Как найти количество теплоты в газах

Первое начало термодинамики (первый закон термодинамики) представляет собой закон сохранения энергии в тепловых процессах.

Первое начало термодинамики

Внутренняя энергия идеального газа изменяется двумя способами: за счет теплопередачи или при совершении работы.

±ΔU=±Q±A

Пояснение:

  • +∆U — внутренняя энергия газа увеличивается.
  • –∆U — внутренняя энергия газа уменьшается.
  • +Q — газ нагревают (газу передают количество теплоты).
  • –Q — газ охлаждается (газ отдает тепло окружающей среде).
  • +A’ — газ сжимает внешняя сила.
  • –A’ — газ расширяется, совершая работу.

Внимание! Знак перед работой показывает, как процесс совершения работы влияет на изменение внутренней энергии газа.

Пример №1. В некотором процессе внутренняя энергия газа уменьшилась на 300 Дж, а газ совершил работу 500 Дж. Какое количество теплоты было сообщено газу?

Чтобы рассчитать количество теплоты, сообщенное газу, нужно найти разность между изменением внутренней энергии и работой, совершенным газом. Для этого нужно правильно определить их знаки. Так как внутренняя энергия уменьшилась, она отрицательна. Но работа положительна. Поэтому газу было сообщено следующее количество теплоты:

Q = A – U = 500 – 300 = 200 (Дж)

Зависимость физических величин

Выясним, от чего зависят величины, входящие в формулу первого начала термодинамики. Изменение внутренней энергии идеального газа зависит от изменения температуры:

ΔU=32νRΔT

Работа идеального газа зависит от изменения его объема:

A=pΔV

Первое начало термодинамики для изопроцессов

Изотермический процесс (T = const)

ΔU=0, Q=A

Изохорный процесс (V = const)

A=0, ΔU=Q

Изобарное расширение газа (p = const)

ΔU=QpΔV

ΔU=QνRΔT

Адиабатный (система не получает тепло извне и не отдает его окружающей среде, или Q = 0)

Q=0, ΔU=A

Пример №2. Идеальный одноатомный газ находится в сосуде с жесткими стенками объемом 0,6 куб. м. При нагревании его внутренняя энергия увеличилась на 18 кДж. На сколько возросло давление газа?

18 кДж = 18000 Дж

Внутреннюю энергию газа можно определить по формуле:

ΔU=32νRΔT

Отсюда изменение температуры равно:

ΔT=2ΔU3νR

Уравнение состояния идеального газа для 1 и 2 состояния:

p1V=νRT1

p2V=νRT2

Отсюда давления равны:

p1=νRT1V

p2=νRT2V

Разность давлений:

p2p1=νRT2VνRT1V=νRVΔT=νRV·2ΔU3νR=2ΔU3V

p2p1=2·180003·0,6=20000 (Па)=20 (кПа)

Графические задачи на первое начало термодинамики

Рассмотрим графический способ решения задачи на первое начало термодинамики на конкретном примере.

Задача: Один моль идеального одноатомного газа сначала изотермически расширился (T1 = 300 К). Затем газ охладили, понизив давление в 3 раза (см. рисунок). Какое количество теплоты отдал газ на участке 2–3?

Порядок решения:

1. Определить температуры для всех указанных точек, учитывая графики процессов, масштаб и условие задачи.

T1 = T2 = 300 К; T3 = 100 К

2. Определить, к какому изопроцессу относится тот участок графика, о котором спрашивают в задаче.

Участок 2–3 на графике — это изохорный процесс, так как давление остается постоянным.

3. Записать для него первое начало термодинамики.

В данном процессе:

ΔU=Q

4. Учитывая характер изменения величин, правильно расставить знаки: ΔU=Q.

5. Подставляя в первое начало термодинамики формулы для расчета изменения внутренней энергии и работы газа, решить задачу.

