Как найти количество тепла в проводнике

Проходя по проводнику, ток может оказывать некоторые действия: тепловое, химическое и магнитное.

Тепловое действие тока обусловлено тем, что свободные электроны, двигаясь с большой скорость, взаимодействуют с ионами металлов, ионами солей в растворах кислот и щелочей. Ионы начинают усиленно колебаться, двигаться, вращаться, то есть их энергия тоже повышается. Проводник или электролит нагревается.

Например, спираль лампочки раскаляется до такой температуры, что начинает излучать свет.

img10.gif

Электрическая энергия превращается в тепловую энергию проводника; часть рассеивается, часть используется в бытовых целях (для нагревания).

Работа, которую совершает электрический ток, определяется количеством теплоты, выделяемой проводником:

Q = A

, где (A) — работа тока, (Q) — количество теплоты.

Работу тока рассчитывают по формуле:

A = U⋅I⋅t

. Тогда количество теплоты, исходя из закона сохранения энергии, также будет равно:

Q = U⋅I⋅t

.

Согласно закону Ома

U = IR

. Подставляя эту формулу в предыдущую, получим:

Q = I2⋅R⋅t

.

Количество теплоты, которое выделяется в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока.

В процессе своих экспериментов получили такой же результат Джеймс Джоуль в Англии и Эмилий Христианович Ленц в России. В их честь закон имеет двойное название: закон Джоуля-Ленца.

joule-james.png

Джоуль Джеймс Прескотт ((1818—1889)) — английский физик, член Лондонского королевского общества. Он внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения и превращения энергии. Именем Джоуля назвали единицу измерения работы и энергии в системе СИ.

395.jpg

Эмилий Христианович Ленц ((1804—1865)) — российский физик и электротехник, академик Петербургской Академии наук ((1830)), ректор Санкт-Петербургского университета (с (1863)). Результатом его исследований стало открытие взаимосвязей (на «языке математики») между электрическими и термодинамическими параметрами, между электрическими и магнитными параметрами при протекании тока в проводнике.

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах.

Состояние сети, когда по проводам и приборам проходит ток больше допустимого значения, называется перегрузкой. Опасность этого явления в тепловом действии тока, ведь при большой перегрузке изоляция проводников легко воспламеняется. Перегрузка может возникнуть при подключении устройств большой мощности через удлинитель (смотри рисунок и никогда так не делай!).

1.jpg

Для примера, перегрузка проводов на (25)% приводит к сокращению срока их службы где-то с (20) лет до (3—5) месяцев, а перегрузка проводов на (50)% — до нескольких часов.

Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать  электрические цепи. В 1832 году  Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что  существует некая  зависимость между силой тока, электрическим сопротивлением  и температурой проводника.

Закон Джоуля-Ленца

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился  спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена  были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося  раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Закон Джоуля-Ленца

В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на  всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.

Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:

Q=I2Rt

где

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы «трётся», соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

нихромовая нагретая спираль

Из формулы также следует —  чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление  0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом — будет неравномерный нагрев в месте скрутки. В итоге —  подгорание с последующим пропаданием контакта.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины — первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную  колбу, откачивали воздух для замедления процесса окисления и получали  незатухаемый, чистый и стабильный источник света – электрическую лампочку

лампа эдисона

Заключение

Таки образом, можно сказать что на законе Джоуля-Ленца держится чуть ли не вся электрика и электротехника. Открыв этот закон, появилась возможность уже заранее предсказать  некоторые будущие проблемы в освоении электричества. Например, из-за нагрева проводника передача электрического тока на большое расстояние сопровождается потерями этого тока на тепло. Соответственно, чтобы компенсировать эти потери  нужно занизить передаваемый ток, компенсируя это высоким напряжением. А уже на оконечном потребителе, понижать напряжение и получать более высокий ток.

Закон Джоуля-Ленца неотступно следует из одной эпохи технологического развития  в другую. Даже сегодня мы постоянно наблюдаем его в быту – закон проявляется всюду, и не всегда люди ему рады. Сильно греющийся процессор персонального компьютера, пропадание света из-за обгоревшей скрутки  «медь-алюминий»,выбитая вставка-предохранитель, выгоревшая из-за высокой нагрузки электропроводка – всё это тот самый закон Джоуля-Ленца.

Раз уж заговорили про ДжОУля )) Читайте статья про ОУ — Операционный усилитель.

Почему нагреваются проводники

Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.

Рис. 1. Электрический ток в проводнике нагревает проводник

Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.

Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .

