Как найти количество свободных электронов

Как найти число свободных электронов?



Ученик

(248),
закрыт



10 лет назад

Вячек

Высший разум

(391245)


10 лет назад

плотность металла пригодится для определения массы образца объёмом 3 куб. см, а через неё – количество вещества в этом же объёме и числа атомов в нём:
m(Al) = V*p = 3 куб. см*2,7 г/куб. см = 8,1 г
n(Al) = m/M = 8,1 г/27 г/моль = 0,3 моль
Ну, а дальше – число атомов по уже написанной вами формуле: N=n*Na
——
Извините, некоторые единицы я перевёл в более привычные для большинства химиков! Ну не приживаются килограммы и кубометры из новейшей системы СИ!

Число – свободный электрон

Cтраница 1

Число свободных электронов в металле почти равно числу атомов в нем. Атомы, от которых отделились электроны, становятся положительными ионами, вследствие чего кристаллическая решетка металла оказывается состоящей из положительных ионов, сохраняющих свои места в решетке.
 [1]

Число свободных электронов и дырок в полупроводнике может быть найдено с использованием статистики Ферми – Дирака.
 [2]

Число свободных электронов и вакантных, незавершенных связей одинаково.
 [4]

Число свободных электронов, способных переносить ток, увеличивается с повышением температуры, поэтому проводимость полупроводников быстро возрастает; у металлов наблюдается слабо выраженное обратное явление. Кроме электронной проводимости в полупроводниках возможна дырочная проводимость. Отсутствие электрона в каком-то узле кристаллической решетки называется дыркой, или вакансией. Дырка ведет себя как квазичастица, ее возникновение и движение обусловлены квантово-механическими эффектами в кристалле; под влиянием электрического поля она направляется к отрицательному полюсу – в сторону, где имеется недостаток электронов. Дырка во многом аналогична электрону, но заряд ее положителен и движется она медленней. В результате перемещения электронов и дырок при наложении внешнего электрического поля и возникает проводимость.
 [5]

Число свободных электронов, приходящихся на один атом в металле, различно, но оно обычно близко к одному электрону на атом.
 [6]

Число свободных электронов и дырок в полупроводнике может быть найдено с использованием статистики Ферми-Дирака.
 [7]

Число свободных электронов зависит от активности металла и определяется положением его в ряду, в который можно расположить металлы по их фотоэлектрическому эффекту. Томсон [256] объяснил соединение водорода с кислородом на нагретой платиновой проволоке ( или на угольной нити) под действием рентгеновых лучей не действием тепла, а влиянием тока электронов, освобождаемых во время каталитического процесса.
 [8]

Число первичных свободных электронов было увеличено освещением фоточувствительного образца в различное число раз ( от 2 до 100) по сравнению с темновым равновесием.
 [9]

Число первичных свободных электронов было увеличено освещением фоточувствительного образца в различное число раз ( от 2 до 100) по сравнению с темповым равновесием. При этом необходимо было пользоваться слабо поглощаемым светом, чтобы не создать новой неоднородности.
 [10]

Определить число свободных электронов, которое приходится на один атом натрия при абсолютном нуле.
 [11]

Поскольку число свободных электронов мало, то вещество является плохим проводником.
 [12]

Обозначим числа свободных электронов, приходящихся на единицу объема, соответственно чергз NА и NB и положим для определенности, что NA – – – NE – Тогда электроны из металла А будут диффундировать в металл Б в большем количестве, чем обратно из металла Б в металл А и, как следствие, металл А будет заряжаться положительно, а металл Б – отрицательно.
 [13]

Найти число свободных электронов в веществе с ц0 9 34 эВ, энергии которых заключены между 9 20 и 9 27 эВ в объеме 10 – 4 м3 при Т 400 К.
 [14]

Увеличение числа свободных электронов или дырок в веществе под воздействием какого-либо вида энергии способствует повышению электропроводности, увеличению тока, появлению электродвижущих сил.
 [15]

Страницы:  

   1

   2

   3

   4

По электронной формуле)
Например,возьмём литий(3-й по порядковому номеру)и составим его электронную формулу:
Порядковый номер=количество протонов=количество электронов
Значит,у Лития 3 электрона:
1s22s1
на втором s уровне к Лития всего один электрон из двух возможных,значит он неспаренный(то есть свободный)
Силиций 14-й в системе,значит у него 14 электронов:
1s2,2s2,2p6,3s2,3р2
На внешней орбитали(третьем уровне) у силиция 4 электрона(3s2,3p2)
3s уровень может содержать только 2 электрона,так что он заполним полностью и все электроны спаренные.
3р уровень может содержать 6 электронов,а у стлиция только 2,а так как (если представить себе структурно) сначала мы рисуем по одной стрелочке(электрону) в каждой ячейке,а потом уже заполняем по второй,то эти два электрона пошли в разные ячейки,а значит они неспаренные(свободные).
Если бы у какого-то элемента на 3р уровне было 5 электронов,то у него бы был 1 неспаренный электрона,если бы 4-2 электрона)))
Если что-то не ясно,жду вопросы в комментарии


Посмотрим на гениальную таблицу “Периодическая система элементов” от русского ученого Дмитрия Менделеева.

