Как найти коллинеарность векторов по координатам

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

a = n · b

Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение

a × b =

ijk
axayaz
bxbybz

= i (aybz – azby) – j (axbz – azbx) + k (axby – aybx) =

= i (aynaz – aznay) – j (axnaz – aznax) + k (axnay – aynax) = 0i + 0j + 0k = 0

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Пример 1. Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

Значит:

Вектора a и b коллинеарны т.к.   1  =  2 .
4 8
Вектора a и с не коллинеарны т.к.   1  ≠  2 .
5 9
Вектора с и b не коллинеарны т.к.   5  ≠  9 .
4 8

Пример 2. Доказать что вектора a = {0; 3} и b = {0; 6} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2
ay 3

Найдем значение na:

na = {2 · 0; 2 · 3} = {0; 6}

Так как b = na, то вектора a и b коллинеарны.

Пример 3. найти значение параметра n при котором вектора a = {3; 2} и b = {9; n} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

Значит:

Решим это уравнение:

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Пример 4. Какие из векторов a = {1; 2; 3}, b = {4; 8; 12}, c = {5; 10; 12} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax  =  ay  =  az .
bx by bz

Значит:

Вектора a и b коллинеарны т.к.
14 = 28 = 312

Вектора a и с не коллинеарны т.к. 
15 = 210 ≠ 312

Вектора с и b не коллинеарны т.к.
54 = 108 ≠ 1212

Пример 5. Доказать что вектора a = {0; 3; 1} и b = {0; 6; 2} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2
ay 3

Найдем значение na:

na = {2 · 0; 2 · 3; 2 · 1} = {0; 6; 2}

Так как b = na, то вектора a и b коллинеарны.

Пример 6. найти значение параметров n и m при которых вектора a = {3; 2; m} и b = {9; n; 12} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay  =  az .
bx by bz

Значит:

3  =  2  =  m
9 n 12

Из этого соотношения получим два уравнения:

Решим эти уравнения:

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Содержание:

  • Формула
  • Примеры нахождения коллинеарного вектора

Формула

Для того чтобы вектор
$bar{a}=left(a_{x} ; a_{y}right)$ был коллинеарным вектору $bar{b}=left(b_{x} ; b_{y}right)$ необходимо, чтобы их соответствующие
координаты были пропорциональны, то есть их координаты удовлетворяли условию

$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}$$

Если векторы заданны в пространстве своими координатами:
$bar{a}=left(a_{x} ; a_{y} ; a_{z}right), bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$, тогда условие коллинеарности имеет вид:

$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}=frac{a_{z}}{b_{z}}$$

Примеры нахождения коллинеарного вектора

Пример

Задание. Даны два вектора
$bar{a}=(2 ;-3)$ и $bar{b}=(-1 ; m)$. При каком значении
$m$ эти векторы будут коллинеарными?

Решение. Для того чтобы векторы
$bar{a}$ и
$bar{b}$ были коллинеарными необходимо,
чтобы их координаты были пропорциональными, то есть удовлетворяли условию:

$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}$$

Подставим координаты заданных векторов в это равенство и найдем значение
$m$:

$$frac{2}{-1}=frac{-3}{m}$$

По пропорции имеем:

$$2 cdot m=(-1) cdot(-3) Rightarrow 2 cdot m=3 Rightarrow m=frac{3}{2}=1,5$$

Ответ. Векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными при
$m=1,5$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Заданы два вектора
$bar{a}=(4 ;-m ; 1)$ и $bar{b}=(2 ;-3 ; n)$. При каких значениях
$m$ и
$n$ векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными?

Решение. Для того чтобы векторы
$bar{a}$ и
$bar{b}$ были коллинеарными необходимо, чтобы их координаты
были пропорциональными, то есть чтобы выполнялись следующие равенства:

$$frac{4}{2}=frac{-m}{-3}=frac{1}{n}$$

А тогда значения неизвестных параметров
$m$ и
$n$ находим из равенств

$$frac{m}{3}=2 Rightarrow m=6$$
$$frac{1}{n}=2 Rightarrow n=frac{1}{2}=0,5$$

Ответ. Векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными при
$m=6$ и $n=0,5$

Читать дальше: как найти вектор перпендикулярный вектору.

