Как найти количество приточного воздуха

В этой статье поговорим о методиках и правилах расчета вентиляции в помещениях. Вентсистемы – сложные инженерные сети. Качественный воздухообмен – результат точных математических расчетов, где нет места ошибкам. Чем опасны нарушения при проектировании? Недостаточной или избыточной циркуляцией воздуха. В первом случае это вызывает застой и духоту в помещении. Во втором – сквозняки, потерю тепла и, как следствие, простуду. Для промышленных и коммерческих объектов последствия гораздо серьезнее: от штрафов надзорных органов до остановки производства.

Как рассчитать систему вентиляции помещения - формула.

  1. Как рассчитать коэффициент вентиляции
  2. Как рассчитать приточно-вытяжную вентиляцию
  3. Как рассчитать вытяжную вентиляцию на производстве
  4. Как рассчитать вентиляцию в доме
  5. Как рассчитать естественную вентиляцию в помещении
  6. Как рассчитать вентиляцию в квартире
  7. Как рассчитать объем воздуха для вентиляции
  8. Как рассчитать принудительную вентиляцию
  9. Как рассчитать воздуховоды для вентиляции
  10. Как рассчитать сечение вентиляции
  11. Как рассчитать диаметр вентиляции
  12. Расчет по санитарно-гигиеническим нормам
  13. Расчет системы вентиляции по кратностям
  14. Мощность калорифера
  15. Пример расчета вентиляции
  16. Вывод

Как рассчитать коэффициент вентиляции

В помещениях, где люди являются основным источником изменения состояния воздуха, минимальный коэффициент вентиляции можно рассчитать по следующей формуле: VN = n • Vj, где:

  • VN – расход приточного воздуха в м³/ч;
  • n – количество людей в комнате;
  • Vj – минимальный приток на одного человека в час, м³/ч.

Минимальный объем приточного воздуха указан в СНиП 13330.2012, 41-01-2003, 2.08.01-89 и зависит от характеристик помещения:

  • вентилируемая комната – 30 м³/ч;
  • комната с кондиционером или вентиляцией с не открывающимися окнами – 60 м³/ч.

Организация воздухообмена в помещении сводится к правильному распределению приточно-вытяжных элементов по отношению к зоне пребывания людей и источникам загрязнения. Проектирование приточных каналов имеет решающее влияние на распределение и организацию воздухообмена, поскольку их диапазон намного больше, чем у вытяжных элементов.

Как рассчитать приточно-вытяжную вентиляцию

Для того, чтобы система вентиляции работала эффективно, необходимо обеспечить достаточное количество приточного воздуха, адаптированное к типу помещения и количеству людей в нем. Слишком малый приток не обеспечит адекватного воздухообмена, а слишком высокий приведет к завышению размеров установки и дополнительным расходам. Как рассчитать приточно-вытяжную вентиляцию для помещения? Ниже приведены основные способы. Методы расчета норм воздухообмена:

  1. По площади: S×3 м³/ч, где S – размер комнаты, для которой производится расчет вентсистемы, 3 м³/ч – постоянная величина, указанная в нормативных документах в качестве рекомендованной.
  2. По санитарным нормативам: 60 м³/ч×A + 20 м³/ч×B, где A – количество постоянно проживающих, B – количественно временно присутствующих.
  3. По кратностям: L=N×V, где N – коэффициент из таблицы СНиП, а V – объем комнаты.

Схема приточно-вытяжной вентиляции.

Методика расчета вентиляции строго регламентирована. Исходные данные прописаны в СНиП, ГОСТ и СП. Ранее мы рассказывали о том, что такое приточно-вытяжная вентиляция.

Как рассчитать вытяжную вентиляцию на производстве

Хорошая промышленная вентустановка эффективно отводит загрязненный воздух из места выброса, максимально ограничивая его распространение в зале и одновременно обеспечивает подачу очищенного и обработанного воздуха для нужд сотрудников. Следует продумать и спланировать работу локальной вытяжки, общеобменной и приточной вентиляционных установок. Расчет необходимого воздушного потока удаляемого и подаваемого воздуха является началом работ над проектом вентиляции производственных цехов. Ключевым вопросом является правильное расположение воздухозаборников и выводов в помещении и выбор оборудования (вентиляторы, приточно-вытяжные установки, вентиляционные устройства, трубы, пылеуловители, фильтры).

Схема вытяжной вентиляции на производстве.

Проектирование вентиляции должно отвечать требованиям, изложенным в соответствующих правилах и стандартах. Необходимо точное знание технологических процессов распределения источников загрязнения, их типа, количества и способа распространения. Каждый проект производственных цехов уникален и требует отдельного анализа. Сотрудники инженерной компании QWENT профессионально установят промышленную вентиляцию на производстве.

Как рассчитать вентиляцию в доме

Производительность вентиляционной сети в частном дома рассчитывается двумя способами.

  1. Первый – по объему комнаты и кратностям циркуляции.
  2. Второй – по количеству людей, постоянно находящихся в здании, и норме расхода воздуха на одного человека.

Для жилых помещений нормой является однократный воздухообмен. Чтобы рассчитать его по первому способу, необходимо объем комнаты умножить на кратность замены воздушных масс. Норма расхода воздуха для человека, который постоянно находится в помещении, составляет 60 м3/ч, а если человек в нём пребывает временно – 20 м³/ч. Эти данные понадобятся для второго способа. Количество людей в комнате необходимо умножить на норму расхода воздуха. Кратность воздухообмена – число, которое показывает, сколько раз за час происходит полная смена воздуха на свежий в помещении. Кратность регламентируется нормами, зависит от помещения. Ее определяют по таблицам.

Готовая система вентиляция в частном доме от инженерной компании QWENT.

Для частного дома можно брать усредненное значение между результатами, рассчитанными по этим двум способам.

Как рассчитать естественную вентиляцию в помещении

Естественная приточно-вытяжная вентиляция работает без механического побуждения. Сменяемость воздуха обеспечивается гравитацией – разницей температур входящего и отработанного воздуха. Для штатной работы необходимо рассчитать высоту вертикальной вытяжной шахты. Вычисления проводятся методом подбора, потому что вертикальные шахты в большинстве случаев обладают стандартным размером и высотой. Высоту шахты подставляют в расчет естественной вентиляции, осуществляемый по формуле: p=h(pH-pB), где p – гравитационное давление в канале, h – высота воздуховода, pH – плотность поступающих воздушных масс, pB – плотностью отработанного воздуха.

Гравитационная вентиляция предполагает проектирование мест подачи воздуха в помещения здания и мест удаления отработанного воздуха. В данном случае воздух попадает в помещение через оконные и подоконные проемы, негерметичные соединения и в результате периодического открывания окон и дверей. Недостатком естественной вентиляции является зависимость от температуры наружного воздуха. Эффективность обмена снижается с увеличением температуры наружного воздуха. Чем выше температура наружного воздуха, тем меньше перепад давления, вызывающий воздушный поток, поэтому при постоянном сопротивлении потоку воздухообмен ухудшается. Однако зимой холодный воздух бесконтрольно поступает в помещения, что требует дополнительной терморегуляции.

Как рассчитать вентиляцию в квартире

  1. Детская, спальня, гостиная — воздухообмен 1 раз в час.
  2. Кухня с электрической плитой — 60 м³/ч.
  3. Кухня с газовой плитой — воздухообмен 1 раз в час + 100 м³/ч при работающей плите.
  4. Санузел — 25 м³/ч.
  5. Библиотека, зона отдыха — 0,5 раза в час.
  6. Гардероб, прихожая, подсобка — 0,2 раза в час.

