting at one vertex of the polygon, use a ruler to draw a diagonal to every other available vertex.- For a square, draw one line from the bottom left corner to the top right corner and another line from the bottom right corner to the top left corner.
- Draw diagonals in different colors to make them easier to count.
- Note that this method gets much more difficult with polygons that have more than ten sides.
-
4
Count the diagonals. There are two options for counting: you can count as you draw the diagonals or count them once they have been drawn. As you count each diagonal, draw a small number above the diagonal to denote that it has been counted. It is easy to lose track while counting when there are a lot of diagonals crossing each other.
- For the square, there are two diagonals: one diagonal for every two vertices.
- A hexagon has 9 diagonals: there are three diagonals for every three vertices.
- An octagon has 20 diagonals. Past the heptagon, it gets more difficult to count the diagonals because there are so many of them.
-
5
Beware of counting a diagonal more than once. Each vertex may have multiple diagonals, but that doesn’t mean that the number of diagonals is equal to the number of vertices times the number of diagonals. Take care when counting the diagonals to count each one only once.[6]
- For example, a pentagon (5 sides) has only 5 diagonals. Each vertex has two diagonals, so if you counted each diagonal from every vertex twice, you might think there were 10 diagonals. This is incorrect because you would have counted each diagonal twice!
-
6
Practice with some examples. Draw some other polygons and count the number of diagonals. The polygon does not have to be symmetric for this method to work. In the case of a concave polygon, you may have to draw some of the diagonals outside the actual polygon.[7]
- A hexagon has 9 diagonals.
- A octagon has 20 diagonals.
Advertisement
-
1
Define the formula. The formula to find the number of diagonals of a polygon is n(n-3)/2 where “n” equals the number of sides of the polygon.[8]
Using the distributive property this can be rewritten as (n2 – 3n)/2. You may see it either way, both equations are identical.[9]
- This equation can be used to find the number of diagonals of any polygon.
- Note that the triangle is an exception to this rule. Due to the shape of the triangle, it does not have any diagonals.[10]
-
2
Identify the number of sides in the polygon. To use this formula, you must identify the number of sides that the polygon has. The number of sides is given in the name of the polygon, you just need to know what each name means. Here are some of common prefixes you will see in polygons:[11]
- Tetra (4), penta (5), hexa (6), hepta (7), octa (8), ennea (9), deca (10), hendeca (11), dodeca (12), trideca (13), tetradeca (14), pentadeca (15), etc.
- For very large sided polygons you may simply see it written “n-gon”, where “n” is the number of sides. For example, a 44-sided polygon would be written as 44-gon.
- If you are given a picture of the polygon, you can simply count the number of sides.
-
3
Plug the number of sides into the equation.[12]
Once you know how many sides the polygon has, you just need to plug that number into the equation and solve. Everywhere you see “n” in the equation will be replaced with the number of sides of the polygon.[13]
- For example: A dodecagon has 12 sides.
- Write the equation: n(n-3)/2
- Plug in the variable: (12(12 – 3))/2
-
4
Solve the equation. Finish by solving the equation using the proper order of operations. Start by solving the subtraction, then multiply, then divide. The final answer is the number of diagonals the polygon has.[14]
- For example: (12(12 – 3))/2
- Subtract: (12*9)/2
- Multiply: (108)/2
- Divide: 54
- A dodecagon has 54 diagonals.
-
5
Practice with more examples. The more practice you have with a math concept, the better you will be at using it. Doing lots of examples will also help you memorize the formula in case you need it for a quiz, test, or exam. Remember, this formula works for a polygon of any number of sides greater than 3.[15]
- Hexagon (6 sides): n(n-3)/2 = 6(6-3)/2 = 6*3/2 = 18/2 = 9 diagonals.
- Decagon (10 sides): n(n-3)/2 = 10(10-3)/2 = 10*7/2 = 70/2 = 35 diagonals.
- Icosagon (20 sides): n(n-3)/2 = 20(20-3)/2 = 20*17/2 = 340/2 = 170 diagonals.
- 96-gon (96 sides): 96(96-3)/2 = 96*93/2 = 8928/2 = 4464 diagonals.
Advertisement
Add New Question
-
Question
What is the formula to find the number of diagonals?