2.1. Общие сведения о нагреве проводников

Проводником

называется любое тело, по которому передается электрический ток. Обычно в качестве проводников применяются алюминиевые или медные шины, провода и кабели. Иногда, особенно в сетях постоянного тока, в качестве проводников используются стальные, более или менее массивные брусья, шины, швеллеры, трубы. При аварийных режимах, например пробое изоляции, проводниками могут оказаться металлические корпусы машин и разные конструкции [6].

Под словами нагрев (температура)

проводника обычно подразумевается нагрев (температура) токоведущих жил. Когда имеется в виду
нагрев (температура) изоляции или оболочек
, то это оговаривается особо.

Превышением нагрева (температуры) проводников

называется разность температур их жил и окружающей среды (воздуха, земли, воды), в которой проложены проводники вместе с их изолирующими и защитными оболочками или трубами.

Установившимся нагревом или установившимся превышением нагрева

называется такой нагрев или превышение нагрева, величина которого практически не изменяется или изменяется очень медленно в очень малых пределах.

Пример 1:

В помещении с температурой воздуха 25°С проложены проводники. Так как они долго не были нагружены током, то, их температура равна 25°С. Когда проводники нагрузили током, их нагрев стал повышаться и после длительной нагрузки, достиг 65°С. Дальнейшее повышение нагрева практически не замечалось.

Закон Джоуля-Ленца

На основании этого и других экспериментов можно сделать следующие предположения:

  • чем больше сопротивление, тем сильнее нагреваются проводники. То есть количество теплоты Q, которое выделяется при протекании электрического тока по проводнику, прямо пропорционально величине сопротивления проводника R;
  • чем больше сила тока, тем большее количества тепла выделяется. При возрастании тока большее количество частиц проходит через поперечное сечение проводника в единицу времени, то есть число столкновений возрастает, а значит больше энергии передается атомам проводника.

Формулу для вычисления количества тепла получили независимо друг от друга в 1842 г. английский физик Джеймс Джоуль и российский ученый Эмилий Ленц:

Q — количество теплоты, Дж;

Согласно закону Ома:

где U — напряжение, В.

Пользуясь этой формулой, закон Джоуля-Ленца может быть представлен еще в одном варианте, когда известно напряжение на участке проводника, а сила тока неизвестна:

Формулы закона Джоуля-Ленца справедливы тогда, когда работа, совершаемая электрическим током идет исключительно на нагревание. Если в цепи есть потребление энергии на выполнение механической работы (электродвигатель) или на совершение химических реакций (электролит), то для расчета необходимо применять другие формулы.

Тепловой расчет

по материалам журнала «Новости ЭлектроТехники» № 4(82) 2013

Проведем тепловой расчет кабельной линии с целью определения длительно допустимого тока линии и температуры поверхности кабелей в зависимости от ряда влияющих факторов. Основное внимание сосредоточим на расчетах нормального режима работы кабельной линии, хотя аналогичные вычисления можно выполнить и для случая короткого замыкания в кабельной линии, когда ток короткого замыкания проходит по жиле кабеля и через место повреждения изоляции попадает в экран, нагревая его до значительных температур, достигающих 200-300ºС.

Методика теплового расчета описана в ГОСТ Р МЭК 60287-1-1-2009 (Кабели электрические. Расчет номинальной токовой нагрузки). По мнению автора, система обозначений переменных, заимствованная из МЭК, является неудобной. Поэтому в рамках статьи используем систему обозначений, введенную в книге «Заземление экранов однофазных силовых кабелей 6-500 кВ» (М.В.Дмитриев.–СПб.: Изд-во Политехн. ун-та, 2010. –152 с.).

На рис.1 схематично показана конструкция силового однофазного кабеля и один из способов его прокладки – в полиэтиленовой трубе, размещенной в грунте. При проведении оценочных расчетов допустимо считать, что кабель расположен в средней части трубы (на самом деле кабель всегда располагается на дне трубы). На рис.1 введены следующие обозначения:

Рис.1. Силовой однофазный кабель, проложенный в полиэтиленовой трубе в грунте.

Тепловой расчет кабеля основан на решении уравнения теплового баланса: выделяющаяся в кабеле активная мощность переходит в тепло, которое нагревает кабель и окружающий его грунт. При рассмотрении этого уравнения и его составляющих будем полагать, что тепло отводится от кабеля только в радиальном направлении, а отвода тепла вдоль оси кабеля и трубы, в которой он проложен, не происходит (такой отвод был бы возможен только для очень короткого кабеля). Следовательно, уравнение и все его составляющие не зависят от длины кабельной линии и могут быть даны в расчете на 1 метр его длины.