Готовая система вентиляция в квартире от инженерной компании QWENT - схема.

Расчет вентиляции в жилом помещении выполняется на основе СНиП 13330.2012, 41-01-2003, 2.08.01-89. Чаще всего применяют 2 методики: по объему расхода воздуха в час или часовой кратности. Нормы зависят от типа помещений, которые указаны выше.

Как рассчитать объем воздуха для вентиляции

  1. Подачу свежего воздуха в объеме 30 м³/ч на 1 человека.
  2. Приток воздушных масс в количестве 3 м³/ч на 1 м² площади.

Параметры воздухообмена основаны на пребывании людей в помещении. Если человек находится в комнате свыше 2 часов и занимает меньше 20 м² от общей площади, необходимо обеспечить показатели, которые указаны выше. Если помещение не проветривается (нет окон или форточек), важно обеспечить 60 м³/ч свежего воздуха на 1 человека.

Как рассчитать принудительную вентиляцию

Принудительная вентиляция работает по механическому принципу. За движение и циркуляцию воздуха отвечают электрические вентиляторы. Различают 3 вида механической вентиляции. Приточная подает воздух в помещение, вытяжная – выводит. Приточно-вытяжная работает на подачу и отток одновременно. Может оснащаться рекуператором — теплообменником, поглощающим тепло отработанного воздуха и согревающим приточный. При составлении расчетов и проектировании учитывается:

  • объем притока и оттока;
  • габариты шахт;
  • параметры воздуховодов;
  • мощность электровентиляторов;
  • теплопотери в период отопления;
  • характеристики теплообменника;
  • ресурс систем фильтрации;
  • параметры канальных нагревателей и охладителей;
  • потребляемая электроэнергию;
  • толщина шумоизоляции.

Самостоятельно произвести расчеты механической вентиляции сложно. Лучше доверить это инженеру.

Как рассчитать воздуховоды для вентиляции

Для расчета площади сечения воздуховодов нужно знать объем воздуха, поступающего в помещение в единицу времени, и скорость движения воздушных масс в вентканале. После расчета объема, рассчитываются параметры вытяжных каналов. Чтобы узнать площадь сечения, применяют формулу: F = L/3600 х Vс, где L – удельный расход вытяжной вентиляции, м³/ч; Vс – скорость движения воздуха в магистрали, м/с. Ранее мы подробно рассказывали о воздуховодах для вентиляции.

Внешний вид оцинкованных воздуховодов для вентиляции.

Как рассчитать сечение вентиляции

Венсистемы бывают канальными и бесканальными. В первом случае при расчетах вентиляции для жилых и промышленных помещений определяют сечение решеток воздуховода. Принято правило, что длина и ширина вентиляционного канала должны соотноситься как 3:1, при этом скорость по главному воздуховоду составляет 5 м/с, а на ответвлениях – 3 м/с.

Как рассчитать диаметр вентиляции

Для определения этого показателя используют диаграммы, указанные в технических документах. В них приведена шкала объема вентиляции и скорость потока в м/с. Чтобы узнать диаметр воздуховода, в таблице нужно найти пересечение нужного объема приточного воздуха и значение 5 м/с по шкале скорости.

Как рассчитать стоимость вентиляции

Общая стоимость вентсистемы складывается из нескольких элементов. Наиболее важными из них являются:

  • стоимость проекта;
  • затраты на оборудование и монтаж;
  • эксплуатационные расходы (потребление энергии панелью управления, замена фильтра, обслуживание).

Цена оборудования зависит от качества исполнения, мощности, технических параметров, дополнительных функций (например, охлаждение или увлажнение воздуха в доме), удобного управления (степень автоматизации). Сложность монтажа также увеличивает стоимость. На нашем сайте присутствует максимально подробный прайс лист на проектирование системы вентиляции с ценами за м².

Расчет по санитарно-гигиеническим нормам

Воздухообмен в помещении регулируется СНиП, согласно которому система вентиляции должна обеспечивать:

  1. Подачу наружного воздуха в жилые комнаты, такие как гостиная, спальни, офисы, детские комнаты и кухня с внешним окном.
  2. Удаление отработанного воздуха из кухни, ванной, туалета, коридора, помещений без окон. К ним относятся: гардеробная, кладовая, подсобка.

Расчет количества вентилируемого воздуха основан на проведенном балансе тепла, влаги и выбросов загрязняющих веществ, то есть факторов, вызывающих изменение параметров воздуха в помещении. Расчет количества приточного воздуха можно производить на основании:

  • тепловая нагрузка помещения (приток тепла);
  • прирост пара;
  • количество газообразных загрязняющих веществ, выбрасываемых в помещение;
  • число людей.

Выбор способа подачи воздуха в помещение требует тщательного анализа с точки зрения обеспечения соответствующего комфорта для находящихся в нем пользователей. Определение охлаждающей способности воздушного потока и сравнение ее с допустимыми значениями является необходимым условием для правильного распределения воздуха. Способ подачи воздуха в помещение определяет допустимую температуру притока, от которой зависит величина воздушного потока, размеры воздуховодов и других вентиляционных устройств.

Расчет системы вентиляции по кратностям

Нормы по кратности предлагают учитывать тип помещения. Кратность показывает, сколько раз должен смениться весь воздух в помещении за час. При определении кратности воздухообмена для каждого конкретного помещения проектировщики учитывают нормативные показатели, зафиксированные в санитарно-гигиенических нормах, ГОСТах и строительные правила, например СНиП 2.08.01-89.

Рассчитать количество воздуха можно по формуле: L=N*V, где N – кратность воздухообмена за час, взятая из таблицы; V – объём помещения, куб. м.

Мощность калорифера

Калорифер или канальный нагреватель – универсальный прибор для подогрева приточного воздуха, устанавливается в вентканалах. Мощность нагревателя (Q) рассчитывается по формуле: Q = V • ρ • c p • ΔT [кВт], где V = объемный расход воздуха [м³/с], ρ – плотность воздуха [1,2 кг/м³], c p – удельная теплоемкость воздуха [1,005 кДж/(кг • К); ΔT – разница температур воздуха до и после нагревателя [° C]. Производители калориферов также предоставляют номограммы, по которым оборудование можно выбрать гораздо быстрее. Достаточно знать объем помещения, разницу между температурой приточного воздуха и температуру нагрева. Ранее мы рассказывали о том, что такое калорифер в вентиляции.

Внешний вид калорифера для вентиляции.

Пример расчета вентиляции

  • рецепция: 2*60 = 120 м³/ч;
  • рабочий кабинет №1: 4*60+2*20 = 280 м³/ч;
  • №2: 6*60+2*20 = 400 м³/ч;
  • №3: 8*60+2*20 = 520 м³/ч.

Выше приведен пример расчёта объем притока. Для наглядности произведем расчет параметров вентсети классического офиса средних размеров. Вводные данные: рецепция (два рабочих места), 3 кабинета (4, 6 и 8 рабочих мест + два места для посетителей в каждом). Каждое рабочее место сотрудника требует 60 м³ свежего воздуха в час. Дополнительное — 20 м³/ч. Общий расход приточного воздуха составит 120+280+400+520 = 1320 м³/ч.

