Как найти количество нечетных чисел в последовательности

Here is another technique i used to follow. Basically to find the number of odd/even integers in a range, just pick up the first odd/even and last odd/even in that range. Say for example i need to find out the number of odd integers in the range 100 to 150 (inclusive).

  1. Pick the first odd integer -> 101
  2. Pick the last odd integer -> 149
  3. Find the difference -> 149-101= 48
  4. Divide by the interval(in this case 2, since the positive difference between any two odd integers is 2). So -> 48/2 = 24
  5. Add 1 for an inclusive range, -> 24+1=25, This is the step we usually do for all inclusive problems.

This will work for 1-100 like, range(1-99)-> 99-1=98 -> 98/2=49 -> 49+1 = 50.

NOTE: For exclusive set, you should consider if the numbers you pick lie inside the interval in order to consider it as an inclusive set. If its confusing, lets say the above range 100 to 150 is not inclusive, we still pick up numbers 101 and 149 and they lie within the range, so the inclusive property continues here also. But what if i need to find the number of even integers in this range?
Same procedure can be used,
1. Pick first and last even integer, 100 and 150
2. 150-100 = 50
3. 50/2 = 25
4. If it is inclusive set, add 1 -> 25+1=26
5. If it is an exclusive set, subtract 1 -> 25-1=24

Don’t be confused, its just a basic understanding of ranges, read it once more. This is actually very easy and reliable method.

This can be used not only for odd/even integers in a range but also for one of the example given above.
How many integers of the form 5k+2 are there from 1 to 200?

Starting from k=0, 5(0)+2 = 2 and the last term will be 197, since we need a (multiple of 5)+2 -> 5(39)+2=195+2
The range would look like 2, 7, 12, … 197
Again our technique,
197-2 = 195
Divide by 5 in this case, since the positive difference is 5
So 195/5=39
Add 1, 39+1=40, Got the answer!!!

0 / 0 / 0

Регистрация: 29.03.2011

Сообщений: 27

1

Определить количество нечетных чисел в последовательности

21.05.2011, 13:54. Показов 1368. Ответов 2


Студворк — интернет-сервис помощи студентам

дана непустая последовательность чисел, заканчивающаяся -1. Определить количество нечетных чисел и количество чисел, равных заданному с клавиатуры числу w



0



Programming

Эксперт

94731 / 64177 / 26122

Регистрация: 12.04.2006

Сообщений: 116,782

21.05.2011, 13:54

Ответы с готовыми решениями:

Найти количество четных чисел в первой последовательности и количество нечетных во второй
Подпрограммы

Даны две последовательности целых чисел: а1, а2,а3…. а8 и б1,б2,б3,……..б8….

Найти количество четных чисел в первой последовательности и количество нечетных во второй
Даны две последовательности целых чисел: a1, a2, …, a10, b1,b2,…, b10. Найти количество четных…

В данной последовательности целых чисел найти количество различных нечетных положительных чисел
помогитееее

В данной последовательности целых чисел найти количество различных нечетных положительных чисел.
5. В данной последовательности целых чисел найти количество различных нечетных положительных чисел.

2

MegaAce

332 / 306 / 155

Регистрация: 14.02.2010

Сообщений: 662

21.05.2011, 14:07

2

Лучший ответ Сообщение было отмечено Памирыч как решение

Решение

Pascal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
var w,a,k1,k2:integer;
 
begin
 readln(w);
 repeat
  readln(a);
  if(a <> (-1)) then
  begin
   if odd(a) then inc(k1);
   if a=w then inc(k2);
  end;
 until a=-1;
 writeln('nechetnih ',k1);
 writeln('chisel pavnih ',w,' - ',k2);
end.



