Как найти колинеарный вектор

Содержание:

  • Формула
  • Примеры нахождения коллинеарного вектора

Формула

Для того чтобы вектор
$bar{a}=left(a_{x} ; a_{y}right)$ был коллинеарным вектору $bar{b}=left(b_{x} ; b_{y}right)$ необходимо, чтобы их соответствующие
координаты были пропорциональны, то есть их координаты удовлетворяли условию

$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}$$

Если векторы заданны в пространстве своими координатами:
$bar{a}=left(a_{x} ; a_{y} ; a_{z}right), bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$, тогда условие коллинеарности имеет вид:

$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}=frac{a_{z}}{b_{z}}$$

Примеры нахождения коллинеарного вектора

Пример

Задание. Даны два вектора
$bar{a}=(2 ;-3)$ и $bar{b}=(-1 ; m)$. При каком значении
$m$ эти векторы будут коллинеарными?

Решение. Для того чтобы векторы
$bar{a}$ и
$bar{b}$ были коллинеарными необходимо,
чтобы их координаты были пропорциональными, то есть удовлетворяли условию:

$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}$$

Подставим координаты заданных векторов в это равенство и найдем значение
$m$:

$$frac{2}{-1}=frac{-3}{m}$$

По пропорции имеем:

$$2 cdot m=(-1) cdot(-3) Rightarrow 2 cdot m=3 Rightarrow m=frac{3}{2}=1,5$$

Ответ. Векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными при
$m=1,5$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Заданы два вектора
$bar{a}=(4 ;-m ; 1)$ и $bar{b}=(2 ;-3 ; n)$. При каких значениях
$m$ и
$n$ векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными?

Решение. Для того чтобы векторы
$bar{a}$ и
$bar{b}$ были коллинеарными необходимо, чтобы их координаты
были пропорциональными, то есть чтобы выполнялись следующие равенства:

$$frac{4}{2}=frac{-m}{-3}=frac{1}{n}$$

А тогда значения неизвестных параметров
$m$ и
$n$ находим из равенств

$$frac{m}{3}=2 Rightarrow m=6$$
$$frac{1}{n}=2 Rightarrow n=frac{1}{2}=0,5$$

Ответ. Векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными при
$m=6$ и $n=0,5$

Читать дальше: как найти вектор перпендикулярный вектору.

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

a = n · b

Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение

a × b =

ijk
axayaz
bxbybz

= i (aybz – azby) – j (axbz – azbx) + k (axby – aybx) =

= i (aynaz – aznay) – j (axnaz – aznax) + k (axnay – aynax) = 0i + 0j + 0k = 0

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Пример 1. Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

Значит:

Вектора a и b коллинеарны т.к.   1  =  2 .
4 8
Вектора a и с не коллинеарны т.к.   1  ≠  2 .
5 9
Вектора с и b не коллинеарны т.к.   5  ≠  9 .
4 8

Пример 2. Доказать что вектора a = {0; 3} и b = {0; 6} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2
ay 3

Найдем значение na:

na = {2 · 0; 2 · 3} = {0; 6}

Так как b = na, то вектора a и b коллинеарны.

Пример 3. найти значение параметра n при котором вектора a = {3; 2} и b = {9; n} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

Значит:

Решим это уравнение:

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Пример 4. Какие из векторов a = {1; 2; 3}, b = {4; 8; 12}, c = {5; 10; 12} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax  =  ay  =  az .
bx by bz

Значит:

Вектора a и b коллинеарны т.к.
14 = 28 = 312

Вектора a и с не коллинеарны т.к. 
15 = 210 ≠ 312

Вектора с и b не коллинеарны т.к.
54 = 108 ≠ 1212

Пример 5. Доказать что вектора a = {0; 3; 1} и b = {0; 6; 2} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2
ay 3

Найдем значение na:

na = {2 · 0; 2 · 3; 2 · 1} = {0; 6; 2}

Так как b = na, то вектора a и b коллинеарны.

Пример 6. найти значение параметров n и m при которых вектора a = {3; 2; m} и b = {9; n; 12} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay  =  az .
bx by bz

Значит:

3  =  2  =  m
9 n 12

Из этого соотношения получим два уравнения:

Решим эти уравнения:

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Автор статьи

Любовь Петровна Гаврилюк

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Понятие коллинеарности векторов

Чтобы понять, что значит коллинеарные векторы, сперва надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.

Определение 1

Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.

Концами отрезка будем называть точки, которые его ограничивают.

Для введения определения вектора один из концов отрезка назовем его началом.

Определение 2

Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.

Обозначение: $overline{AB}$ – вектор $AB$, имеющий начало в точке $A$, а конец в точке $B$.

Иначе одной маленькой буквой: $overline{a}$ (рис. 1).