Тепловыделение

Основными источниками тепловыделения в кабеле являются потери в жиле РЖ и потери в экране РЭ:

где,

IЖ и IЭ – токи в жиле и экране кабеля; RЖ и RЭ – активные сопротивления жилы и экрана, которые зависят от температуры и могут быть найдены как:

где,

rЖ и rЭ – удельные активные сопротивления материала жилы и экрана при температуре Т20 = 20°C (для меди это 1,72 · 10–8 Ом·м); aЖ и aЭ – температурные коэффициенты сопротивления материала жилы и экрана (для меди это 0,0039); FЖ и FЭ – сечение жилы и экрана; ТЖ и ТЭ – температура жилы и экрана. Также потери в экране могут быть выражены через относительные потери PЭ / PЖ, определенные, например, по методике [Дмитриев М.В. Заземление экранов однофазных силовых кабелей 6-500 кВ.–СПб.: Изд-во Политехн. ун-та, 2010. –152 с]

где,

РЭ / РЖ > 0 в случае простого заземления экранов с двух сторон кабеля (рис. 2а); РЭ / РЖ = 0 в случае заземления экранов с одной стороны (рис. 2б) или в случае их транспозиции (рис. 2в).

Рис.2. Основные схемы заземления экранов кабельных линий с однофазными кабелями 6–500 кВ: а – заземление с двух сторон; б – заземление с одной стороны; в – транспозиция экранов

Дополнительным источником тепловыделения в кабеле являются потери в диэлектрике:

где,

CИ – емкость изоляции между жилой и экраном кабеля; UНОМ – номинальное напряжение сети; tgδИ – тангенс угла диэлектрических потерь в изоляции (для сшитого полиэтилена это 0,001); ε – диэлектрическая постоянная изоляции кабеля (для сшитого полиэтилена это 2,4); ε0 = 8,85 · 10–12 Ф/м – диэлектрическая постоянная вакуума; ω = 314 рад/с – круговая частота.

Теплопоглощение

Выделяющееся тепло через изоляцию И кабеля, оболочку О, воздух В в трубе и саму трубу Т уходит в окружающий грунт Г, встречая на своем пути тепловое сопротивление этих слоев:

где,

ρи, ρо, ρв, ρт, ρг – соответствующие удельные тепловые сопротивления; h – глубина, на которой проложен кабель.

В трехфазных сетях прокладывают трехфазные группы однофазных кабелей, что для каждой из фаз ухудшает условия отвода тепла в грунт. Это можно учесть, считая для каждой из фаз тепловое сопротивление грунта в три раза большим, чем оно было бы при наличии только одной фазы кабеля (рис. 3).

Рис.3. Определение теплового сопротивления грунта

Уравнение теплового баланса

Итоговая тепловая схема для расчета температуры одной фазы трехфазной кабельной линии дана на рис.4. Влияние двух других фаз учтено заменой RГ на 3RГ.

Рис.4. Расчетная схема теплового баланса кабельной линии

TK – температура поверхности однофазного кабеля; TГ – температура грунта (обычно принимается равной 20°C); КП – коэффициент, учитывающий рост потерь в жиле кабеля за счет поверхностного эффекта (для медной жилы указан в табл.1).

Коэффициент поверхностного эффекта
KП
для медной жилы сечением
FЖ

Fж, мм2 150 200 250 300 400 600 750 1000 1250 1500
Kп, о.е
.
1,006 1,012 1,016 1,026 1,040 1,068 1,145 1,239 1,335 1,439

С помощью рис. 4 несложно записать уравнения теплового баланса (по аналогии с законом Ома для электрической цепи). Выражение с температурой жилы:

Выражение с температурой поверхности кабеля:

Тепловой расчет Определение допустимого тока кабеля по предельной температуре жилы 90 °C

Для изоляции из сшитого полиэтилена, которая наиболее часто применяется для современных однофазных кабелей 6–500 кВ, длительно допустимая температура не должна превосходить 90°C. Приняв температуру жилы кабеля ТЖ = 90°C, из уравнения теплового баланса (1) найдем длительно допустимый ток кабеля:

Пример расчета. Пусть трехфазная группа однофазных кабелей 110 кВ с медными жилой 1000 мм2 и экраном 240 мм2 проложена в расположенных сомкнутым треугольником трубах диаметром 225 мм с толщиной стенки 10 мм. Удельные тепловые сопротивления изоляции и оболочки кабеля приняты ρи = 3,5 и ρо = 3,5 К·м/Вт. Результаты расчетов допустимого тока (3) сведены в табл. 2 в зависимости от основных влияющих факторов: схемы соединения и заземления экранов (наличия потерь в экранах), а также удельного теплового сопротивления грунта, которое на практике меняется в широком диапазоне значений ρг = 1÷3 К·м/Вт. В случаях I, II труба отсутствует, фазы кабеля проложены в открытом грунте вплотную друг к другу (I) или на расстоянии 225 мм (II). При этом при вычислениях по (3) удельные тепловые сопротивления ρв и ρт приняты такими же, как ρг, что как раз и означает отсутствие воздуха В и полиэтиленовой трубы Т.