Вывод

Правильный расчет вентиляции помещения и коэффициента – основа ее штатного функционирования и залог благоприятного микроклимата в помещении. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования на этапе строительства, но и реконструировать сеть, если обстоятельства изменятся. Ошибки проектирования стоят слишком дорого. Доверяйте расчеты проверенным и надежным подрядчикам!

Содержание 

1. Способы расчета воздухообмена

1.1. По кратностям воздухообмена в зависимости от специфики помещений;

1.2. По площади помещений;

1.3. По количеству пребывающих в помещениях людей.

2. Подбор воздуховода

3. Общие требования к системам вентиляции.

Для того чтобы выбрать необходимую нам систему вентиляции, нужно знать, сколько же воздуха надо подавать или удалять с того или иного помещения, т.е. необходимо узнать воздухообмен в помещении или в группе помещений.

Это позволит выбрать тип и модель вентилятора и произвести расчет воздуховодов.

Нормы воздухообмена различного типа помещений определяется согласно нормам проектирования соответствующих зданий и сооружений (СНиП 31–01-2003, СНиП 2.08.02-89, СНиП 2.09.04-87, СНиП 2.04.05-91, МГСН 3.01-01 “Жилые здания” и др.). 

В нормативных документах четко определено, какие должны быть системы вентиляции в тех или иных помещениях, какое оборудование должно в них использоваться и где оно должно располагаться. А также какое количество воздуха, с какими параметрами и по какому принципу должно подаваться и удаляться из них.

Существует несколько способов расчета воздухообмена:

  • по кратностям воздухообмена в зависимости от специфики помещений;
  • по площади помещений;
  • по количеству пребывающих в помещениях людей.

1.1. Расчет по кратностям

Представляет из себя наиболее сложный вариант.  При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них. При этом учитывается температура воздуха в каждом конкретном помещении. 

Кратность воздухообмена – это величина, значения которой показывают, какое количество раз в течение одного часа в помещении осуществляется полная замена воздуха. Кратность сильно зависит от объема конкретного помещения.

 Расчетные параметры воздуха и кратность воздухообмена в помещениях следует принимать в соответствии с таблицей 1.

Таблица 1. Расчетные параметры воздуха и кратность воздухообмена в помещениях жилых зданий 

№№ п/п

Помещения

Расчетная температура воздуха в холодный период года, °С

Кратность воздухообмена или количество удаляемого воздуха из помещения

приток

вытяжка

1

2

3

4

5

1

Общая комната (гостиная), спальня, жилая комната общежития 1 )

20 (22) 2)

не менее 30 м 3 /ч на человека

2

Кухня квартиры и общежития

с электроплитами

16(18) 2)

Не менее 60 м 3 /ч

с газовыми плитами

16(18) 2)

Не менее 60 м 3 /ч при 2-конфорочных плитах; не менее 75 м 3 /ч при 3-конфорочных плитах, не менее 90 м 3 /ч при 4-конфорочных плитах

3

Кухня-ниша

16(18) 2)

Механическая приточно-вытяжная по расчету

4

Ванная комната

25

25 м 3 /ч

5

Уборная

18

25 м 3 

6

Совмещенный санузел

25

50 м 3 /ч

7

Совмещенный санузел с индивидуальным подогревом

18

50 м 3 /ч

8

Душевая

25

5-кратн.

9

Гардеробная комната для чистки и глажения одежды

18

1,5-кратн.

10

Вестибюль, общий коридор, передняя, лестничная клетка в квартирном доме

16

11

Вестибюль, общий коридор, передняя, лестничная клетка в общежитии

16

12

Постирочная

15

по расчету, но не менее 4-кратн.

7-кратн.

13

Гладильная, сушильная в общежитии

15

по расчету, но не менее 2-кратн.

3-кратн.

14

Кладовые в квартирах (одноквартирных домах), хозяйственные и бельевые в общежитиях

12

1,5-кратн

15

Машинное помещение лифтов 3 )

5

по расчету, но не менее 0,5-кратн.

16

Мусоросборная камера

5

1-кратн (через ствол мусоропровода)

17

Сауна 5 )

16 4 )

по расчету

18

Тренажерный зал 5 )

16

80 м 3 /ч на человека

19

Биллиардная 5 )

18

0,5-кратн.

20

Библиотека, кабинет 5 )

20

0,5-кратн.

21

Гараж – стоянка 5 )

5

по расчету

22

Бассейн 5 )

25

Механическая приточно-вытяжная по расчету

Примечания. 1. В одной из спален следует предусматривать расчетную температуру воздуха 22°С.

2. Значение в скобках относится к квартирам для престарелых и семей с инвалидами (в составе специализированных жилых домов и групп квартир) в соответствии с заданием на проектирование.

3. Температура воздуха в машинном помещении лифтов в теплый период года не должна превышать 40°С.

4. Температура для расчета дежурного отопления.

5. Расчетные параметры воздуха и кратность воздухообмена указанны для квартир и одноквартирных домов жилища I категории.

6. В угловых помещениях квартир, одноквартирных домов и общежитии расчетную температуру воздуха следует принимать на 2°С выше указанной в таблице (но не выше 22°С).

7. В помещениях общественного назначения общежитий и специализированных квартирных жилых домов для престарелых и семей с инвалидами расчетные параметры воздуха и кратность воздухообмена следует принимать по соответствующим нормативным документам или техническому заданию в зависимости от назначения этих помещений

Таблица 2. Кратность воздухообмена в помещениях  согласно СНиП 31-01-2003

Помещение Кратность или величина воздухообмена, м3 в час, не менее
в нерабочем режиме в режиме обслуживания
Спальная, общая, детская комнаты 0,2 1,0
Библиотека, кабинет 0,2 0,5
Кладовая, бельевая, гардеробная 0,2 0,2
Тренажерный зал, бильярдная 0,2 80 м3
Постирочная, гладильная, сушильная 0,5 90 м3
Кухня с электроплитой 0,5 60 м3
Помещение с газоиспользующим оборудованием 1,0 1,0 + 100 мна плиту
Помещение с теплогенераторами и печами на твердом топливе 0,5 1,0 + 100 мна плиту
Ванная, душевая, уборная, совмещенный санузел 0,5 25 м3
Сауна 0,5 10 мна 1 человека
Машинное отделение лифта По расчету
Автостоянка 1,0 По расчету
Мусоросборная камера 1,0 1,0
 

Для общих комнат и спален кратность составляет единицу на приток.

В гардеробной – полуторакратный, а в помещении для стиральной машины – полукратный на вытяжку.

Однократный воздухообмен – это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве, равном одному объему помещения.

Если в таблице не указана какая-либо комната, рассчитайте для нее норму вентиляции жилых помещений по данным 3 куба воздуха в час на 1 кв.

Для жилых комнат, не имеющих естественной вентиляции (например, не открываются окна), на каждого человека «положен» минимальный расход воздушной массы, равный 60 м3/час.

Это касается прежде всего тех помещений, где человек обычно находится в активном, бодрствующем состоянии.

В то же время в спальнях, оборудованных системой естественного проветривания, допускается меньший расход воздуха — от 30 м3/час на каждого человека.

Приточный воздух из жилых помещений должен беспрепятственно перемещаться в подсобные: кухню, туалет, ванную комнату

Формула для расчета вентиляции:

L = n · V,

где L – расход воздуха, м3/ч;
n – нормируемая кратность воздухообмена, ч–1;
V – объем помещения, м3.

Для расчета воздухообмена группы помещений их можно рассматривать как единый воздушный объем, который должен отвечать условию: 

ΣLпр = ΣLвыт, т. е. количество подаваемого воздуха должно быть равно количеству удаляемого.