Формула изменения внутренней энергии газа:

ΔU=32νRΔT

Формула работы газа:

A=pΔV

Так как процесс изохорный, работа газа равна нулю. Поэтому количество теплоты, отданное газом на участке 2–3, равно изменению внутренней энергии газа:

Изменение внутренней энергии равно:

Q23=32νRΔT23=32·1·8,31·200=2493 (Дж)

Задание EF17492

Четыре металлических бруска положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент 100°С, 80°С, 60°С, 40°С. Температуру 40°С имеет брусок

  • A
  • B
  • C
  • D

Алгоритм решения

  1. Определить тип теплопередачи.
  2. Вспомнить, как происходит этот тип теплопередачи.
  3. Сделав анализ рисунка, установить, какой брусок имеет указанную в задаче температуру.

Решение

Так как это твердые тела, поверхности которых соприкасаются друг с другом, и перенос тепла происходит без переноса вещества, то этот вид теплопередачи является теплопроводностью. Тепло всегда направлено от более нагретого тела к менее нагретому.

На рисунке видно, что самым нагретым телом является нижний брусок, так как он только отдает тепло, но не принимает его. Средний брусок справа менее нагрет, чем нижний, так как принимает от него тепло. Но он более теплый по сравнению со средним бруском слева, так как он делится с ним теплом. И оба этих бруска отдают свою энергию верхнему бруску, который сам только принимает тепло, но не отдает его. Следовательно, именно он имеет температуру +40 оС.

Ответ: A

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17758

Один моль аргона, находящийся в цилиндре при температуре T1=600 K и давлении p1=4⋅105  Па, расширяется и одновременно охлаждается так, что его температура при расширении обратно пропорциональна объёму. Конечное давление газа p2=105  Па. Какое количество теплоты газ отдал при расширении, если при этом он совершил работу A=2493  Дж?


Алгоритм решения

1.Записать исходные данные.

2.Записать уравнение состояния идеального газа.

3.Записать формулу для расчета внутренней энергии газа.

4.Используя первое начало термодинамики, выполнить общее решение задачи.

5.Подставив известные данные, вычислить неизвестную величину.

Решение

Запишем исходные данные:

 Начальная температура газа: T1 = 600 К.

 Начальное давление: p1 = 4∙105 Па.

 Конечное давление: p2 = 105 Па.

 Работа, совершенная газом: A = 2493 Дж.

Аргон является одноатомным газом. Поэтому для него можно использовать уравнение состояния идеального газа:

pV=νRT

Внутренняя энергия одноатомного идеального газа пропорциональна температуре:

U=32νRT

Внутренняя энергия аргона до расширения и после него:

U1=32νRT1

U2=32νRT2

Согласно условию задачи, температура при расширении обратно пропорциональна объёму. Следовательно:

T=constV

T1V1=T2V2

Выразим конечную температуру:

T2=T1V1V2

Составим уравнение состояния газа для состояний аргона 1 и 2:

p1V1=νRT1

p2V2=νRT2

Отсюда:

νR=p1V1T1=p2V2T2

Отсюда отношение объема аргона в состоянии 1 к объему газа в состоянии 2 равно:

V1V2=p2T1p1T2

Подставим это отношение в формулу для конечной температуры:

T2=T1V1V2=p2T12p1T2

Отсюда:

T2=T1p2p1

Отсюда внутренняя энергия газа в состоянии 2 равна:

U2=32νRT1p2p1

Уменьшение внутренней энергии аргона составило (изначально она была выше):

ΔU=U1U2=32νRT132νRT1p2p1=32νRT1(1p2p1)

В соответствии с первым началом термодинамики уменьшение внутренней энергии равно сумме совершённой работы и количества теплоты, отданного газом:

ΔU=Q+A

Следовательно, газ отдал следующее количество теплоты:

Q=ΔUA=32νRT1(1p2p1)A

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17562

Газу передали изохорно количество теплоты 300 Дж. Как изменилась его внутренняя энергия в этом процессе?

Ответ:

а) увеличилась на 300 Дж

б) уменьшилась на 300 Дж

в) увеличилась на 600 Дж

г) уменьшилась на 600 Дж


Алгоритм решения

1.Записать исходные данные.

2.Записать первое начало термодинамики.

3.Установить, как меняется внутренняя энергия идеального газа.

Решение

Запишем исходные данные:

 Количество теплоты, переданное газу: Q = 300 Дж.