В случае III фазы кабеля проложены в трубах, расположенных сомкнутым треугольником, расстояние между осями фаз составляет 225 мм. Удельные тепловые сопротивления воздуха и трубы приняты ρв = 10 и ρт = 3 К·м/Вт. Удельное тепловое сопротивление железобетонного лотка составляет около 2 К·м/Вт, что близко к свойствам грунта. Поэтому выводы, которые можно будет сделать на основе анализа случая I из табл. 2, в полной мере относятся не только к прокладке кабеля в грунте, но и к прокладке кабеля в железобетонных лотках.

Результаты расчетов по (3) неплохо совпадают, например, с каталогом фирмы АВВ, где в случае прокладки кабелей 1000/240 мм2 с транспонированными экранами сомкнутым треугольником в грунте допустимые токи при тепловом сопротивлении грунта 1,2 и 3 К·м/Вт составляют соответственно 1095, 810, 668 А.

В каждом из случаев I, II, III даны допустимые токи для кабеля без потерь в экранах (рис. 2б, 2в) и с потерями (рис. 2а), а также эти же токи в относительных единицах (за 1 о.е. принят ток для кабеля без потерь в экранах). Такие относительные значения допустимых токов по сути представляют собой коэффициент использования пропускной способности кабеля, который здесь вычисляется с учетом всех тепловых характеристик трассы, а в [Дмитриев М.В. Заземление экранов однофазных силовых кабелей 6-500 кВ.–СПб.: Изд-во Политехн. ун-та, 2010. –152 с] упрощенно оценивался без них как:

Из табл. 2 видно, что простое двустороннее заземление экранов заметно снижает допустимый ток кабеля: – на 27–29% (снижение от 1,0 о.е. до 0,71 – 0,73) в случае I; – на 44–46% в случае II; – на 45–46% в случае III.

Таблица 2. Длительно допустимый ток IД90

по (3) трехфазной группы однофазных кабелей 110 кВ с медной жилой 1000 мм2 и экраном 240 мм2, отвечающий температуре жилы 90°С, а также возникающая при этом температура поверхности кабеля TK по (2), в зависимости от основных влияющих факторов.

Описание расчетного случая РЭЖ,о.е. Удельное тепловое сопротивление грунта pr
pr= 1 K⋅м/Вт pr= 2 K⋅м/Вт pr= 3 K⋅м/Вт
IД90⋅A TK, °C IД90⋅A TK, °C IД90⋅A TK, °C
1. Фазы проложены в грунте сомкнутым треугольником:
Экраны транспонированы и т.п. (рис. 2б, 2в) 0 1108 (1,0) 77,2 819 (1,0) 82,9 678 (1,0) 85,1
Экраны заземлены с двух сторон (рис. 2а) 1,3 804 (0,73) 81,8 584 (0,71) 85,7 480 (0,71) 87
2. Фазы проложены в грунте треугольников на расстоянии 225 мм друг от друга:
Экраны транспонированы и т.п. (рис. 2б, 2в) 0 1108 (1,0) 77,2 819 (1,0) 82,9 678 (1,0) 85,1
Экраны заземлены с двух сторон (рис. 2а) 3,1 625 (0,56) 83,9 450 (0,55) 85,7 369 (0,54) 87,8
3. Фазы проложены в грунте в полиэтиленовых трубах диаметром 225 м:
Экраны транспонированы и т.п. (рис. 2б, 2в) 0 841 (1,0) 82,6 703 (1,0) 84,8 615 (1,0) 86,0
Экраны заземлены с двух сторон (рис. 2а) 3,1 463 (0,55) 86,6 383 (0,54) 87,7 344 (0,54) 88,2

Примечание. В скобках даны относительные значения допустимых токов IД90
(за 1 о.е. принят ток для схем, приведенных на рис. 2б и 2в).

Следовательно, можно сделать вывод, что при прокладке фаз кабельной линии на расстоянии друг от друга (II, III) заземление экранов с двух сторон недопустимо, обязательно требуется или их одностороннее заземление, или их транспозиция. В частности, эти мероприятия нужны при прокладке фаз кабеля в трубах (III).

Также видно, что прокладка фаз кабельной линии в трубах (III) несколько снижает допустимый ток по сравнению с прокладкой в открытом грунте (I): – при ρг = 1 К·м/Вт – на 24% (с 1108 до 841 А); – при ρг = 2 К·м/Вт – на 14% (с 819 до 703 А); – при ρг = 3 К·м/Вт – на 9% (с 678 до 615 А).