Последовательность расчета вентиляции по кратностям следующая:

1. Считаем объем каждого помещения в доме.

2. Подсчитываем для каждого помещения кратность по формуле: L=n*V.

Для этого предварительно выбираем из таблицы 1 норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.

Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому.

В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры.

Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3.

Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.

3. Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт

4. Составляем уравнение баланса ∑ Lпр = ∑ Lвыт.

Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.

Рассмотрим расчеты на примере.

Дом площадью 146м2.

Чтобы провести расчет для вентиляционной системы по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.

Например, в доме имеются следующие помещения:

  • кухня площадью 20 м2;
  • спальня – 24 м2;
  • рабочий кабинет – 18 м2;
  • гостиная – 42 м2;
  • прихожая – 10 м2;
  • туалет – 2 м2;
  • ванная – 4 м2.

Высота потолков равна 3,5 м

Узнаем объем каждой комнаты: 

Умножаем высоту на площадь комнаты, получаем объем, измеряемый в кубометрах (метрах кубических, м3).   Можно узнайть объем каждой комнаты умножив длину, высоту и ширину стен.

  • кухня – 70 м3;
  • спальня – 84 м3;
  • рабочий кабинет – 63 м3;
  • гостиная – 147 м3;
  • прихожая – 35 м3;
  • туалет – 7 м3;
  • ванная – 14 м3.

Используя таблицу “Расчетные параметры воздуха и кратность воздухообмена в помещениях жилых зданийнужно”  произведем  расчёт необходимый объем воздуха помещений по формуле

L=n*V, где n – нормируемая кратность воздухообмена, час–1; V – объем помещения, м3, увеличив каждый показатель до значения, кратного пяти. 

Если в таблице стоит прочерк, значит комната не нуждается в вентилировании. Для большинства комнат можно делать только приток или вытяжку. 

Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому.

  • кухня – 70 м3  – не менее 90 м3;
  • спальня – 84 м3 х1 = 85 м3;
  • рабочий кабинет – 63 м3 х 1= 65 м3 ;
  • гостиная – 130 м3;  Гостиная не указана в таблице, рассчитаем для нее норму вентиляции жилых помещений по данным 3 куба воздуха в час на 1 кв. м, то есть по формуле: L=S*3, где S является площадью комнаты.
  • прихожая –  в таблице стоит прочерк, значит комната не нуждается в вентилировании;
  • туалет – 7 м3 – не менее 50 м3;
  • ванная – 14 м3 – не менее 25 м3.

Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.

Для удобства записываем данные в таблицу:

Помещение Lпр, м3/час Lвыт, м3/час
Кухня  ≥90
Спальня 85
Рабочий кабинет 65
Гостиная 130
Прихожая
Туалет ≥50
Ванная ≥25
∑ L ∑ Lпр = 280 ∑ Lвыт = ≥ 165

Теперь следует сравнить полученные суммы. 

Очевидно, что необходимый приток превышает вытяжку на 115 м3/ч. 

∑ Lпр = ∑ Lвыт:280<165 м3/час,

В итоге у вас должно сойтись уравнение объема притока и объема вытяжки. Если этого не произошло, число воздухообмена в этих помещениях можно увеличить до необходимого показателя. 

Рекомендуется осуществлять распределение равномерно, по всем помещениям. Можно прибавить значения вытяжки для тех комнат, где требуется более сильная вентиляция или там, где значения были минимально допустимые – в санузле и кухне. 

Важно распределить движение потоков воздуха таким образом, чтобы в доме не оставалась влага, не застаивались различные запахи.

В данном случае увеличиим показатель по кухне на 115 м3/час. 

После правок результаты расчета будут выглядеть следующим образом:

Помещение Lпр, м3/час Lвыт, м3/час
Кухня 205
Спальня 85
Рабочий кабинет 65
Гостиная 130
Прихожая
Туалет ≥50
Ванная ≥25
∑ L ∑ Lпр = 280 ∑ Lвыт =280

Теперь уравнение воздушных балансов ∑ Lпр = ∑ Lвыт выполняется.  

Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.

Расчет по площади помещения

Наиболее простой метод расчета. Он производится на основании норм, которые регламентируют подачу свежего воздуха для жилых помещений в размере 3 м3/час на 1 м2 площади пространства.
Т.е. за основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.

Количество людей, которые постоянно проживают в доме, при этом не учитывается.

Воздух поступает через спальню и гостиную, а удаляется из кухни и санузла

Рассмотрим расчеты на примере.

Есть дом площадью 146 м2.

Считаем воздухообмен по формуле: ∑ L= ∑ Lпр= ∑ Lвыт =∑ Sпомещения х 3.

∑ Lвыт 3=146 х 3=438м3/час.

Расчет по санитарно-гигиеническим нормам

В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов. Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в  в размере 60 м3/час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 м3/час. 
 

Рассмотрим расчеты на примере.

Условия остаются прежние. Дом площадью 146м2. Только добавим информацию, что в доме живут два человека и еще двое пребывают в помещении нерегулярно.

В доме имеются следующие помещения:

  • кухня площадью – 20 м2;
  • спальня – 24 м2;
  • рабочий кабинет – 18 м2;
  • гостиная – 42 м2;
  • прихожая – 10 м2;
  • туалет – 2 м2;
  • ванная – 4 м2.

Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.мчел для постоянных жильцов и 20 куб.мчас для временных посетителей. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество постоянных и временных людей, определяется техническим заданием заказчика).

  • Спальня — 2 чел * 60 = 120 м3час;
  • Рабочий кабинет — 1 чел. * 60 = 60 м3час;
  • Гостиная 2 чел * 60 + 2 чел * 20 = 160 м3час;

Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.

Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:

  •  Кухня — 20 м3 – не менее 90 куб.м3/ч;
  • Туалет  — 2 м– не менее 50 куб.м3/ч;
  • Ванная — 4 м3 – не менее 50 куб.м3/ч.

Для удобства записываем данные в таблицу:

Помещение Lпр, м3/час Lвыт, м3/час
Кухня  ≥90
Спальня 120
Рабочий кабинет 60
Гостиная 160
Прихожая
Туалет ≥50
Ванная ≥25
∑ L ∑ Lпр = 340 ∑ Lвыт = ≥ 165

Из табоицы видно, что количество приточного воздуха превышает вытяжной на 175 м3/час. Поэтому количество вытяжного воздуха необходимо увеличить на 175 м3/час. Его можно равномерно распределить между кухней, санузлом и ванной, а можно подать в одно из этих трех помещений, например кухню. Т.е. в таблице изменится Lвыт.кухня и составит Lвыт.кухня=265 м3/час.

Помещение Lпр, м3/час Lвыт, м3/час
Кухня  ≥265
Спальня 120
Рабочий кабинет 60
Гостиная 160
Прихожая
Туалет ≥50
Ванная ≥25
∑ L ∑ Lпр = 340 ∑ Lвыт = ≥ 340

Из спальни, кабинета и гостинной воздух будет перетекать в ванную, санузел и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры.

Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги.

Таким образом, уравнение воздушных балансов ∑ Lпр = ∑ Lвыт: 340=340 м3/час – выполняется.

Сравнение расчетов

Из всех вышепредложенных примеров видно, что значение воздухообмена в каждом из вариантов разное. 

(∑ Lвыт1=280 м3/час < ∑ Lвыт3=340 м3/час < ∑ Lвыт2=438 м3/час).