Jake Adams
Academic Tutor & Test Prep Specialist
Jake Adams is an academic tutor and the owner of Simplifi EDU, a Santa Monica, California based online tutoring business offering learning resources and online tutors for academic subjects K-College, SAT & ACT prep, and college admissions applications. With over 14 years of professional tutoring experience, Jake is dedicated to providing his clients the very best online tutoring experience and access to a network of excellent undergraduate and graduate-level tutors from top colleges all over the nation. Jake holds a BS in International Business and Marketing from Pepperdine University.
Academic Tutor & Test Prep Specialist
Expert Answer
-
Question
How many diagonals can be drawn from one vertex of nonagon?
You can draw six, one for each of the vertices, except for the vertex you’re drawing from, and the two adjacent vertices.
-
Question
What is the relationship between the number of sides in an icosikaipentagon and the number of diagonals?
It is the same relationship for any polygon, as expressed in the formula n(n-3)/2.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
References
About This Article
Article SummaryX
To find out how many diagonals a polygon has, first count the number of sides, or straight lines, that make up the polygon. Then, subtract 3 from the number of sides. Next, multiply that number by the number of sides. Finally, divide the answer by 2, and you’ll have the number of diagonals within the polygon. For example, if a polygon has 6 sides, you’d find it has 9 diagonals. For an alternate way to determine the number of diagonals in a polygon, read on!
Did this summary help you?
Thanks to all authors for creating a page that has been read 354,941 times.
Reader Success Stories
-
Prasad Chellingi
Dec 1, 2017
“The detailed steps, along with encapsulating the same in simple doable operations, did the job perfectly! Great…” more
Did this article help you?
Нахождение числа диагоналей является важнейшим навыком, который пригодится при решении геометрических задач. Это не так сложно, как кажется – просто нужно запомнить формулу. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника. Многоугольник – это любая фигура с как минимум тремя сторонами. При помощи несложной формулы можно найти количество диагоналей в любом многоугольнике, например, с 4 сторонами или с 4000 сторон.
Рисование диагоналей
-
Запомните названия многоугольников. Сначала нужно найти число сторон многоугольника. Это можно сделать по названию любого многоугольника. Вот названия самых распространенных многоугольников:
- Четырехугольник: 4 стороны
- Пятиугольник: 5 сторон
- Шестиугольник: 6 сторон
- Семиугольник: 7 сторон
- Восьмиугольник: 8 сторон
- Девятиугольник: 9 сторон
- Десятиугольник: 10 сторон
- Обратите внимание, что у треугольника диагоналей нет.
-
Нарисуйте многоугольник. Чтобы найти число диагоналей в квадрате, нарисуйте его. Самый простой способ найти число диагоналей – это нарисовать правильный многоугольник (в таком многоугольнике все стороны равны) и посчитать количество диагоналей. Запомните: неправильный многоугольник будет иметь такое же количество диагоналей, что и правильный (при одинаковом числе сторон).
- Чтобы нарисовать многоугольник, воспользуйтесь линейкой; нарисуйте замкнутую фигуру со сторонами одинаковой длины.
- Если вы не знаете, как выглядит многоугольник, поищите картинки в интернете. Например, знак «Стоп» – это восьмиугольник.
-
Нарисуйте диагонали. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника. Из одной (любой) вершины многоугольника проведите диагонали к другим (несмежным) вершинам.
- В квадрате проведите одну диагональ из нижнего левого угла в правый верхний угол, а вторую – из нижнего правого угла в левый верхний угол.
- Нарисуйте диагонали разных цветов, чтобы быстрее посчитать их.
- Обратите внимание, что применять этот метод к многоугольникам, у которых больше 10 сторон, довольно сложно.
-
Посчитайте диагонали. Можно считать диагонали во время того, как вы рисуете их, или после того, как они нарисованы. Отмечайте диагонали, которые уже посчитаны, чтобы не запутаться (особенно когда диагоналей много и они пересекаются).
- У квадрата всего две диагонали – по одной на каждые две вершины.
- У шестиугольника 9 диагоналей: по три диагонали на каждые три вершины.
- У семиугольника 14 диагоналей. Если у многоугольника больше семи сторон, посчитать диагонали довольно сложно, потому что их слишком много.