Анализ расчетов табл. 2 позволяет сделать вывод, что основной причиной снижения пропускной способности линий с однофазными кабелями 6–500 кВ является вовсе не их прокладка в полиэтиленовых трубах, а отсутствие мероприятий по борьбе с токами и потерями в экранах – одностороннего заземления экранов или транспозиции экранов. При прокладке кабелей в трубах схемы заземления экранов рис. 2б и рис. 2в оказываются незаменимы.

Определение допустимого тока кабеля по предельной температуре поверхности кабеля 40 °C

В табл. 2 представлены результаты расчетов температуры на поверхности фазы кабеля по (2), куда подставлен предельно допустимый ток по (3). Как видно, температура поверхности кабеля достигает 80°C и даже более. Для упрощения расчетов температура поверхности кабеля определялась для случая, когда кабель размещен в середине трубы и не касается ее стенок (рис. 3). На практике кабель лежит на дне трубы и передает ей температуру своей поверхности. Для ПНД труб, применяемых для прокладки кабеля и рассчитанных на 40°C, такая высокая температура недопустима.

Близкая к 80°C температура поверхности кабеля, лежащего на дне трубы, получена также и в работе [Титков В.В., Дудкин С.М. Влияние способов прокладки на температурный режим кабельных линий 6-10 кВ и выше //«Новости Электротехники», №3(75), 2012 г.], авторы которой выполняли тепловой расчет при помощи специального программного обеспечения.

Определим длительно допустимый ток кабельной линии, исходя из условия, что температура поверхности кабеля не превысит 40°C. Приняв температуру поверхности кабеля ТК = 40°C, из уравнения (2) найдем этот ток:

Считая, что для кабельной линии, проложенной в трубах, меры по борьбе с паразитными токами в экранах являются обязательными, расчеты по (4) проведены при условии отсутствия потерь в экранах, а их результаты даны в табл. 3.

Таблица 3. Длительно допустимый ток трехфазной группы однофазных кабелей 110 кВ с медной жилой 1000 мм2 и экраном 240 мм2 в зависимости от основных влияющих факторов. Приняты меры борьбы с токами в экранах (транспозиция экранов или их одностороннее заземление)

Описание способапрокладки кабеля Формула Удельное тепловое сопротивление грунта pr
pr= 1 K⋅м/Вт pr= 2 K⋅м/Вт pr= 3 K⋅м/Вт
В грунте или лотке (критерий 90 °C) 3 1108 (1,0) 819 (1,0) 678 (1,0)
В термостойкой трубе (критерий 90 °C) 3 841 (0,76) 703 (0,86) 615 (0,91)
В ПНД трубе (критерий 40 °C) 4 468 (0,42) 380 (0,46) 327 (0,48)

Примечание. В скобках даны относительные значения допустимых токов IД90, IД40 (за 1 о.е. принят ток для случая прокладки в грунте или лотке).

Из табл. 3 видно, что обеспечение требований ГОСТ к условиям эксплуатации ПНД труб (критерий 40 °C) приводит к снижению пропускной способности кабельной линии на 52–58% по сравнению со случаем прокладки фаз в открытом грунте. Тогда как применение термостойких труб, допускающих длительное воздействие температуры 80°C, которая имеется на поверхности кабеля при температуре жилы 90 °C, давало бы снижение пропускной способности лишь на 9–24%.

Следовательно, для прокладки кабельных линий 6–500 кВ с однофазными кабелями с изоляцией из сшитого полиэтилена возможность применения ПНД-труб следует переосмыслить. В кабельном строительстве требуется использование таких труб, которые, в отличие от ПНД, допускают длительное воздействие температуры не менее 80°C.

Термостойкие трубы для прокладки кабельных линий

В настоящее время на рынке уже имеются термостойкие трубы, которые могли бы заменить ПНД в кабельном строительстве. В качестве примера в табл. 4 приведены некоторые из них.

Таблица 4. Существующие на рынке полимерные трубы и возможность их использования для прокладки однофазных кабелей 6–500 кВ

Тип трубы ПНД PEX PB ПРОТЕКТОРФЛЕКС®
Материал Обычный полиэтилен Сшитый полиэтилен для тепловых труб Полибутен для тепловых труб Полимерная композиция повышенной термостойкости
Назначение Холодая вода Горячая вода Горячая вода Кабели 6-500 кВ
Возможные диаметры труб, мм 20-1200 16-160 20-315 16-1200
Возможность использования для кабелей 6-500 кВ Нет Да Да Да
Температура эксплуатации, °C 40 95 95 110

Трубы ПРОТЕКТОРФЛЕКС®, PEX, PB не будут размягчаться и слипаться с кабелями, не потеряют механической прочности не только в нормальном установившемся режиме работы сети, но и при коротких замыканиях в кабеле.