Коллинеарность векторов, условия коллинеарности векторов.

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

рис. 1

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

Вектора a и b коллинеарны т.к. 1 = 2 .
4 8
Вектора a и с не коллинеарны т.к. 1 2 .
5 9
Вектора с и b не коллинеарны т.к. 5 9 .
4 8

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n = by = 6 = 2
ay 3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

Решим это уравнение:

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax = ay = az .
bx by bz

Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12

Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12

Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n = by = 6 = 2
ay 3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax = ay = az .
bx by bz
3 = 2 = m
9 n 12

Из этого соотношения получим два уравнения:

Решим эти уравнения:

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Векторы: третий уровень сложности

Знакомимся с коллинеарностью.

Для большинства людей искусственный интеллект — это нечто сложное и таинственное. А для математиков это синоним фразы «перемножение матриц». С точки зрения человека, который владеет линейной алгеброй, в искусственном интеллекте нет ничего загадочного.

Мы хотим, чтобы вы тоже смогли понять искусственный интеллект на уровне математики. Для этого у нас идёт цикл статей про линейную алгебру:

Сама тема несложная, но конкретно этот шаг вам ничего не даст в практическом смысле. Но если вам хватит терпения, на базе этих знаний мы уже перейдём к матрицам.

Что за коллинеарность

Представьте два вектора, которые находятся в одной плоскости и располагаются параллельно друг другу. При этом у них может быть разная длина. Такое расположение делает связку векторов коллинеарными, или, по-простому, линейно зависимыми.

И наоборот: если вектора находятся в одной плоскости и располагаются не параллельно друг относительно друга, то их считают линейно независимыми — неколлинеарными. Пока что ничего сложного.

Коллинеарные векторы Неколлинеарные векторы

Сложение коллинеарных и неколлинеарных векторов

Очевидно, что сложить два коллинеарных вектора очень легко: откладываем второй вектор от начала первого, получится новый вектор. Он будет коллинеарным своим слагаемым, они все будут лежать, грубо говоря, на одной линии.

Можно представить, что вы идёте прямо: каждый ваш шаг — это вектор. Каждый новый шаг — новый вектор. Но если все их сложить, получится один большой прямой вектор длиной как все ваши шаги.

Теперь попробуем сложить пару неколлинеарных векторов. Это как если бы мы сначала сделали шаг немного правее, а потом сделали бы шаг влево. Шага два, но если соединить начало и конец пути, он не будет совпадать с траекториями наших шагов. Появится какой-то новый вектор, с новым направлением, и он будет неколлинеарным по отношению к своим слагаемым.

Также пару неколлинеарных векторов из одной плоскости можно растянуть и развернуть в пространстве. Если их сложить, также появится новый вектор.

У математиков такой вектор называют базисом. Когда базис находится на плоскости или в пространстве, то он может единственным образом превращаться обратно в пару неколлинеарных векторов, которые его сформировали.

Правило работает, когда мы масштабируем и меняем расположение векторов в пространстве. Если мы изменим направление исходных векторов, то получим новый базис.

Базис — понятие из высшей математики, поэтому, если сейчас сложно, не отчаивайтесь. Студенты-математики когда-то тоже отчаивались.

Мы изменили пару неколлинеарных векторов и сформировали из них базис — получили новый фиолетовый вектор с собственной системой координат Теперь мы изменили исходные неколлинеарные векторы и получили новый базис — это оранжевый вектор

Как определять неколлинеарность

Когда мы работаем с короткими векторами, всё очевидно: нарисовали систему координат, отложили на ней векторы, они либо совпали, либо не совпали. Если совпали — коллинеарные, если нет — неколлинеарные.