Обозначение векторов. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Обозначение векторов. Автор24 — интернет-биржа студенческих работ

Определение 3

Нулевым вектором будем называть любую точку, которая принадлежит плоскости.

Обозначение: $overline{0}$.

Далее рассмотрим, какие векторы называются коллинеарными.

Определение 4

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой. Кроме того, понятие коллинеарность наблюдается в случается параллельности векторов (рис.2).

«Как найти вектор, коллинеарный вектору» 👇

Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ

Также введем определение векторного произведения, которое будет нам необходимо далее.

Определение 5

Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Обозначение: $overline{α}хoverline{β}$.

Чтобы найти векторное произведение, будем пользоваться формулой

$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}$

Признак коллинеарности через пропорциональность или как определить коллинеарность векторов по координатам

Теорема 1

Главное условие коллинеарности векторов: чтобы ненулевые векторы были коллинеарны между собой, необходимо, чтобы их соответствующие координаты были пропорциональны друг другу.

Доказательство.

Необходимость: Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать следующие равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Так как векторы $overline{α}$ и $overline{β}$ коллинеарны, то они будут либо сонаправленными, либо противоположно направленными. Без ограничения общности, будем считать, что они будут сонаправлены, то есть $overline{α}↑↑overline{β}$. Умножим один из этих векторов на действительное, большее нуля, число $r$, так, чтобы длины векторов $roverline{α}$ и $overline{β}$ были равны между собой. По определению умножения векторов на число, получим, что $roverline{α}↑↑overline{β}$. Но тогда, по определению равенства векторов, получим, что $roverline{α}=overline{β}$. Из этого равенства получим, что

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Достаточность: Пусть верны равенства $α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$. Докажем, что векторы $overline{α}$ и $overline{β}$ будут коллинеарными.

Из данных равенств следует, что $roverline{α}=overline{β}$.

Имеются два случая:

  1. $r lt 0$

    В этом случае, по определению умножения вектора на число, получим, что $roverline{α}↑↓overline{β}$.

  2. $r >0$

    В этом случае получим, что $roverline{α}↑↑overline{β}$.

    Тогда, в обоих случаях получаем доказательство коллинеарности векторов $overline{α}$ и $overline{β}$.

Ответ: теорема доказана.

Пример 1

Как проверить коллинеарность векторов $(3,-1)$ и $(9,-3)$.

Доказательство.

Разложим второй вектор:

$(9,-3)=(3cdot 3,3cdot (-1) )=3(3,-1)$

Получаем, что координаты этих векторов пропорциональны друг другу, что, по теореме 1, и доказывает наше утверждение.

Признаки и свойства коллинеарности векторов через их произведение

Теорема 2

Чтобы ненулевые векторы были коллинеарны между собой, необходимо и достаточно, чтобы их векторное произведение было равно нулевому вектору.

Доказательство.

Необходимость: Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать, что $overline{α}хoverline{β}=overline{0}$.

Так как векторы коллинеарны, то, по теореме 1, верны равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Найдем $overline{α}хoverline{β}$ по формуле

$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=begin{vmatrix}overline{i}&overline{j}&overline{k}\rβ_1&rβ_2&rβ_3\β_1&β_2&β_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\β_1&β_2&β_3\β_1&β_2&β_3end{vmatrix}=rcdot overline{0}=overline{0}$

Достаточность: Пусть верно равенство $overline{α}хoverline{β}=overline{0}$, докажем, что векторы $overline{α}$ и $overline{β}$ коллинеарны. Так как векторное произведение равняется $overline{0}$, то его длина также равняется нулю. Следовательно, угол между $overline{α}$ и $overline{β}$ равняется $180^circ$ или $0^circ$. То есть, чтобы они были коллинеарны, векторы должны лежать на одной или параллельных прямых.

Теорема доказана.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

В данной публикации мы рассмотрим, какие векторы называются коллинеарными и перечислим условия, при которых они являются таковыми. Также разберем примеры решения задач по этой теме.

  • Условия коллинеарности векторов

  • Примеры задач

Условия коллинеарности векторов

Векторы, лежащие на одной или нескольких параллельных прямых, называются коллинеарными.

Коллинеарные векторы

Два вектора коллинеарны, если выполняется одно из условий ниже:

1. Существует такое число n, при котором a · n = b.

2. Отношения координат векторов равны. Но данное условие не может применяться, если одна из координат равняется нулю.

3. Векторное произведение равно нулевому вектору (применимо только для трехмерных задач).

Примеры задач

Задание 1
Даны векторы a = {2; 5}, b = {3; 7} и c = {6; 15}. Определим, есть ли среди них коллинеарные.

Решение:
У заданных векторов нет нулевых координат, значит мы можем применить второе условие коллинеарности.

Отношение координат двух векторов

Отношение координат двух векторов

Отношение координат двух векторов

Следовательно, коллинеарными являются только векторы a и c.