Заключение

1. К снижению пропускной способности кабельных линий с однофазными кабелями 6–500 кВ приводят паразитные токи и потери мощности в экранах, а также прокладка фаз в полиэтиленовых трубах.

2. Основной причиной снижения пропускной способности кабельных линий 6–500 кВ является отсутствие мероприятий по борьбе с токами в экранах – заземления экранов с одной стороны или транспозиции экранов.

3. Прокладка кабельных линий в трубах не является основной причиной снижения их пропускной способности.

4. Применяемые в настоящее время для прокладки кабельных линий 6–500 кВ полиэтиленовые трубы низкого давления (ПНД) не годятся для этих целей, так как являются трубами холодного водоснабжения и рассчитаны на длительную работу в температурном диапазоне до 40°C, что существенно меньше тех температур, которые могут возникать на поверхности кабеля.

5. Следует приостановить применение ПНД-труб для прокладки кабельных линий с однофазными кабелями 6–500 кВ и рассмотреть применение для этих целей труб типа ПРОТЕКТОРФЛЕКС®, PEX, PB или иных, которые будут удовлетворять требованиям по температуре, гибкости, механической прочности и проч.

Плюсы и минусы от нагрева электрическим током

  • Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
  • Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.

Бытовые нагревательные приборы: чайник, утюг, фен, электроплита

Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.

Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.

Расчет размера сечения по нагрузке

Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.

Алгоритм расчетных действий следующий:

  • для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
  • затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
  • предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².

Простейшие электрические расчеты нагревательных элементов

Электронагреватели широко используются в бытовых электроприборах: чайниках, утюгах, каминах, плитках, паяльниках и т. д. Тепловое действие тока. При прохождении электрического тока через неподвижные металлические проводники единственным результатом работы тока является нагревание этих проводников, и, следовательно,по закону сохранения энергии вся работа, совершенная током, превращается в тепло.

Работа (в джоулях), совершаемая током при прохождении его через участок цепи, вычисляется по формуле:

  • U — напряжение, В;
  • I — сила тока, А;
  • t- время, с.

Количество теплоты (Дж), выделенное в проводнике при прохождении по нему электрического тока, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока и вычисляется по закону Джоуля — Ленца:

где R — сопротивление проводника, Ом.

Произведем расчет количества теплоты, необходимой для того, чтобы вскипятить воду в чайнике, вмещающем 2 л. Напряжение сети U=220 В. Ток, потребляемый электрочайником, I= 4 А. Определить время закипания воды в чайнике, если КПД его 80% и начальная температура воды 20° С.

  • U=220 В;
  • I=4 А;
  • m=2 кг;
  • КПД=0,8;
  • t=20° С;
  • tкип = 100° С.
  • Удельная теплоемкость воды С=4200.

Определим количество теплоты, необходимое для нагрева воды до температуры кипения.

Qпол = cm (tкип — t0) = 4200 * 2(100 — 20) = 672 000 Дж.

Определим общее количество теплоты, которое должен выделить нагревательный элемент электрочайника, с учетом потерь на нагрев керамики, корпуса чайника и внешней среды:

Нагрев токоведущих частей при длительном протекании тока

Основные условия нагрева и охлаждения электрооборудования рассмотрим на примере однородного проводника, охлаждающегося равномерно со всех сторон.
Если через проводник, имеющий температуру окружающей среды, проходит ток, то температура проводника постепенно повышается, так как вся энергия потерь при прохождении тока переходит в тепло.

Скорость нарастания температуры проводника при нагреве током зависит от соотношения между количеством выделяющегося тепла и интенсивностью его отвода, а также теплопоглощающей способности проводника.

Количество тепла, выделенного в проводнике в течение времени dt, будет составлять:

где I — действующее значение тока, проходящего по проводнику, а; Ra — активное сопротивление проводника при переменном токе, ом; Р—мощность потерь, переходящих в тепло, вm. Часть этого тепла идет на нагрев проводника и повышение его температуры, а остальное тепло отводится с поверхности проводника за счет теплоотдачи.

Энергия, идущая на нагрев проводника, равна

где G — вес токоведущего проводника, кг; с — удельная теплоемкость материала проводника, em•сек/кг•град; Θ — перегрев — превышение температуры проводника по отношению к окружающей среде:

v и vо—температуры проводника и окружающей среды, °С.