Таблица Дмитрия Менделеева весьма стройная и системная. Она отвечает на многие вопросы, в том числе и на заданный вами.

Максимальное число электронов

на энергетическом уровне:

где n – номер энергетического уровня

система выбрала этот ответ лучшим

Вита7­5
[9.7K]

8 лет назад 

Таблица Менделеева состоит из 8-ми столбцов, соответственно элементы в 1-ом столбце будут иметь по 1 электрону на внешнем слое , а в 8-ом по 8. Собственно количество электронов и определяет свойства элемента, (например щелчные металлы очень активны, а энертвые газы наоборот фактически не вступают ни в какие реакции). это связано с тем, что чем меньше электронов на внешнем слое тем их легче потерять, и труднее захватить свободный электрон при потере.

Так же есть такие элементы как изотопы, которые при одинаковом количестве электронов на внешней оболочке имеют кординально разные свойства. (например дейтерий и тритий) оба имеют по 1-му электрону, но ядро дейтерия состоит из положительно заряженного протона и нейтрального нейтрона, он стабилен и относится скорее к водороду (тяжелый водород), а тритий, состоящий из протона и 2-ух нейтронов, радиактивен и по свойствам ближе к литию. В порироде не встречается из-за короткой живучести (период полураспада примерно 12 лет).

Так к слову, есть такой изотоп кальция 48, имеется в виду что у него не 40 нейтронов в ядре как у обычного кальция у нас в костях, а 48, радиактивен, (в природе встречается крайне редко), нарабатывается в атомных реакторах, обстрелом нейтронами, несколько грамм за год. Служит для получения сверхтяжелых элементов (путем обстрела мишени из урана, плутония и т.д.). на данный момент самый дорогой элемент, 1 грамм стоит около 400000 евро.

Чосик
[208K]

более года назад 

Для этого потребуется таблица Менделеева. В ней восемь групп, которые представлены как восемь столбиков. И как раз номер группы указывает, сколько электронов у элемента на последнем внешнем уровне.

Например, берем водород – Н. Он относится к первой группе, идет первым. А мы знаем, что порядковый номер элемента совпадает с числом электронов на обиталях и с числом протонов в ядре. И у водорода на s-орбитали один электрон.

Теперь берем литий – Li. Он также относится к первой группе, идет третьим. Его s-орбиталь заполнена, там два электрона. А последний, третий, находится на второй s-орбитали. Номер же периода указывается на число энергетических уровней. Литий относится ко второму периоду, потому у него два энергетических уровня.

Kriti­kSPb
[93.6K]

4 года назад 

Чтобы определить, сколько электронов на внешнем энергетическом уровне, нужно открыть Периодическую таблицу Менделеева. В ней расположено 8 групп элементов. Номера группы и соответствуют количеству электронов на внешнем уровне. Например, элементы Гелий, аргон, железо, криптон, рутений, ксенон, осмий и радон принадлежат к восьмой группе, значит и электронов на внешнем уровне 8. У лития, натрия и калия – по одному электрону, у берилия, магния и кальция – 2, у алюминия – 3, у кремния и титана – по 4, у серы и хрома – по 6, у хлора и марганца – 7.

Далее определяем электронные уровни элементов по аналогии.

владс­андро­вич
[766K]

более года назад 

Для решения данной задачи, нам просто необходимо, будет взглянуть в таблицу Менделеева.

Она насчитывает в себе восемь групп. Они расположены в порядке восьми столбиков. Каждая группа имеет свой номер и этот самый номер как раз таки и говорит нам о том , сколько электронов имеет в себе тот или иной элемент, касательно его последнего внешнего уровня. 

Например железо относится к восьмой группе, а значит электронов на внешнем уровне оно имеет именно 8. 

Знаете ответ?

Атомно-молекулярное учение

Мы приступаем к изучению химии – мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными
формулами элементов.

Атом (греч. а – отриц. частица + tomos – отдел, греч. atomos – неделимый) – электронейтральная частица вещества микроскопических
размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).

Описываемая модель атома называется “планетарной” и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Планетарная модель атома

Протон (греч. protos – первый) – положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов
элементов. Нейтрон (лат. neuter – ни тот, ни другой) – нейтральная (0) элементарная частица, присутствующая в ядрах всех
химических элементов, кроме водорода.

Электрон (греч. elektron – янтарь) – стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома –
порядковый номер в таблице Менделеева – равен числу электронов (и, соответственно, протонов).