-
Каждую диагональ считайте только один раз. Из каждой вершины выходит несколько диагоналей, но это не значит, что число диагоналей равно произведению числа вершин на число диагоналей, выходящих из каждой вершины. Поэтому аккуратно считайте диагонали.
- Например, у пятиугольника (5 сторон) только 5 диагоналей. Из каждой вершины выходит 2 диагонали; если умножить число вершин на число диагоналей, выходящих из каждой вершины, получите 10. Это неверный ответ, как если бы вы посчитали каждую диагональ дважды.
-
Попрактикуйтесь в определении числа диагоналей на некоторых примерах. Нарисуйте разные многоугольники и посчитайте их диагонали. Этот метод применим и к неправильным многоугольникам. В случае вогнутого многоугольника некоторые диагонали лежат вне границ фигуры.
- У шестиугольника 9 диагоналей.
- У семиугольника 14 диагоналей.
Формула
-
Запишите формулу. Формула для вычисления числа диагоналей многоугольника: d = n(n-3)/2, где d – число диагоналей, n – число сторон многоугольника. Используя распределительное свойство, эту формулу можно записать так: d = (n – 3n)/2. Можно пользоваться любой формой представленной формулы.
- Эта формула для вычисления числа диагоналей многоугольника.
- Обратите внимание, что эта формула не применима к треугольникам, потому что у треугольников диагоналей нет.
-
Определите число сторон многоугольника. Чтобы использовать приведенную формулу, нужно знать число сторон многоугольника. Число сторон можно выяснить по названию многоугольника. Ниже приведены части названий многоугольников.
- Четырех (4), пяти (5), шести (6), семи (7), восьми (8), девяти (9), десяти (10), одиннадцати (11), двенадцати (12), тринадцати (13 ), четырнадцати (14), пятнадцати (15) и так далее.
- Если сторон слишком много, то в название многоугольника включается цифра. Например, если у многоугольника 44 стороны, он называется 44-угольником.
- Если дан рисунок многоугольника, просто посчитайте его стороны.
-
Подставьте число сторон в формулу. Сделайте это после того, как найдете число сторон многоугольника. Число сторон подставьте вместо n.
- Например. У двенадцатиугольника 12 сторон.
- Запишите формулу: d = n(n-3)/2
- Подставьте число сторон: d = (12(12 – 3))/2
-
Решите уравнение. Для этого не забудьте про определенный порядок выполнения математических операций. Начните с вычитания, затем умножьте, а потом разделите. В итоге вы получите число диагоналей многоугольника.
- Например: (12(12 – 3))/2
- Вычитание: (12*9)/2
- Умножение: (108)/2
- Деление: 54
- У двенадцатиугольника 54 диагонали.
-
Попрактикуйтесь на других примерах. Чем больше задач вы решите, тем лучше уясните процесс вычисления. Также вы наверняка запомните формулу для вычисления числа диагоналей, что пригодится на экзамене. Не забывайте, что представленная формула применима к многоугольнику, у которого больше трех сторон.
- Шестиугольник (6 сторон): d = n(n-3)/2 = 6(6-3)/2 = 6*3/2 = 18/2 = 9 диагоналей.
- Десятиугольник (10 сторон): d = n(n-3)/2 = 10(10-3)/2 = 10*7/2 = 70/2 = 35 диагоналей.
- Двадцатиугольник (20 сторон): d = n(n-3)/2 = 20(20-3)/2 = 20*17/2 = 340/2 = 170 диагоналей.
- 96-угольник (96 сторон): 96(96-3)/2 = 96*93/2 = 8928/2 = 4464 диагоналей.
Как вывести формулу количества диагоналей выпуклого многоугольника? буду благодарна
Ученик
(191),
закрыт
8 лет назад
Дополнен 8 лет назад
сама формула мне известна)
miros_0571
Знаток
(377)
8 лет назад
Пусть n — число вершин многоугольника, вычислим d — число возможных разных диагоналей. Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Таким образом, из одной вершины можно провести n − 3 диагонали; перемножим это на число вершин
( n-3)* n,
однако, мы посчитали каждую диагональ дважды (по разу для каждого конца) — отсюда,
d =( n-3)* n/2