А теперь представьте, что вектора настолько огромные, что мы физически не можем их нарисовать и сопоставить. Например,

Как такое нарисовать? Как проверить коллинеарность? Вот тут начинается магия алгебры.

Есть три способа проверки линейной зависимости векторов. Для простоты вычислений проверим эти три способа на вот этих всё ещё простых векторах:

По этим координатам ответим на два вопроса: являются ли предложенные вектора линейно зависимыми (то есть коллинеарными) и можно ли их раскладывать по базису.

Первый способ. Запишем простую систему уравнений: возьмём первую координату каждого вектора и приравняем её ко второй координате каждого вектора, умноженной на неизвестное число λ. Вычислим λ и сравним результаты.

👉 Знак λ здесь по традиции и для удобства. На самом деле это просто некое неизвестное число. Вместо этой буквы могли быть X, Y, Z или N, но так как у нас вектора уже называются X и Y, а N в математике используется для других целей, возьмём λ — это греческая буква «лямбда», давний предок нашей русской буквы «Л».

Составляем систему уравнений:

Вычисляем значение λ:

Сравниваем результат и делаем вывод:

Мы получили разное значение для неизвестного числа λ и поэтому наши векторы будут считаться линейно независимыми. Из них можно получить базис.

Если бы значение λ совпало, то мы бы имели дело с линейно зависимыми векторами.

Второй способ. Проверяем координаты векторов на пропорциональность: берём первую координату первого вектора, делим её на первую координату второго вектора. Повторяем это же действие со вторыми координатами: берём вторую координату первого вектора и делим её на вторую координату второго вектора.

Получаем такую пропорцию:

Считаем значение и сравниваем результат:

Равенство не выполняется, и поэтому между векторами нет зависимости.

Третий способ. Используем четыре элемента наших координат для поиска определителя — скалярной величины, с которой мы подробно познакомимся в следующих статьях во время решения матричных уравнений. Сейчас нам не нужны подробности, и для проверки линейной зависимости достаточно формулы.

Записываем в две строки координаты наших векторов:

Переводим координаты векторов в определитель — добавляем с двух сторон вертикальную черту и получаем простую квадратную матрицу размером 2 на 2:

В полученной матрице две диагонали. Числа −6 и −1 образуют главную диагональ; числа −4 и 5 — вторую диагональ. Чтобы найти определитель, нам нужно умножить числа главной и второй диагонали, а затем вычесть их разницу.

Если из координат вектора мы получили определитель и он не равен нулю, то векторы считаются линейно независимыми и подходят для разложения по базису.

И наоборот: нулевой определитель указывает на линейную зависимость векторов.

Что из этого нужно запомнить

  • С точки зрения векторов важно, они сонаправленные или нет. По-другому — они коллинеарны или нет.
  • Коллинеарность влияет на то, что можно делать с этими векторами. Например, неколлинеарные векторы можно разложить по базису.
  • Базис — это вектор, который можно разложить на те самые неколлинеарные векторы.
  • Коллинеарность легко проверяется через уравнения. Строить векторы на координатной плоскости необязательно.

Что дальше

Следующий шаг — матрицы. Это те самые, которые лежат в основе всех нейронок и искусственного интеллекта. Матрица — это таблица чисел, с которыми можно проводить различные вычисления.

Как найти вектор, коллинеарный вектору

Вы будете перенаправлены на Автор24

Понятие коллинеарности векторов

Чтобы понять, что значит коллинеарные векторы, сперва надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.

Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.

Концами отрезка будем называть точки, которые его ограничивают.

Для введения определения вектора один из концов отрезка назовем его началом.

Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.

Обозначение: $overline$ – вектор $AB$, имеющий начало в точке $A$, а конец в точке $B$.

Иначе одной маленькой буквой: $overline$ (рис. 1).

Рисунок 1. Обозначение векторов. Автор24 — интернет-биржа студенческих работ

Нулевым вектором будем называть любую точку, которая принадлежит плоскости.

Далее рассмотрим, какие векторы называются коллинеарными.

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой. Кроме того, понятие коллинеарность наблюдается в случается параллельности векторов (рис.2).