1



lamed

298 / 298 / 150

Регистрация: 07.05.2011

Сообщений: 592

21.05.2011, 14:11

3

Лучший ответ Сообщение было отмечено Памирыч как решение

Решение

Pascal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
{ дана непустая последовательность чисел, заканчивающаяся -1.
Определить количество нечетных чисел и количество чисел,
равных заданному с клавиатуры числу w }
var
  nech, ravn, x, w: integer;
begin
  readln(w);
  nech := 0;
  ravn := 0;
  repeat
    readln(x);
    if (odd(x)) then
      inc(nech);
    if (x=w) then
      inc(ravn);
  until (x=-1);
 
  writeln('Последовательность содержит ', nech, ' нечетных; ', ravn, ' равных ', w, '.');
  readln;
end.



1




Загрузить PDF


Загрузить PDF

Последовательные нечетные числа можно сложить вручную, а можно сделать это гораздо легче и быстрее (особенно, когда чисел очень много). Запомнив простую формулу, вы сможете быстро складывать числа без калькулятора. Также можно найти последовательность нечетных чисел по их сумме.

  1. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 1

    1

    Определите последнее число. Сделайте это перед тем, как приступить к вычислениям. При помощи формулы можно сложить любое количество последовательных нечетных чисел, начиная с 1.[1]

    • Как правило, в задачах указывается последнее число. Например, если требуется найти сумму последовательных нечетных чисел от 1 до 81, то последнее число – это число 81.
  2. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 2

    2

    Прибавьте 1. Теперь к последнему числу прибавьте 1. Получится четное число (это важно для последующих вычислений).

    • В нашем примере последним числом является 81, поэтому: 81 + 1 = 82.
  3. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 3

    3

    Результат суммирования разделите на 2. Полученное четное число разделите на 2. Вы получите нечетное число, которое равно количеству складываемых чисел.

    • Например, 82/2 = 41.
  4. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 4

    4

    Полученный результат возведите в квадрат. То есть умножьте число само на себя. Так вы получите окончательный ответ.

    • Например, 41 х 41 = 1681. Это означает, что сумма всех последовательных нечетных чисел от 1 до 81 равна 1681.

    Реклама

  1. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 5

    1

    Обратите внимание на определенную закономерность. Это ключ к пониманию описанного метода. Сумма любого количества последовательных нечетных чисел (начиная с 1) всегда равна квадрату количества складываемых чисел.

    • Сумма первого нечетного числа равна 1
    • Сумма первых двух нечетных чисел: 1 + 3 = 4 (= 2 х 2).
    • Сумма первых трех нечетных чисел: 1 + 3 + 5 = 9 (= 3 х 3).
    • Сумма первых четырех нечетных чисел: 1 + 3 + 5 + 7 = 16 (= 4 х 4).
  2. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 6

    2

    Обратите внимание на промежуточные результаты. Решая эту задачу, вы нашли не только сумму чисел. Вы также узнали количество складываемых чисел – оно равно 41. Запомните: количество складываемых чисел всегда равно квадратному корню из их суммы.

    • Сумма первого нечетного числа равна 1. Квадратный корень из 1 равен 1 и складывается только одно число.
    • Сумма первых двух нечетных чисел: 1 + 3 = 4. Квадратный корень из 4 равен 2 и складываются два числа.
    • Сумма первых трех нечетных чисел: 1 + 3 + 5 = 9. Квадратный корень из 9 равен 3 и складываются три числа.
    • Сумма первых четырех нечетных чисел: 1 + 3 + 5 + 7 = 16. Квадратный корень из 16 равен 4 и складываются четыре числа.
  3. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 7

    3

    Запишите формулу. Уяснив принцип работы описанного метода, вы можете записать формулу в формате, который применим к любому количеству последовательных нечетных чисел. Формула: S = n х n = n2, где S – сумма, n – количество складываемых нечетных чисел.

    • Например, вместо n в формулу подставьте 41: 41 х 41 = 1681, то есть сумма 41 последовательного нечетного числа равна 1681.
    • Если количество складываемых нечетных чисел не известно, формула имеет такой вид: S = (1/2(n + 1))2.

    Реклама

  1. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 8

    1

    Уясните разницу между двумя типами задач. Если дан ряд последовательных нечетных чисел и нужно найти их сумму, воспользуйтесь формулой S = (1/2(n + 1))2. Если дана сумма и нужно найти ряд последовательных нечетных чисел, сумма которых равна данному значению, воспользуйтесь другим методом вычисления.