Энергия, отводимая с поверхности проводника в течение времени dt за счет теплоотдачи, пропорциональна превышению температуры проводника над температурой окружающей среды:

где К — общий коэффициент теплоотдачи, учитывающий все виды теплоотдачи, Вm/см2 °С; F — поверхность охлаждения проводника, см2,

Уравнение теплового баланса за время неустановившегося теплового процесса можно записать в следующем виде:

Для условий нормального режима, когда температура проводника изменяется в небольших пределах, можно принять, что R, с, К представляют собой постоянные величины. Кроме того, следует учесть, что до включения тока проводник имел температуру окружающей среды, т. е. начальное превышение температуры проводника над температурой окружающей среды равно нулю.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

Закон Джоуля-Ленца

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Закон Джоуля-Ленца

В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.

Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

5.Уравнение непрерывности

Закон сохранения заряда утверждает, что в замкнутой системе заряд сохраняется. Если система не замкнута, то заряд может изменяться.

Данное уравнение называется уравнением непрерывности в интегральной форме. Производная по времени связана с временной зависимостью заряда. Данное уравнение считается постулатом. По смыслу – это закон изменения заряда.

Используя понятие объемной плотности заряда и формулу Остроградского-Гаусса

– уравнение непрерывности в дифференциальной форме.

Если ток постоянный, то , следовательно, линии плотности тока являются замкнутыми.

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

нихромовая нагретая спираль

Из формулы также следует – чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге – подгорание с последующим пропаданием контакта.

9.Сопротивление и проводимость.

Сопротивление зависит от геометрии и от вещества, из которого сделан проводник.

Для цилиндрического проводника одинакового поперечного сечения оно вычисляется особенно просто.

Измерив сопротивление, можно вычислить ёмкость и наоборот.

Данное устройство иногда называется конденсатором с утечкой.

По физическому смыслу, удельное сопротивление – это сопротивление куба вещества с ребром 1 м, если подводящие провода подключены к центрам противоположных граней.

Приведем таблицу удельных сопротивлений

Медь 1,72·10-8Ом·м
Серебро 1,6·10-8Ом·м
Алюминий 2,6·10-8Ом·м
Свинец 2,0·10-6Ом·м
Графит 3·10-5Ом·м
Германий 0,6Ом·м
Стекло 10+9Ом·м

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

Все электрические приборы подключаются к электрической сети с помощью проводов. Провод по своей сути является металлическим проводником электрического тока. Иногда возьмешь в руки провод, который питает мощное устройство, а он горячий.

Если проводка рассчитана неправильно, то может дойти и до момента расплавления провода, и до последующего короткого замыкания. В некоторых случаях, это может быть даже опасно.

Мы только что столкнулись с тепловым действием электрического тока. Всем проводникам свойственно нагреваться при прохождении через них тока. Одни нагреваются сильнее – другие слабее.

Это происходит из-за того, что каждый проводник, будь то полимерный или металлический материал, имеет некоторую структуру строения.

Тепловое действие тока
Тепловое действие тока

Электрический ток же есть направленное упорядоченное движение частиц. Частицы двигаются по проводнику как люди в переходе в метро, где расположены колонны. Когда человек один на весь переход колоны ему совершенно не мешают.

Ток в проводнике
Ток в проводнике

Проводник, которым в данном случае является колонный зал, обладает сопротивлением. При таком сопротивлении, когда в переходе один человек, ситуация вполне нормальная и человек не трется о стенки. Но запусти туда тысячу человеку и они будут толкаться и тереться об стены. В проводе всё также. Сопротивление аналог пропускной способности туннеля из примера.

Когда люди или заряды начинают тереться об элементы структуры (ну или колонный в нашем живом примере), вырабатывается тепло. Вот, собственно говоря, мы и наблюдали тепловое действие электрического тока. Подобная картина присуща и электролитам.

Отметим, что тепловое действие электрического тока во многих случаях является паразитным эффектом. Нагревание проводников повышает их сопротивление, а работа, которую можно было бы превратить в свет лампочки или кручение двигателя, рассеивается на проталкивание частичек через кристаллическую решетку и нагревает проводник, когда на это вовсе не нужно.

Очевидно, что это должно быть некоторой закономерностью. Да и выявить её нужно, ведь не один электрический прибор не сможет нормально работать без правильного расчёта этих параметров. Нам нужно знать, насколько нагреется проводник и в каких случаях.

Именно выводом этой закономерности заинтересовались ученые Джоуль и Ленц. Работали они не совместно, но к одинаковым результатам пришли практически одновременно. Потому и назвали закон именем Джоуля-Ленца.

Тепловое действие тока
Тепловое действие тока

Экспериментальным путем была выявлена закономерность, которая описывает количество теплоты, которое выделится на проводнике с током. Она равна произведение квадрата силы тока (I) в проводнике, на сопротивление этого проводника (R) и время работы такой установки (t).