Готовые работы на аналогичную тему

Рисунок 2. Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ

Также введем определение векторного произведения, которое будет нам необходимо далее.

Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Чтобы найти векторное произведение, будем пользоваться формулой

Признак коллинеарности через пропорциональность или как определить коллинеарность векторов по координатам

Главное условие коллинеарности векторов: чтобы ненулевые векторы были коллинеарны между собой, необходимо, чтобы их соответствующие координаты были пропорциональны друг другу.

Доказательство.

Необходимость: Пусть нам даны векторы $overline<α>$ и $overline<β>$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать следующие равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Так как векторы $overline<α>$ и $overline<β>$ коллинеарны, то они будут либо сонаправленными, либо противоположно направленными. Без ограничения общности, будем считать, что они будут сонаправлены, то есть $overline<α>↑↑overline<β>$. Умножим один из этих векторов на действительное, большее нуля, число $r$, так, чтобы длины векторов $roverline<α>$ и $overline<β>$ были равны между собой. По определению умножения векторов на число, получим, что $roverline<α>↑↑overline<β>$. Но тогда, по определению равенства векторов, получим, что $roverline<α>=overline<β>$. Из этого равенства получим, что

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Достаточность: Пусть верны равенства $α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$. Докажем, что векторы $overline<α>$ и $overline<β>$ будут коллинеарными.

Из данных равенств следует, что $roverline<α>=overline<β>$.

Имеются два случая:

В этом случае, по определению умножения вектора на число, получим, что $roverline<α>↑↓overline<β>$.

В этом случае получим, что $roverline<α>↑↑overline<β>$.

Тогда, в обоих случаях получаем доказательство коллинеарности векторов $overline<α>$ и $overline<β>$.

Ответ: теорема доказана.

Как проверить коллинеарность векторов $(3,-1)$ и $(9,-3)$.

Доказательство.

Разложим второй вектор:

Получаем, что координаты этих векторов пропорциональны друг другу, что, по теореме 1, и доказывает наше утверждение.

Признаки и свойства коллинеарности векторов через их произведение

Чтобы ненулевые векторы были коллинеарны между собой, необходимо и достаточно, чтобы их векторное произведение было равно нулевому вектору.

Доказательство.

Необходимость: Пусть нам даны векторы $overline<α>$ и $overline<β>$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать, что $overline<α>хoverline<β>=overline<0>$.

Так как векторы коллинеарны, то, по теореме 1, верны равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Найдем $overline<α>хoverline<β>$ по формуле

Достаточность: Пусть верно равенство $overline<α>хoverline<β>=overline<0>$, докажем, что векторы $overline<α>$ и $overline<β>$ коллинеарны. Так как векторное произведение равняется $overline<0>$, то его длина также равняется нулю. Следовательно, угол между $overline<α>$ и $overline<β>$ равняется $180^circ$ или $0^circ$. То есть, чтобы они были коллинеарны, векторы должны лежать на одной или параллельных прямых.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 19 07 2021

[spoiler title=”источники:”]

http://spravochnick.ru/geometriya/vektory/kak_nayti_vektor_kollinearnyy_vektoru/

[/spoiler]

Автор статьи

Любовь Петровна Гаврилюк

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Понятие коллинеарности векторов

Чтобы понять, что значит коллинеарные векторы, сперва надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.

Определение 1

Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.

Концами отрезка будем называть точки, которые его ограничивают.

Для введения определения вектора один из концов отрезка назовем его началом.

Определение 2

Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Обозначение: $overline{AB}$ – вектор $AB$, имеющий начало в точке $A$, а конец в точке $B$.

Иначе одной маленькой буквой: $overline{a}$ (рис. 1).

Обозначение векторов. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Обозначение векторов. Автор24 — интернет-биржа студенческих работ

Определение 3

Нулевым вектором будем называть любую точку, которая принадлежит плоскости.

Обозначение: $overline{0}$.

Далее рассмотрим, какие векторы называются коллинеарными.