Первое начало термодинамики:

ΔU=Q+A

Так как по условию задачи это изохорный процесс, то работа равна 0. Следовательно, изменение внутренней энергии газа равно количеству теплоты:

ΔU=Q=300 (Дж)

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17597

Находясь в цилиндре двигателя, газ получил от нагревателя количество теплоты, равное 10 кДж. Затем он  расширился, совершив работу 15 кДж. В результате всех этих процессов внутренняя энергия газа уменьшилась на

Ответ:

а) 5 кДж

б) 10 кДж

в) 15 кДж

г) 25 кДж


Алгоритм решения

1.Записать исходные данные.

2.Записать первое начало термодинамики.

3.Установить, как меняется внутренняя энергия идеального газа.

Решение

Запишем исходные данные:

 Количество теплоты, переданное газу: Q = 10 кДж.

 Работа, совершенная газом: A = 15 кДж.

Первое начало термодинамики:

ΔU=Q+A

В этой формуле за работу принимается та работа, что совершается над газом. Но в данном случае газ сам совершает работу. Поэтому первое начало термодинамики примет вид:

ΔU=QA=1015=5 (кДж)

Знак «–» указывает на то, что внутренняя энергия газа уменьшилась на 5 кДж.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17579

При постоянном давлении гелий нагрели, в результате чего он совершил работу 5 кДж? Масса гелия 0,04 кг. Насколько увеличилась температура газа?

Ответ:

а) 60 К

б) 25 К

в) 15 К

г) 3 К


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать первое начало термодинамики.

3.Записать формулу для расчета работы газа.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и выполнить вычисления искомой величины.

Решение

Запишем исходные данные:

 Газ совершил работу: A = 5 кДж.

 Масса гелия: m = 0,04 кг.

5 кДж = 5000 Дж

Первое начало термодинамики:

ΔU=Q+A

Учтем, что не над газом совершают работу, а сам газ совершает ее:

Отсюда:

ΔU=QA

Так как газ нагревали изобарно, часть тепла ушла на изменение внутренней энергии газа, а часть — на совершение этим газом работы.

Работа, совершенная газом, равна:

A=pΔV=mMRΔT

Молярная масса гелия равна 4∙10–3 кг/моль.

Отсюда:

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 3.9k

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 ноября 2020 года; проверки требует 1 правка.

Теплоёмкость определяется суммой поступательных, вращательных и удвоенным числом колебательных степеней свободы.

Теплоёмкость идеального газа — отношение количества теплоты, сообщённой газу delta Q, к изменению температуры dT, которое при этом произошло {displaystyle C={frac {delta Q}{dT}}} [1].

Удельная и молярная теплоёмкость[править | править код]

Молярная теплоёмкость — теплоёмкость 1 моля вещества [2]:

{displaystyle C_{M}={frac {C}{nu }}={frac {1}{nu }}{frac {delta Q}{Delta T}},}

где {displaystyle nu =m/M,} m — масса, M — молярная масса вещества.

Теплоёмкость единичной массы вещества называется удельной теплоёмкостью и, в системе СИ, измеряется в Дж/(кг·К)[1].

Формула расчёта удельной теплоёмкости[1][2]:

{displaystyle c={frac {C_{M}}{M}}={frac {delta Q}{mdT}},}

где c — удельная теплоёмкость, m — масса нагреваемого (охлаждающегося) вещества.

Теплоёмкость идеального газа в изопроцессах[править | править код]

Адиабатический[править | править код]

В адиабатическом процессе теплообмена с окружающей средой не происходит, то есть {displaystyle dQ=0}. Однако, объём, давление и температура меняются, то есть {displaystyle dTneq 0}[3].

Следовательно, теплоёмкость идеального газа в адиабатическом процессе равна нулю: C = {0 over dT} = 0.

Изотермический[править | править код]

В изотермическом процессе постоянна температура, то есть {displaystyle dT=0}. При изменении объёма газу передаётся (или отбирается) некоторое количество тепла[3]. Следовательно, теплоёмкость идеального газа равна плюс-минус бесконечности: {displaystyle Cto pm infty }

Изохорный[править | править код]

В изохорном процессе постоянен объём, то есть {displaystyle delta V=0} и, следовательно газ не совершает работы. Первое Начало Термодинамики для изохорного процесса имеет вид[1]:

{displaystyle dU=delta Q=nu C_{V}dT.qquad (1)}

А для идеального газа

{displaystyle dU={frac {i}{2}}nu RDelta T.}

Таким образом,

C_V=frac i2  R,

где i — число степеней свободы частиц газа.