Все три варианта являются правильными согласно норм.

Однако, первый третий более простые и дешевые в реализации, а второй немного дороже, но создает более комфортные условия для человека.

Как правило, при проектировании выбор варианта расчета зависит от желания заказчика, точнее от его бюджета.

Подбор воздуховода

Мы посчитали воздухообмен, теперь  можем выбрать схему реализации системы вентиляции и произвести расчет воздуховодов системы вентиляции.

Для вентиляционных систем используют прямоугольные и круглые воздуховоды. Если вы выбираете прямоугольный воздуховод, следите, чтобы соотношение сторон не превышало 3:1, иначе вентиляция будет постоянно шуметь, а давление в ней будет недостаточно высокое (не будет тяги).

Кроме этого, при выборе необходимо учитывать, что нормальная скорость в магистрали должна достигать около 5 м/с (в ответвлениях примерно 3 м/с). Чтобы определить необходимые размеры сечения, воспользуйтесь диаграммой ниже – на ней изображена зависимость размера сечения от расхода воздуха и скорости его движения.

Горизонталями отмечен расход воздуха, вертикалями – скорость, косыми линиями – соответствующие размеры воздуховода.

                 Диаграмма зависимости сечения воздуховодов от скорости и расхода воздуха

На диаграмме горизонтальные линии отображают значение расхода воздуха, а вертикальные линии – скорость.

Косые линии соответствуют размерам воздуховодов.

Подбираем сечение ответвлений магистрального воздуховода (которые заходят непосредственно в каждую комнату) и самого магистрального воздуховода для подачи воздуха расходом L=438 м3/час. 

Если воздуховод с естественной вытяжкой воздуха, то нормируемая скорость движения воздуха в нем не должна превышать 1м/час. Если же воздуховод с постоянно работающей механической вытяжкой воздуха, то скорость движения воздуха в нем выше и не должна превышать 3 м/с (для ответвлений) и 5 м/с для магистрального воздуховода.

Подбираем сечение воздуховода при постоянно работающей механической вытяжке воздуха.

Слева и справа на диаграмме обозначены расходы, выбираем наш (438 м3/час).

Далее, движемся по горизонтали до пересечения с вертикальной линией соответствующей значению 5 м/с (для максимального воздуховода).

Теперь, по линии скорости опускаемся вниз до пересечения с ближайшей линией сечения.

Получили, что сечение нужного нам магистрального воздуховода 160х160 мм или Ø180 мм.

Для подбора сечения ответвления движемся от о расхода 438 м3/час по прямой до пересечения со скоростью 3 м3/час.

Получаем сечение ответвления 200х200 мм или Ø 225 мм.

Эти диаметры будут достаточными при установке только одного вытяжного канала, например на кухне.

Если же в доме будет установлено 3 вытяжных вентканала, например в кухне, санузле и ванной комнате (помещения с самым загрязненным воздухом), то суммарный расход воздуха, который нужно отвести мы делим на количество вытяжных каналов, т. е. на 3. И уже на эту цифру подбираем сечение воздуховодов.
 

Данная диаграмма подходит только для подбора сечений механической вытяжки. 

Если в доме есть бассейн необходимо использовать системы осушения воздуха, возможна система осушения воздуха с подмесом свежего воздуха.

Использование осушителей — это наиболее простой и, соответственно, более дешевый способ.

Общие требования к системам вентиляции.

  • Вытяжной воздух выбрасываем наружу выше кровли. При естественной вытяжной вентиляции, все каналы выводят выше кровли. При механической вытяжной вентиляции – воздуховод так же выводят выше кровли либо внутри здания, либо снаружи.
  • Забор свежего воздуха при механической системе приточной вентиляции осуществляется с помощью заборной решетки. Ее необходимо размещать минимум на два метра выше уровня земли.
  • Движение воздуха необходимо организовывать таким образом, чтобы воздух из жилых помещений двигался в направлении помещений с выделением вредностей (санузел, ванная, кухня).

При проектировании систем вентиляции приток традиционно рассчитывают исходя из норм подачи наружного воздуха для людей, постоянно и временно находящихся в помещении. При этом забывают, что основная задача систем вентиляции — обеспечить комфортный микроклимат, а не слепо «нагнать» в комнаты заданный объем наружного воздуха.

Вопрос определения производительности приточной установки осложняется тем, что нормы качества воздуха едины во всей стране, нормы подачи наружного воздуха различаются от норматива к нормативу, а химический состав наружного воздуха изменяется от улицы к улице. В данной статье рассмотрены требования различных нормативных документов к определению расхода наружного воздуха, оценим их актуальность и проведем собственные расчеты расхода наружного воздуха.

Нормативная документация, регулирующая качество воздуха в помещениях

Расход, качество и параметры воздуха, а также допустимое содержание вредных веществ в нем определяется следующими нормативными документами:

СП 60.13330.2016 «Актуализированная редакция СНиП 41—01—2003. Отопление, вентиляция и кондиционирование воздуха»;

ГОСТ 30494–2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»;

ГОСТ Р ЕН 13779–2007 «Вентиляция в нежилых зданиях. Технические требования к системам вентиляции и кондиционирования»;

СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях»;

ГОСТ 12.1.005–88 «Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны»;

множество сводов правил по каждому виду зданий и сооружений, которые носят весьма частный характер, поэтому в данной статье рассматриваться не будут.

Документ СП 60.13330.2016 в этом списке наиболее важен, поскольку ряд его пунктов по интересующей нас тематике включен в Перечень национальных стандартов и сводов правил, в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона от 30.12.2009 № 384-ФЗ «Технический регламент о безопасности зданий и сооружений».

Обзор требований СП 60.13330.2016

Согласно п. 7.4.2 СП 60.13330.2016, «расход наружного воздуха в помещении следует принимать не менее минимального расхода наружного воздуха, рассчитанного по приложениям Ж и И; …». В свою очередь Приложение Ж СП 60.13330.2016 предписывает принимать наибольший из расходов воздуха, требуемых для обеспечения санитарно-гигиенических норм, норм взрывопожарной безопасности и условий, исключающих образование конденсата (на каждый из пунктов приводится ряд расчетных формул). Приложение И СП 60.13330.2016 устанавливает конкретные нормы наружного воздуха для людей, находящихся в помещении более двух часов непрерывно (табл. 1).

Обзор требований ГОСТ 30494–2011

Раздел 5 «Качество воздуха» ГОСТ 30494–2011 «Здания жилые и общественные. Параметры микроклимата в помещениях» предписывает определять расход приточного воздуха на основе удельных норм воздухообмена, а также исходя из расчета воздухообмена, необходимого для обеспечения допустимых концентраций загрязняющих веществ.

Кроме того, в разделе 5 ГОСТ 30494–2011 приведена классификация воздуха в помещениях, в рамках которой выделены 4 класса качества воздуха — от 1 до 4, соответственно высокий, средний, допустимый и низкий. Для каждого из них указаны диапазоны содержания углекислого газа СО2 (табл. 2). Также в ГОСТ 30494–2011 приводятся примерные концентрации вредных веществ в наружном воздухе (табл. 3).

Сноска в табл. 2 гласит, что указанные допустимые содержания СО2 в помещениях принимают сверх содержания СО2 в наружном воздухе, которое, очевидно, для примера можно взять из табл. 3. Фактически речь идет о том, что в разной местности устанавливаются различные критерии качества воздуха в помещении. Так, высокое качество воздуха в помещении в сельской местности предполагает концентрацию СО2 не выше 750 см³/м³, а в центре большого города — 800 см³/м³. Позиция весьма неоднозначная, ведь люди-то одинаковы в любой местности. Этот момент будет рассмотрен ниже на конкретном примере.