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20)
в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Электроны и протоны

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило:
порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим
электроны занимают различные энергетические уровни.

Энергетические уровни подразделяются на несколько подуровней:

  • Первый уровень
  • Состоит из s-подуровня: одной “1s” ячейки, в которой помещаются 2 электрона (заполненный электронами – 1s2)

  • Второй уровень
  • Состоит из s-подуровня: одной “s” ячейки (2s2) и p-подуровня: трех “p” ячеек (2p6), на которых
    помещается 6 электронов

  • Третий уровень
  • Состоит из s-подуровня: одной “s” ячейки (3s2), p-подуровня: трех “p” ячеек (3p6) и d-подуровня:
    пяти “d” ячеек (3d10), в которых помещается 10 электронов

  • Четвертый уровень
  • Состоит из s-подуровня: одной “s” ячейки (4s2), p-подуровня: трех “p” ячеек (4p6), d-подуровня:
    пяти “d” ячеек (4d10) и f-подуровня: семи “f” ячеек (4f14), на которых помещается 14
    электронов

Энергетические уровни

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число
электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а
также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: “s”, “p” и “d”, которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или
атомным орбиталям, движутся электроны, создавая определенный “рисунок”.

S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь – клеверный лист.

Атомные орбитали

Правила заполнения электронных орбиталей и примеры

Существует ряд правил, которые применяют при составлении электронных конфигураций атомов:

  • Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
  • На орбитали (в одной “ячейке”) не может располагаться более двух электронов
  • Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются
    еще одним электроном с противоположным направлением
  • Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s
  • Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было
    бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

    Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и
серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода – 6, у серы – 16.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Электронные конфигурации углерода и серы

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил.
А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся
одним электроном дополнили первую ячейку.

Таким образом, электронные конфигурации наших элементов:

  • Углерод – 1s22s22p2
  • Серы – 1s22s22p63s23p4
Внешний уровень и валентные электроны

Количество электронов на внешнем (валентном) уровне – это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными. Иногда
для наглядного представления конфигурацию внешнего уровня записывают отдельно:

  • Углерод – 2s22p2 (4 валентных электрона)
  • Сера -3s23p4 (6 валентных электронов)

Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью – способностью атомов образовывать определенное число химических связей.

Валентные электроны углерода и серы

  • Углерод – 2s22p2 (2 неспаренных валентных электрона)
  • Сера -3s23p4 (2 неспаренных валентных электрона)
Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных
электронов. Ниже будет дано наглядное объяснение этой задаче.

Электронные конфигурации магния и фтора и их валентные электроны

Запишем получившиеся электронные конфигурации магния и скандия:

  • Магний – 1s22s22p63s2
  • Скандий – 1s22s22p63s23p64s23d1

В целом несложная и интересная тема электронных конфигураций отягощена небольшим исключением – провалом электрона, которое только подтверждает общее
правило: любая система стремится занять наименее энергозатратное состояние.

Провал электрона

Провалом электрона называют переход электрона с внешнего, более высокого энергетического уровня, на предвнешний, энергетически более
низкий. Это связано с большей энергетической устойчивостью получающихся при этом электронных конфигураций.

Подобное явление характерно лишь для некоторых элементов: медь, хром, серебро, золото, молибден. Для примера выберем хром, и рассмотрим
две электронных конфигурации: первую “неправильную” (сделаем вид, будто мы не знаем про провал электрона) и вторую правильную, написанную
с учетом провала электрона.

Провал электрона

Теперь вы понимаете, что кроется под явлением провала электрона. Запишите электронные конфигурации хрома и меди самостоятельно еще раз и
сверьте с представленными ниже.

Провал электрона у хрома и меди

Основное и возбужденное состояние атома

Основное и возбужденное состояние атома отражаются на электронных конфигурациях. Возбужденное состояние связано с движением электронов
относительно атомных ядер. Говоря проще: при возбуждении пары электронов распариваются и занимают новые ячейки.

Возбужденное состояние является для атома нестабильным, поэтому долгое время в нем он пребывать не может. У некоторых атомов: азота,
кислорода , фтора – возбужденное состояние невозможно, так как отсутствуют свободные орбитали (“ячейки”) – электронам некуда перескакивать, к тому
же d-орбиталь у них отсутствует (они во втором периоде).

У серы возможно возбужденное состояние, так как она имеет свободную d-орбиталь, куда могут перескочить электроны. Четвертый энергетический
уровень отсутствует, поэтому, минуя 4s-подуровень, заполняем распаренными электронами 3d-подуровень.

Основное и возбужденное состояние атома

По мере изучения основ общей химии мы еще не раз вернемся к этой теме, однако хорошо, если вы уже сейчас запомните, что возбужденное состояние
связано с распаривание электронных пар.

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Добавить комментарий