Другая формула:

{displaystyle C_{V}={frac {R}{gamma -1}},}

где gamma  — показатель адиабаты, R — газовая постоянная газа.

Изобарный[править | править код]

Молярная теплоёмкость при постоянном давлении обозначается как C_p. В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера C_p = C_v + R[1].
Уравнение Майера вытекает из первого начала термодинамики[4]:

{displaystyle delta Q=mathrm {d} U+delta A,qquad (2)}.

В рассматриваемом случае, согласно определению теплоёмкости:

{displaystyle delta Q=C_{p}mathrm {d} T,}

Учитываем, что работа газа равна [4]:

{displaystyle delta A=mathrm {d} (pV)=nRmathrm {d} Tqquad =pmathrm {d} Vqquad +Vmathrm {d} pqquad =pmathrm {d} Vqquad ,(Vmathrm {d} pqquad =0)(3)}

Согласно уравнению Менделеева-Клапейрона для одного моля газа[1]:

{displaystyle pmathrm {d} V=Rmathrm {d} T.qquad (4)}

Подставляя уравнение (4) в (3) получаем:

{displaystyle delta A=Rmathrm {d} Tqquad (5)}

Так как энергия одной молекулы равна {displaystyle <e>={frac {i}{2}}kT} (6)[Комм 1][5], то и внутренняя энергия в целом и при изобарном процессе будет определяться по соотношению (1). Следовательно, подставляя уравнения (1) и (5) в (2) получаем соотношение Майера.

Молекулярно-кинетическая теория позволяет вычислить значения молярной теплоёмкости для классического идеального газа газов через значение универсальной газовой постоянной исходя из уравнения (6) и предположения, что молекулы газа не взаимодействуют между собой[5]:

Теплоёмкости можно также определить исходя из уравнения Майера, если известен показатель адиабаты, который можно измерить экспериментально (например, с помощью измерения скорости звука в газе или используя метод Клемана — Дезорма).

Теплоёмкость реального газа может значительно отклонятся от теплоёмкости идеального газа. Так при температуре в 25 °С и атмосферном давлении атомарный водород имеет теплоёмкость 2,50R , а атомарный кислород — 2,63R. Также теплоёмкость реального газа зависит от температуры[5].

См. также[править | править код]

  • Идеальный газ
  • Первое начало термодинамики
  • Теплоёмкость

Комментарии[править | править код]

  1. i — сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы
  2. 1 2 При жёсткой связи между атомами, то есть колебательные степени свободы исключены из рассмотрения. Примером трёхатомной линейной молекулы служит цианистый водород HCN.

Примечания[править | править код]

  1. 1 2 3 4 5 6 Савельев, 2001, с. 26—30.
  2. 1 2 Базаров И. П., Термодинамика, 2010, с. 41.
  3. 1 2 Савельев, 2001, с. 30—31.
  4. 1 2 Савельев, 2001, с. 18-20.
  5. 1 2 3 Савельев, 2001, с. 61-63.

Литература[править | править код]

  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.— Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
  • Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 110 с.
  • Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9.

Основы термодинамики

В
основе термодинамики лежат три
фундаментальных закона, называемых
началами термодинамики.

Первое
начало термодинамики:

Количество
теплоты, сообщённое газу, идёт на
приращение внутренней энергии газа и
на совершение газом работы над внешними
телами.



первое начало термодинамики.

Определим физические
величины, входящие в этот закон.

а)
Внутренняя
энергия

идеального газа равна

,

где


– количество вещества,
i
– число степеней свободы молекул газа.

Тогда
изменение внутренней энергии газа равно



изменение внутренней энергии
газа
.

Рис.
1

б) Вычислим теперь
работу, совершаемую
газом при изменении объёма. Для этого
рассмотрим газ, находящийся в цилиндре
под поршнем, который может свободно
перемещаться. При нагревании давление
газа P
, будет оставаться постоянным, и, как
видно из рисунка, работа, которую
совершает газ, будет равна:

,

где
dV
=
S
dl
– изменение объема газа.