  2. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 9

    2

    Предположим, что n – это первое число. Чтобы найти ряд последовательных нечетных чисел, сумма которых равна данному значению, нужно записать уравнение. Предположим, что n – это первое число ряда последовательных нечетных чисел.[2]

  3. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 10

    3

    На основании n найдите другие числа ряда последовательных нечетных чисел. Так как все числа ряда являются последовательными нечетными числами, то разность между любыми двумя смежными числами равна 2.

    • Это означает, что второе число ряда равно n + 2, третье число равно n + 4 и так далее.
  4. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 11

    4

    Запишите уравнение. Теперь вы знаете, как определить любое число ряда, поэтому можете записать уравнение. На левой стороне уравнения запишите последовательные числа, а на правой – их сумму.

    • Например, нужно найти ряд двух последовательных нечетных чисел, сумма которых равна 128. В этом случае напишите: n + n + 2 = 128.
  5. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 12

    5

    Упростите уравнение. Если на левой стороне уравнения есть несколько n, сложите их, чтобы упростить процесс вычисления.

    • Например, n + n + 2 = 128 упрощается до 2n + 2 = 128.
  6. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 13

    6

    Обособьте n на одной стороне уравнения. Помните, что любые математические операции осуществляются на обеих сторонах уравнения.

    • Сначала выполните операции сложения и вычитания. В нашем примере из обеих сторон уравнения вычтите 2 и получите 2n = 126.
    • Теперь перейдите к умножению и делению. В нашем примере обе стороны уравнения разделите на 2, чтобы обособить n: n = 63.
  7. Изображение с названием Add a Sequence of Consecutive Odd Numbers Step 14

    7

    Запишите ответ. Вы определили, что n = 63, но это не конец вычислений, так как в задаче требуется найти ряд чисел, сумма которых равна данному значению. Поэтому нужно записать ряд последовательных нечетных чисел.

    • В нашем примере ответом будут числа 63 и 65, потому что n = 63 и n + 2 = 65.
    • Всегда проверяйте ответ, подставив его в уравнение. Если сумма найденных чисел не равна данному значению, перерешайте задачу.

    Реклама

Об этой статье

Эту страницу просматривали 70 109 раз.

Была ли эта статья полезной?

Как найти последовательные нечетные числа? Спасибо

Аня Багаутдинова



Ученик

(180),
на голосовании



6 лет назад

Голосование за лучший ответ

Сергей

Искусственный Интеллект

(286841)


6 лет назад

Через одно брать.

Михаил Лебедев

Мудрец

(11387)


6 лет назад

Нечетное число (2n+1) где п- любое дуйствительной число:
1,3,5,7,9,…

Людмила Фунтова

Мыслитель

(8809)


6 лет назад

(2n+1) где п- любое целое число

Похожие вопросы

Здравствуйте, дорогие друзья. Сегодня мы рассмотрим задачу, когда необходимо вывести все чётные и нечётные числа в заданной последовательности. Внимательно смотрим на скриншот:

Исходный код
Исходный код

Для определения чётности и нечётности мы долны использовать for, т.е. цикл с параметром. Теперь запускаем нашу программу и смотрим на результат. Не забудьте предварительно сохранить наш исходный код и нажать клавишу F5.

Результат работы программы
Результат работы программы

Мы ввели число 10 и видим, что выводятся абсолютно все числа от 1 до 10 и каждое определяется чётное оно или нет.
Вот такую вот быструю и полезную программу мы сегодня с вами написали. На этом у меня на сегодня всё. Также предлагаю подписаться на наш Ютуб-канал
ПиМ [ZveKa], там много интересных видео, всё увидите сами. До новых встреч на просторах Яндекс Дзена.
Также предлагаю посмотреть другие мои статьи по Python:

Как правильно установить язык программирования Python на персональный компьютер

Синтаксис языка программирования Python

Программируем на Python: перевод мер длины друг в друга

Программируем на Python: таблица умножения

Программируем на Python: расчёт коммунальных услуг

Добавить комментарий