Задание 2
Выясним, при каком значении n векторы a = {4; 10} и b = {2; n} коллинеарны.

Решение:
Т.к. среди координат нет нулей, согласно второму условию мы можем составить их соотношение, чтобы рассчитать недостающий элемент.

Отношение координат двух векторов

Значит, n = 2 · 10 : 4 = 5.

Содержание

Условия коллинеарности, ортогональности и компланарности

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами

Коллинеарность

Условие коллинеарности векторов 1. Два вектора $mathbf a(x_1,y_1)$ и $mathbf b(x_2,y_2)$ коллинеарны, если существует число $n$ такое, что

$$ mathbf {a} = n · mathbf {b}$$

или покоординатная детализация:

$$ x_1 = k cdot x_2 \
y_1 = k cdot y_2 \
z_1 = k cdot z_2 $$

Для коллинеарности векторов необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны

Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

$$ k = frac {x_1} {y_1} =frac {x_2} {y_2} = ldots $$

Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору. [или модуль векторного произведения = 0]

$$ x_1y_2 – x_2y_1 = 0$$

Пример 1. Какие из векторов a = (1; 2), b = (4; 8), c = (5; 9) коллинеарны? Ответ – a и b.

Пример 2. Доказать что вектора a = (0; 3) и b = (0; 6) коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n. $na = (2 · 0; 2 · 3) = (0; 6)$

Пример 3. Образуют ли базис векторы k(3,7), m(-6,14)?

Ответ: да. Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы).

В общем случае нужно составить систему уравнений (по условию 1) и исследовать ее на совместность. Если несовместна (решений нет) – значит, вектора ЛН. В данном случаи можно действовать упрощенно по условию 2, так как нет нулей и деления на них.

Пример 4. Даны вершины четырёхугольника A(-4,2), B(2,6), C(5,4), D(-1,0). Доказать, что четырёхугольник ABCD является параллелограммом.

Доказательство: Чертежа в задаче строить не нужно, поскольку решение будет чисто аналитическим. Нужно доказать:

  1. параллельность противоположных сторон AB и CD;

  2. параллельность противоположных сторон BC и AD.

Найти вектора и проверить на коллинеарность.


Систематизируем: Для двух векторов плоскости эквивалентны следующие утверждения:

  1. векторы линейно независимы;

  2. векторы образуют базис;

  3. векторы не коллинеарны;

  4. векторы нельзя линейно выразить друг через друга;

  5. определитель, составленный из координат данных векторов, отличен от нуля.

Ортогональность

Вектора a и b называются ортогональными, если угол между ними равен 90°.

Условие ортогональности векторов. Два вектора a и b ортогональны, если их скалярное произведение равно нулю.

$$ x_1x_2 + y_1y_2 = 0$$

или в трехмерном случае:

$$ x_1x_2 + y_1y_2 + z_1z_2 = 0$$

Пример 1. Доказать что вектора a = (1; 2) и b = (2; -1) ортогональны.

Пример 2. Найти значение числа n при котором вектора a = (2; 4) и b = (n; 1) будут ортогональны.

Ответ -2

Пример 4. Проверить являются ли вектора a = {2; 3; 1} и b = {3; 1; -9} ортогональными.
Ответ : да

Компланарность

Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами.

Всегда возможно найти плоскости параллельную двум произвольным векторам, поэтому любые два вектора всегда компланарные.

Три компланарных вектора всегда линейно зависимы, то есть линейно выражаются друг через друга.

Условия компланарности векторов

Три вектора компланарны если их смешанное произведение равно нулю.

Три вектора компланарны если они линейно зависимы.

Для n векторов. Вектора компланарны если среди них не более двух линейно независимых векторов.

Пример 1. Проверить компланарны ли три вектора a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.

Решение: найдем смешанное произведение векторов

a · [b × с] =
1  	  2  	  3  	 =
1  	  1  	  1  
1  	  2  	  1  
= 1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Признаки параллельности и перпендикулярности прямых

Пусть даны две прямые a и b, заданные уравнениями:
$$ a: y = k_1 x + c_1 \
b: y = k_2 x + c_2
$$

Возьмем два произвольных вектора, по одному на каждой прямой. Например, при x=0 и x=1 прямая a проходит через точки $(0, c_1)$ и $(1, k_1 + c_1)$. Значит, вектор, лежащий на прямой a можно задать координатами $(1, k_1)$

Аналогично, вектор, лежащий на прямой b можно задать координатами $(1, k_2)$

Векторы коллинеарны, если $k_1 = k_2$ – совпадают угловые коэффициенты прямых, значит, прямые параллельны

Векторы ортогональны, если скалярное произведение $k_1 cdot k_2 + 1 = 0$ или $k_1 k_2 = -1$, прямые перпендикулярны

Добавить комментарий