Стоит отметить и тот факт, что реальный расход наружного воздуха согласно ГОСТ 30494–2011 должен быть не выше расчетного. Насколько — определяет коэффициент эффективности системы воздухораспределения. Согласно табл. 6 ГОСТ 30494–2011 наименее эффективным считается воздухораспределение при естественной вентиляции (коэффициент 1,0). Эффективность воздухораспределения в системах вентиляции с подачей воздуха в рабочую зону принимается равной 0,6–0,8, то есть расчетный расход приточного воздуха может быть снижен в 1,25–1,67 раза.

Обзор требований ГОСТ Р ЕН 13779–2007

ГОСТ Р ЕН 13779–2007 «Вентиляция в нежилых зданиях. Технические требования к системам вентиляции и кондиционирования» является переводом европейского стандарта EN13779:2005 «Ventilation for non-residential buildings. Performance requirements for ventilation and room-conditioning systems». Данный документ является первоисточником для выявления 4 классов качества воздуха в помещениях в ГОСТ 30494–2011. При этом ГОСТ Р ЕН 13779–2007 предусматривает классификацию качества воздуха по ряду критериев: не только по диоксиду углерода, но и по общей загрязненности воздуха и по расходу наружного воздуха на одного человека. На втором критерии остановимся подробнее (табл. 4).

Итак, ГОСТ Р ЕН 13779–2007 даже для первого класса качества воздуха декларирует предельный расход не ниже 54 кубических метров в час (по-нашему, это будет «допустимый» расход) и номинальное значение 72 кубических метров в час («рекомендуемый» расход). Для обеспечения низкого качества воздуха рекомендуется подавать лишь 18 кубометров наружного воздуха в час.

Иными словами, ГОСТ Р ЕН 13779–2007 позволяет существенно сэкономить на приточном воздухе, указав не самый высокий класс качества воздуха. Но и это еще не все. Общий расход приточного воздуха, как известно, равен произведению расхода воздуха для одного человека на количество людей в офисе. При определенном подходе ГОСТ Р ЕН 13779–2007 позволяет сэкономить и на втором параметре, поскольку при отсутствии должной информации предлагается использовать типовые цифры по плотности рабочих мест в офисах. Так, для крупных помещений на одного человека должно приходиться от 7 до 20 квадратных метров с типовым значением 12 квадратных метров на человека, для малых помещений диапазон составляет от 8 до 12, а типовое значение — 10 квадратных метров на человека (см. табл. 22 ГОСТ Р ЕН 13779–2007).

Эти цифры заведомо выше привычной в России нормы в 6 квадратных метров на человека. Впрочем, плотность фактической рассадки сотрудников (особенно в современных опенспейсах) превосходит любые рекомендации нормативных документов. На деле хорошим показателем считаются 4 квадратных метра на одного человека, встречаются офисы с плотностью рассадки 3–3,5 квадратных метра на человека.

Таким образом, нормы ГОСТ Р ЕН 13779–2007 в 3–4 раза выше среднестатистических российских, а потому расчетный расход наружного воздуха может оказаться в 3–4 раза ниже привычного. Если на уровне технического задания прописать низкий или приемлемый класс качества воздуха, расход наружного воздуха окажется в 6–12 раз ниже привычного.

Приведем простой пример из жизни. В одном из офисных помещений площадью 58 квадратных метров, которое периодически посещает автор данного материала, насчитывается 13 постоянных рабочих мест и 4 кресла для посетителей. Если подобную планировку выдать инженеру-проектировщику, он оценит требуемый объем приточного воздуха в 13 · 60 + 4 · 20 = 860 кубометров в час (13 человек по 60 и 4 посетителя по 20 кубометров в час соответственно).

Расчет средней плотности рабочих мест, исходя из 6 квадратных метров на человека, даст 10 постоянных рабочих мест и расход наружного воздуха 10 · 60 = 600 кубометров в час.

Если же принять, что рассадка людей в помещении неизвестна, а заказчик требует обеспечить приемлемый уровень качества воздуха в помещении, то в соответствии с ГОСТ Р ЕН 13779–2007 получим численность рабочих мест в помещении 58/12 ≈ 5. Для приемлемого качества воздуха согласно табл. 4 требуется расход наружного воздуха 29 кубометров в час на человека. Общий расход составит 5 · 29 = 145 кубометров в час.

ГОСТ Р ЕН 13779–2007 позволил снизить расход приточного воздуха почти в 6 раз!

Обзор требований СанПиН 2.1.2.2645-10

СанПиН 2.1.2.2645–10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» в явном виде выдвигает требования только к температуре, влажности и скорости движения воздуха (см. табл. 5).

Что касается загрязнений, то пункт 4.10 данного документа гласит «Концентрация химических веществ в воздухе жилых помещений при вводе зданий в эксплуатацию не должна превышать среднесуточных предельно допустимых концентраций (далее — ПДК) загрязняющих веществ, установленных для атмосферного воздуха населенных мест, а при отсутствии среднесуточных ПДК не превышать максимальные разовые ПДК или ориентировочные безопасные уровни воздействия (далее — ОБУВ)».

При этом источником данных о ПДК является ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест», а источником данных об ОБУВ является ГН 2.1.6.2309-07 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест».

Обзор требований ГОСТ 12.1.005–88

Если СанПиН 2.1.2.2645-10 декларирует требования к воздуху в жилых зданиях, то в ГОСТ 12.1.005–88 «Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны» речь идет о производственных помещениях. При этом нормируются оптимальные и допустимые показатели по температуре (на постоянных и непостоянных рабочих местах), относительной влажности и скорости движения воздуха в зависимости от тяжести выполняемой работы (см. таблицу 1 ГОСТ 12.1.005–88).

Кроме того, в ГОСТ 12.1.005–88 приведены методики контроля и измерения уровня загрязнения воздуха в рабочей зоне. Наконец, в Приложении 2 к ГОСТ 12.1.005–88 представлена таблица предельно допустимых концентраций вредных веществ в воздухе рабочей зоны с их классификацией по классам опасности и особенностям действия на организм человека.

Влияние углекислого газа на состояние человека

Напомним, что ГОСТ 30494–2011 устанавливает не полную концентрацию СО2 в воздухе, а лишь ее превышение над концентрацией СО2 в наружном воздухе. То есть один и тот же уровень комфорта формально будет обеспечен различными концентрациями СО2. Однако физиология человека говорит о том, что разные концентрации углекислого газа формируют разное самочувствие человека (табл. 6).

Как видно из табл. 6, независимо от места, где встречается та или иная концентрация углекислого газа, хорошая вентиляция обеспечивает комфортное и благоприятное состояние человека. Это достигается путем поддержания уровня СО2 не выше 800 см³/м³ (800 ppm — 800 долей из миллиона). Таким образом, проектируя «вентиляцию для людей», следует работать над тем, чтобы концентрация СО2 не превышала 800 см³/м³ в абсолютном выражении, а не над величиной концентрации углекислого газа в помещении сверх фоновой концентрации наружного воздуха и не над подачей 60 кубометров воздуха в час на каждого сотрудника.