Закон Джоуля Ленца
Закон Джоуля Ленца

Такая запись закона называется законом Джоуля-Ленца в интегральной форме. Но для порядка стоит записать формулу вот так:

Закон Джоуля-Ленца в интегральной форме
Закон Джоуля-Ленца в интегральной форме

В других источниках можно увидеть формулу, содержащую плотность тока. Так записывать закон даже правильнее, но при выводе силы тока из плотности тока и анализе напряженности мы получим абсолютно тот же результат.

Важным параметром тут является электрическое сопротивление. Не нужно забывать, что оно связан ос удельным сопротивлением и геометрическими параметрами проводника. Именно через эти характеристики можно выразить нужные для нас значения и определить искомые свойства. Скажем, зная эти данные, мы сможем рассчитать, возможно ли использовать в предполагаемой сети медный провод с сечением 1 мм квадратный и длиной 5 метров при использовании нагрузки 2 киловатта.

Зная закон Джоуля-Ленца, мы можем численно оценить тепловое действие электрического тока. Это позволит исключить неправильное конструирование электрических сетей и не подбирать проводники с заведомо неподходящими характеристиками. Ведь провод с неправильным сечением может и вовсе расплавиться. Поэтому, рассматриваемый закон является одним из основных законов современной физики и обязательно должен быть изучен.

Кроме того, на базе теплового действия электрического тока работают и полезные приборы. Скажем, в электрической лампочке накаливания нить разогревается до момента, пока не начнет испускать видимое излучение или светить. Эту температуру тоже можно высчитывать по рассматриваемому закону. Также важно это и при расчёте электрических нагревателей или приборов для приготовления пищи. Ведь для кипячения воды нужно довести воду до 100 градусов. Значит, устройство должно иметь подходящий электрический нагреватель.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

Закон Джоуля-Ленца

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени. Величина “к” представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина “к”, применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

Закон Джоуля-Ленца

В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.

Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:

Q=I2Rt

где

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Формулировка

Закон джоуля ленца формулировка словесно выглядит следующим образом: мощность тепла, которая выделяется в проводниковом элементе в момент протекания в нем электротока имеет пропорциональную зависимость умножения плотности электрополя на напряженность.

Его по-другому можно сформулировать так: энергия, протекая по проводнику, перемещает электрозаряд в электрополе. Так, электрополе совершает работу. Работа производится благодаря проводниковому нагреванию. Энергия превращается в тепло.

Однако, из-за чрезмерного проводникового нагрева при помощи тока и электрооборудования, может повредиться проводка и сами аппараты. Сильное перегревание опасно, когда есть короткое замыкание в проводах. Из-за этого проводники могут иметь большое токовое значение.

Что касается интегральной формы тонких проводников правило или уравнение Джоуля — Ленца звучит так: то тепло, которое выделяется за время в конкретном участке электроцепи, определяется квадратным произведением токовой силы на сопротивление участка.

Обратите внимание! Закон Джоуля-Ленца обладает достаточно общим характером, потому что не имеет зависимости от природы, силу которой генерирует электроток.

Вам это будет интересно Особенности трехфазной сети

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

нихромовая нагретая спираль

Из формулы также следует – чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге – подгорание с последующим пропаданием контакта.

Все формулы количества теплоты через силу тока

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях) I — сила тока (в Амперах) R — сопротивление проводника (в Омах) t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

Использование закона Джоуля-Ленца для передачи электроэнергии на расстояние

высоковольтные линии электропередач

Закон Джоуля-Ленца

Когда происходит передача электричества на расстояние, появляется проблема потери на линиях передач. Закон показывает количество тепла, которое выделяется проводником при проходе тока.

ЛЭП используются предприятиями и городами, следственно необходимо больше мощности и больше тока.

Количество теплоты связано с сопротивлением тока и проводника, для того чтобы избежать нагрева, необходимо уменьшить количество тепла.

Не всегда можно использовать сечение провода, это дорого стоит из-за цены меди и веса кабелей, следовательно, увеличивается стоимость несущей конструкции.

На рисунке показаны высоковольтные линии электропередач. Это огромные конструкции из металла, создающиеся для поднятия кабеля на высоту, безопасную для людей на земле, чтобы избежать удара током.

Для этого необходимо снизить ток, следовательно, повышается напряжение.

Линии электропередач между городами используют напряжение 220 и 110 кВ, а у того, кто потребляет, понижают до необходимой величины, используя трансформатные подстанции. Или множеством КТП медленно понижая до безопасной величины, например, 6кВ.

То есть ток уменьшится в тысячи раз, но при той же потребляемой мощности. По закону Джоуля-Ленца, теплота в данном случае определится мощностью, которая теряется на кабеле.

Добавить комментарий