работа,
совершаемая газом при изменении его
объема


в)
Наконец, найдём формулу для подсчёта
количества теплоты, сообщенной газу
массы
при его нагревании на
.
Для этого введем понятие молярной
теплоёмкости газа

.

Молярная теплоёмкость газа – это
количество теплоты, сообщённой 1 молю
газа, для увеличения его температуры
на
.

Тогда формула
для подсчёта теплоты будет иметь вид


теплота,
сообщённая газу для

увеличения его
температуры на
dT.

Применим первое начало термодинамики
к изопроцессам в газе.

Изопроцесс – это процесс, происходящий
в газе, когда один из параметров,
описывающих газ, является постоянным.

1. Термодинамика
изохорического процесса: V=const

Рассмотрим
закон, описывающий этот процесс и его
график в координатах (P,V).
Этот закон является частным случаем
уравнения состояния идеального газа:

PV
=
RT.

Рис.
2

.
закон Шарля.

Так как
,
то

и
,
т.е

работа
совершаемая газом при изохорическом
процессе равна нулю.

первое
начало термодинамики для изохорического
процесса.

Тогда

Поскольку
количество теплоты, сообщенное газу,
равно

,

где

молярная теплоёмкость газа при постоянном
объёме, то мы получаем полезную формулу
для подсчёта приращения внутренней
энергии газа:

изменение
внутренней энергии газа.

Сравнивая
эту формулу с другой формулой

получим
выражение для молярной теплоёмкости
газа при постоянном объёме:

.

  1. Термодинамика
    изобарического процесса: P=const.

Соседние файлы в папке Курс лекций по Физике

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Работа (A)

Работа — физическая величина, характеризующая способ передачи энергии термодинамической системе (газу), при котором изменяются внешние параметры (например, объём (V)). 

Работа газа (A) над внешними телами при малом изменении объёма (V) и/или при изобарном процессе вычисляется по формуле:

(boxed{A = pDelta V > 0}).  ((1))

Работа внешних сил над газом (A’) вычисляется по формуле:

(boxed{A’ = -A = -pDelta V < 0}).  ((2))

В общем случае работа газа (или работа внешних сил) вычисляется как площадь заштрихованной фигуры в координатах ((p), (V)):

для изобарного процесса — площадь прямоугольника (рис. (1)),

для любого другого процесса — площадь криволинейной фигуры (рис. (2)).

Рис2.png

Рис. (1). График изобарного процесса

Рис3.png

Рис. (2). График изотермического процесса

Количество теплоты (Q)

Количество теплоты — физическая величина, характеризующая способ передачи энергии термодинамической системе (газу), при котором не изменяются внешние параметры (например, объём (V)). 

Количество теплоты (Q > 0), если энергия сообщается термодинамической системе (газу) без изменения внешних параметров (например, объёма (V)).

Если термодинамическая система не обменивается с внешними телами энергией в форме теплоты, то она называется адиабатной: (Q = 0).

Работа (A) [Дж] и количество теплоты (Q) [Дж] — физические величины, которые характеризуют процесс изменения энергии термодинамической системы

Теплоёмкость

Теплоёмкость — физическая величина, определяющая количество теплоты (Q), которое изменяет температуру термодинамической системы на (1) К:

(boxed{C = frac{Q}{Delta T}}), (C = [frac{Дж}{К}]).  ((3))

Удельная теплоёмкость: (boxed{c = frac{Q}{mDelta T}}), (c = [frac{Дж}{кг · К}]).  ((4))

Молярная теплоёмкость: (boxed{C_M = frac{Q}{nu Delta T}}), (C_M = [frac{Дж}{моль · К}]).  ((5))

Уравнение Майера: (boxed{C_p — C_V = R}) ((nu = 1)),  ((6))

где (R) — универсальная газовая постоянная;

(boxed{C_p = frac{Q_p}{nu Delta T}}) — молярная теплоёмкость при изобарном процессе,

(boxed{C_V = frac{Q_V}{nu Delta T}}) — молярная теплоёмкость при изохорном процессе

Добавить комментарий