Иными словами, требования к расходу приточного воздуха в экологически чистых регионах должны быть ниже, чем в загрязненных областях. Соответственно расход приточного воздуха в офисных зданиях с окнами на заводы и автомагистрали должен быть выше, чем в офисах, расположенных в лесопарковых зонах.

Расчет приточного воздуха по углекислому газу на объектах в разных экологических зонах

В качестве примера рассмотрим вышеупомянутое офисное помещение площадью 58 квадратных метров (высота потолков 2,85 метра, объем 165 кубометров) с 13 рабочими местами. Допустим, в одном случае здание расположено в экологически чистом районе (концентрация СО2 в наружном воздухе 350 см³/м³), в другом случае — в центре Москвы на Садовом кольце (концентрация СО2 в наружном воздухе 500 см³/м³). Целью системы вентиляции является поддержание концентрации углекислого газа на уровне не выше 800 см³/м³.

Каждый человек в среднем выделяет около 25 литров СО2 в час. 13 человек выделяют 325 литров СО2 в час, или, другими словами, каждый час увеличивают концентрацию углекислого газа в помещении на 325 · 1000/165 = 1970 см³/м³.

Итак, теоретически в абсолютно герметичном помещении с весьма плотной рассадкой сотрудников (4,5 квадратных метра на одного человека) люди всего за один час «надышат» абсолютную духоту и доведут себя до состояния апатии и головокружения.

В действительности в любом помещении есть неплотности, утечки и перетечки, а объем выделяемого людьми углекислого газа меняется в зависимости от концентрации углекислого газа во вдыхаемом воздухе. Оказывает влияние и тот факт, что молярная масса СО2 (44 г/моль) больше молярной массы воздуха (29 г/моль), поэтому СО2 оседает в нижних слоях воздуха помещения, то есть как раз в зоне нахождения человека. Не углубляясь дальше в подробности, подведем итог: при отсутствии вентиляции в помещении через час станет душно, через два часа — критически душно. Данные в табл. 6 подтверждают правильность наших расчетов.

Перейдем к расчету вентиляции для рассматриваемого офисного помещения. Объем необходимого приточного воздуха для поддержания заданной концентрации углекислого газа определяется по формуле Ж.2 Приложения Ж СП 60.13330.2016:

где Lw, z — расход воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, м³/ч; в нашем случае Lw, z = 0;

mpo — расход каждого из вредных или взрывоопасных веществ, поступающих в воздух помещения, мг/ч; при плотности СО2 1,97 кг/м³ и объеме выделения 325 л/ч получим mpo = 325 · 1,97 · 1000 = 640250 мг/ч;

qw, z — концентрация вредного или взрывоопасного вещества в воздухе, удаляемого из обслуживаемой зоны помещения, мг/м³; при Lw, z = 0 интереса не представляет;

ql — концентрация вредного или взрывоопасного вещества в воздухе, удаляемого из рабочей зоны помещения, мг/м³; ql = 800 · 1,97 = 1576 мг/м³;

qin — концентрация вредного или взрывоопасного вещества в воздухе, подаваемого в помещение, мг/м³; qin_парк = 350 · 1,97 = 690 мг/м³; qin_город = 500 · 1,97 = 985 мг/м³.

Подставляя значения в формулу (1), для офиса в экологически чистом районе получим расход приточного воздуха:

В случае центра крупного города имеем:

Классический расчет «по людям» исходя из 60м³/час на человека дает результат Lлюди = 13 · 60 = 780 м³/ч.

Сравнивая результаты, получаем, что классический расчет «по людям» дает результаты, схожие с расчетом на удаление углекислого газа для экологически чистых районов.

К слову, норма в 60 кубометров в час на человека была выработана несколько десятилетий назад, когда уровень СО2 в атмосфере был заведомо ниже сегодняшних значений (содержание СО2 в атмосфере на сегодняшний день составляет порядка 410 см³/м³, а, например, в 1980-е годы было около 340 см³/м³).

Сегодня эта норма актуальна лишь в экологически чистых районах. Для большинства объектов в крупных городах приточного воздуха требуется больше нормативного количества.

Исходя из проведенного расчета для концентрации углекислого газа в наружном воздухе в размере 500 см³/м³ (расход воздуха составил 1083 м³/ч, на одного человека приходится 1083/13 = 83 м³/ч) имеем, что в действительности на одного человека требуется не менее 80 кубометров наружного воздуха в час.

Важно отметить, что формирование тех или иных требований к системе вентиляции — это не прихоть инженеров, не дань моде и не желание продать более мощное и, следовательно, дорогое оборудование. В первую очередь речь идет о комфорте людей, о производительности труда, их внимательности, здоровье, частоте больничных и других факторах, не имеющих прямого финансового эквивалента, но имеющих прямое отношение к успешному выполнению служебных обязанностей.

Заключение

В России одновременно действуют несколько нормативных документов, оговаривающих расход воздуха приточных систем вентиляции, качество воздушной среды внутри помещений, параметры внутреннего воздуха. Основным из них следует признать СП 60.13330.2016, поскольку его требования включены в перечень обязательных к исполнению для обеспечения Федерального закона от 30.12.2009 № 384-ФЗ «Технический регламент о безопасности зданий и сооружений».

В зависимости от избранного пути расчета расхода приточного воздуха результат может получиться различным, причем не на несколько процентов, а в несколько раз. Занижение производительности систем вентиляции ведет к значительному росту концентрации углекислого газа и быстрой утомляемости людей.

Нормы подачи наружного воздуха на одного человека едины на всей территории страны и не учитывают различную фоновую концентрацию углекислого газа в зависимости от экологичности района строительства. Согласно проведенным расчетам, норма в 60 кубометров в час на человека позволяет обеспечить качественную воздушную среду только в экологически чистых районах. В загрязненных районах и крупных городах рекомендуется выполнять уточняющие расчёты.

В статье проведён анализ качества воздуха в зависимости от концентрации углекислого газа. В реальном проекте следует изучить и другие загрязнители.

Юрий Хомутский,
технический редактор журнала
«Мир климата»

Температура
приточного воздуха tп,
ºC,
определяется по формуле


,
(4.2)

где
Δtдоп
– допустимый перепад температур, °С,
зависящий от выбора принципиальной
схемы воздухораспределения, назначения
помещения, определяется по [2,
прил. Д]:

− 3…3,5
°С – при восполнении недостатков теплоты
в помещении;

− 1,5…2
°С – при ассимиляции избытков теплоты
в помещении.

Параметры
приточного воздуха определяются по
Jd-диаграмме
влажного воздуха, местоположение
соответствующей точки – это пересечение
луча процесса с изотермой приточного
воздуха.

Пример.
Определить температуру приточного
воздуха при работе СКВ.

По формуле (4.2) при
наличии избытков теплоты в объеме
помещения находится:

в
ТПГ

или

;

в
ХПГ

или

.

4.4 Определение параметров удаляемого воздуха

Если
высота помещения менее или равна 4 м,
принимают температуру воздуха
обслуживаемой зоны и удаляемого из
помещения одинаковыми, т.е. tу
равна tв.

Температура
воздуха,
удаляемого
системами вентиляции, для
помещения высотой более 4 м tу,
ºC,
определяется по формуле


,
(4.3)

где
hвозд
– высота обслуживаемой зоны, м; grad
t
– градиент температуры по высоте
помещения, °С/м, определяется в зависимости
от удельных избытков явной теплоты в
помещении по табл.
4.1.