Определение 4

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой. Кроме того, понятие коллинеарность наблюдается в случается параллельности векторов (рис.2).

«Как найти вектор, коллинеарный вектору» 👇

Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ

Также введем определение векторного произведения, которое будет нам необходимо далее.

Определение 5

Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Обозначение: $overline{α}хoverline{β}$.

Чтобы найти векторное произведение, будем пользоваться формулой

$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}$

Признак коллинеарности через пропорциональность или как определить коллинеарность векторов по координатам

Теорема 1

Главное условие коллинеарности векторов: чтобы ненулевые векторы были коллинеарны между собой, необходимо, чтобы их соответствующие координаты были пропорциональны друг другу.

Доказательство.

Необходимость: Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать следующие равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Так как векторы $overline{α}$ и $overline{β}$ коллинеарны, то они будут либо сонаправленными, либо противоположно направленными. Без ограничения общности, будем считать, что они будут сонаправлены, то есть $overline{α}↑↑overline{β}$. Умножим один из этих векторов на действительное, большее нуля, число $r$, так, чтобы длины векторов $roverline{α}$ и $overline{β}$ были равны между собой. По определению умножения векторов на число, получим, что $roverline{α}↑↑overline{β}$. Но тогда, по определению равенства векторов, получим, что $roverline{α}=overline{β}$. Из этого равенства получим, что

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Достаточность: Пусть верны равенства $α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$. Докажем, что векторы $overline{α}$ и $overline{β}$ будут коллинеарными.

Из данных равенств следует, что $roverline{α}=overline{β}$.

Имеются два случая:

  1. $r lt 0$

    В этом случае, по определению умножения вектора на число, получим, что $roverline{α}↑↓overline{β}$.

  2. $r >0$

    В этом случае получим, что $roverline{α}↑↑overline{β}$.

    Тогда, в обоих случаях получаем доказательство коллинеарности векторов $overline{α}$ и $overline{β}$.

Ответ: теорема доказана.

Пример 1

Как проверить коллинеарность векторов $(3,-1)$ и $(9,-3)$.

Доказательство.

Разложим второй вектор:

$(9,-3)=(3cdot 3,3cdot (-1) )=3(3,-1)$

Получаем, что координаты этих векторов пропорциональны друг другу, что, по теореме 1, и доказывает наше утверждение.

Признаки и свойства коллинеарности векторов через их произведение

Теорема 2

Чтобы ненулевые векторы были коллинеарны между собой, необходимо и достаточно, чтобы их векторное произведение было равно нулевому вектору.

Доказательство.

Необходимость: Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать, что $overline{α}хoverline{β}=overline{0}$.

Так как векторы коллинеарны, то, по теореме 1, верны равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Найдем $overline{α}хoverline{β}$ по формуле

$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=begin{vmatrix}overline{i}&overline{j}&overline{k}\rβ_1&rβ_2&rβ_3\β_1&β_2&β_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\β_1&β_2&β_3\β_1&β_2&β_3end{vmatrix}=rcdot overline{0}=overline{0}$

Достаточность: Пусть верно равенство $overline{α}хoverline{β}=overline{0}$, докажем, что векторы $overline{α}$ и $overline{β}$ коллинеарны. Так как векторное произведение равняется $overline{0}$, то его длина также равняется нулю. Следовательно, угол между $overline{α}$ и $overline{β}$ равняется $180^circ$ или $0^circ$. То есть, чтобы они были коллинеарны, векторы должны лежать на одной или параллельных прямых.

Теорема доказана.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Содержание

Условия коллинеарности, ортогональности и компланарности

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами

Коллинеарность

Условие коллинеарности векторов 1. Два вектора $mathbf a(x_1,y_1)$ и $mathbf b(x_2,y_2)$ коллинеарны, если существует число $n$ такое, что

$$ mathbf {a} = n · mathbf {b}$$

или покоординатная детализация:

$$ x_1 = k cdot x_2 \
y_1 = k cdot y_2 \
z_1 = k cdot z_2 $$

Для коллинеарности векторов необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны

Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

$$ k = frac {x_1} {y_1} =frac {x_2} {y_2} = ldots $$

Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору. [или модуль векторного произведения = 0]

$$ x_1y_2 – x_2y_1 = 0$$

Пример 1. Какие из векторов a = (1; 2), b = (4; 8), c = (5; 9) коллинеарны? Ответ – a и b.

Пример 2. Доказать что вектора a = (0; 3) и b = (0; 6) коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n. $na = (2 · 0; 2 · 3) = (0; 6)$

Пример 3. Образуют ли базис векторы k(3,7), m(-6,14)?

Ответ: да. Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы).

В общем случае нужно составить систему уравнений (по условию 1) и исследовать ее на совместность. Если несовместна (решений нет) – значит, вектора ЛН. В данном случаи можно действовать упрощенно по условию 2, так как нет нулей и деления на них.

Пример 4. Даны вершины четырёхугольника A(-4,2), B(2,6), C(5,4), D(-1,0). Доказать, что четырёхугольник ABCD является параллелограммом.

Доказательство: Чертежа в задаче строить не нужно, поскольку решение будет чисто аналитическим. Нужно доказать:

  1. параллельность противоположных сторон AB и CD;

  2. параллельность противоположных сторон BC и AD.

Найти вектора и проверить на коллинеарность.


Систематизируем: Для двух векторов плоскости эквивалентны следующие утверждения:

  1. векторы линейно независимы;

  2. векторы образуют базис;

  3. векторы не коллинеарны;

  4. векторы нельзя линейно выразить друг через друга;

  5. определитель, составленный из координат данных векторов, отличен от нуля.

Ортогональность

Вектора a и b называются ортогональными, если угол между ними равен 90°.

Условие ортогональности векторов. Два вектора a и b ортогональны, если их скалярное произведение равно нулю.

$$ x_1x_2 + y_1y_2 = 0$$

или в трехмерном случае:

$$ x_1x_2 + y_1y_2 + z_1z_2 = 0$$

Пример 1. Доказать что вектора a = (1; 2) и b = (2; -1) ортогональны.

Пример 2. Найти значение числа n при котором вектора a = (2; 4) и b = (n; 1) будут ортогональны.

Ответ -2

Пример 4. Проверить являются ли вектора a = {2; 3; 1} и b = {3; 1; -9} ортогональными.
Ответ : да

Компланарность

Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами.

Всегда возможно найти плоскости параллельную двум произвольным векторам, поэтому любые два вектора всегда компланарные.

Три компланарных вектора всегда линейно зависимы, то есть линейно выражаются друг через друга.

Условия компланарности векторов

Три вектора компланарны если их смешанное произведение равно нулю.

Три вектора компланарны если они линейно зависимы.

Для n векторов. Вектора компланарны если среди них не более двух линейно независимых векторов.

Пример 1. Проверить компланарны ли три вектора a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.

Решение: найдем смешанное произведение векторов

a · [b × с] =
1  	  2  	  3  	 =
1  	  1  	  1  
1  	  2  	  1  
= 1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Признаки параллельности и перпендикулярности прямых

Пусть даны две прямые a и b, заданные уравнениями:
$$ a: y = k_1 x + c_1 \
b: y = k_2 x + c_2
$$

Возьмем два произвольных вектора, по одному на каждой прямой. Например, при x=0 и x=1 прямая a проходит через точки $(0, c_1)$ и $(1, k_1 + c_1)$. Значит, вектор, лежащий на прямой a можно задать координатами $(1, k_1)$

Аналогично, вектор, лежащий на прямой b можно задать координатами $(1, k_2)$

Векторы коллинеарны, если $k_1 = k_2$ – совпадают угловые коэффициенты прямых, значит, прямые параллельны

Векторы ортогональны, если скалярное произведение $k_1 cdot k_2 + 1 = 0$ или $k_1 k_2 = -1$, прямые перпендикулярны

Добавить комментарий