Таблица 4.1

Зависимость
градиента температуры по высоте помещения

от удельных
выделений явной теплоты

Удельные

выделения

явной
теплоты

qя,
Вт/м3

Градиент

темпе­ратуры

по
высоте

grad
t, °С/м

Примечание

более 23,2

0,8…1,5

Меньшие значения
принимают для ХПГ, большие – для ТПГ.

11,6…23,2

0,3…1,2

менее 11,6

0…0,5

Параметры
удаляемого воздуха определяются по
Jd-диаграмме
влажного воздуха, местоположение
соответствующей точки – это пересечение
луча процесса с изотермой удаляемого
воздуха.

Пример.
Определить температуру удаляемого
воздуха при работе СКВ.

Градиент
темпе­ратуры по высоте помещения grad
t,
°С/м, определяется по табл. 4.1 при величине
удельных выделений явной теплоты в
кондиционируемом помещении:

− в
ТПГ

,
следовательно,

grad
t
= 0,5 °С/м, по
формуле (4.3)

;

− в
ХПГ

,
следовательно,

grad
t
= 0,3 °С/м, по
формуле (4.3)

.

4.5. Определение производительности системы кондиционирования воздуха

Производительность
СКВ, кг/ч, для частных случаев, когда
воздух из помещений не удаляется
мест­ными отсосами и не забирается
на технологические нужды, определяется
по формулам

− по
условию удаления полной теплоты


;
(4.4)

− по
условию удаления явной теплоты


,
(4.5)

где
св
– удельная теплоёмкость воздуха, равная
1,005 кДж/(кг/ºС);

− для
удаления избыточной влаги


;
(4.6)

− для
удаления вредных веществ (паров, газов,
например, СО2)


,
(4.7)

где
М
количество газа (пара), выделяющегося
в помещении, мг/ч; ρв
– плотность воздуха в рабочей зоне
помещения, кг/м3;
С2
– концентрация данного газа в удаляемом
воздухе, мг/м3
(если удаление из рабочей зоны С2
равна
предельно допустимому значению); С1
– концентрация газа в приточном воздухе,
мг/м3
(С1
равна 30 %
от предельно-допустимого значения
концентрации).

Плотность
воздуха ρ,
кг/м3,
определяется по формуле


.
(4.8)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

1. Расход приточного воздуха L, м3/ч, для системы вентиляции и кондиционирования следует определять расчетом и принимать больший из расходов, требуемых для обеспечения:

а) санитарно-гигиенических норм в соответствии с п. 2;

б) норм взрывопожарной безопасности в соответствии с п. 3.

2. Расход воздуха следует определять отдельно для теплого и холодного периодов года и переходных условий, принимая большую из величин, полученных по формулам (1)—(7) (при плотности приточного и удаляемого воздуха, равной 1,2 кг/м3):

а) по избыткам явной теплоты:

Тепловой поток, поступающий в помещение от прямой и рассеянной солнечной радиации, следует учитывать при проектировании: вентиляции, в том числе с испарительным охлаждением воздуха, для теплого периода года;

кондиционирования — для теплого и холодного периодов года и для переходных условий;

б) по массе выделяющихся вредных или взрывоопасных веществ:

При одновременном выделении в помещении нескольких вредных веществ, обладающих эффектом суммации действия, воздухообмен следует определять суммируя расходы воздуха, рассчитанные по каждому из этих веществ;

в) по избыткам влаги (водяного пара):

Для помещений с избытком влаги следует проверять достаточность воздухообмена для предупреждения образования конденсата на внутренней поверхности наружных ограждающих конструкций при расчетных параметрах Б наружного воздуха в холодный период года;

г) по избыткам полной теплоты:

д) по нормируемой кратности воздухообмена:

е) по нормируемому удельному расходу приточного воздуха:

В формулах (1)—(7):

Lw,z — расход воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, м3 /ч;

Q, Qh ƒ— избыточный явный и полный тепловой потоки в помещение, Вт;

c — т е п л о е м к о с т ь в о з д у х а , р а в н а я 1,2 кДж/м3 · °С);

t w,z— температура воздуха в обслуживаемой или рабочей зоне помещения, удаляемого системами местных отсосов, и на технологические нужды, °С;

t 1 — температура воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, °С;

t in — температура воздуха, подаваемого в помещение, °С;

W — избытки влаги в помещении, г/ч;

dw,z — влагосодержание воздуха, удаляемого из обслуживаемой или рабочей зоны помещений системами местных отсосов, и на технологические нужды, г/кг;

dl — влагосодержание воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, г/кг;

din — влагосодержание воздуха, подаваемого в помещение, г/кг;

Iw,z— удельная энтальпия воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, кДж/кг;

Il — удельная энтальпия воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, кДж/кг;

Iin — удельная энтальпия воздуха, подаваемого в помещение, кДж/кг;

mpo— расход каждого из вредных или взрывоопасных веществ, поступающих в воздух помещения, мг/ч;

qw,z, ql — концентрация вредного или взрывоопасного вещества в воздухе, удаляемом соответственно из обслуживаемой или рабочей зоны помещения и за ее пределами, мг/м3;

qin — концентрация вредного или взрывоопасного вещества в воздухе, подаваемом в помещение, мг/м3;

Vp — объем помещения, м3; для помещений высотой 6 м и более следует принимать Vp = 6A,

A — площадь помещения, м2 ;

N — число людей (посетителей), рабочих мест, единиц оборудования;

n — нормируемая кратность воздухообмена, ч-1;

k — нормируемый расход приточного воздуха на 1 м2 пола помещения, м3 /(ч·м2 );

m — нормируемый удельный расход приточного воздуха на 1 чел., м3/ч, на 1 рабочее место, на 1 посетителя или единицу оборудования.

Параметры воздуха t w,z, dw,z, I w,z следует принимать равными расчетным параметрам в обслуживаемой или рабочей зоне помещения по разд. 2 (СНиП 2.04.05-91*), а qw,z — равной ПДК в рабочей зоне помещения.

3. Расход воздуха для обеспечения норм взрывопожарной безопасности следует определять по формуле (2). При этом в формуле (2) qw,z и ql следует заменить на 0,1 qg , мг/м3 (где qg — нижний концентрационный предел распространения пламени по газо-, парои пылевоздушной смесям).

4. Расход воздуха Lhe, м3/ч, для воздушного отопления, не совмещенного с вентиляцией, следует определять по формуле:

где Qhe — тепловой поток для отопления помещения, Вт;

t he — температура подогретого воздуха, °С, подаваемого в помещение,
определяется расчетом.

5. Расход воздуха Lmt от периодически работающих вентиляционных систем с номинальной производительностью Ld , м3 /ч, приводится исходя из n, мин, прерываемой работы системы в течение 1 ч по формуле:

6. Температуру приточного воздуха, подаваемого системами вентиляции с искусственным побуждением и кондиционирования воздуха, t in, °С, следует определять по формулам:

а) при необработанном наружном воздухе:

б) при наружном воздухе, охлажденном циркулирующей водой по адиабатному циклу, снижающем его температуру на ∆t 1 , °С:

в) при необработанном наружном воздухе (см. подпункт «а») и местном доувлажнении воздуха в помещении, снижающем его температуру на ∆t 2 , °С:

г) при наружном воздухе, охлажденном циркулирующей водой (см. подпункт «б»), и местном доувлажнении (см. подпункт «в»):

д) при наружном воздухе, нагретом в воздухонагревателе, повышающем его температуру на ∆t 3 , °С:

где p — полное давление вентилятора, Па;

t exl — температура наружного воздуха, °С.

Добавить комментарий