Как найти компоненты по математике 4 класс

Ханходжаева Гузаля Асгатовна

Правила нахождения компонентов

Скачать:

Предварительный просмотр:

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  2. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  3. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  4. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  2. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  3. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  4. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 

КОМПОНЕНТЫ МАТЕМАТИЧЕСКИХ ДЕЙСТВИЙ

Названия компонентов при сложении:

1 слагаемое, 2 слагаемое, сумма.

Суммой называют не только результат,
но и само выражение . 

2 + 3 = 5

2 –  первое слагаемое

3 –  второе слагаемое

5 –  сумма

2 + 3 –  сумма

Чтобы
найти неизвестное слагаемое надо из суммы вычесть известное слагаемое.

Названия компонентов при вычитании:

уменьшаемое, вычитаемое, разность.

Разностью называют не только
результат действия, но и само выражение.

8 – 3 = 5

8 –  уменьшаемое

3 –  вычитаемое

5 –  разность

8 – 3 –  разность

Чтобы
найти уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы
найти вычитаемое, надо из уменьшаемого вычесть разность.

Названия компонентов при умножении:

множитель, множитель, произведение.

Произведением  называют не
только результат действия, но и само выражение.

8 х 3 = 24

8 –  множитель

3 –  множитель

24 –  произведение

8 х 3 –  произведение

Чтобы
найти неизвестный множитель, надо произведение разделить на известный множитель
(24:8=3)

Названия компонентов при делении:

делимое, делитель, частное.

Частным  называют не только
результат действия, но и само выражение.

8 : 2 = 4

8 –  делимое

2 –  делитель

4 – частное

8 : 4 –  частное

Чтобы
найти делимое, надо частное  умножить на делитель (4х2=8)

Чтобы
найти делитель, надо делимое разделить на частное  (8:4=2)

http://tajmtatyana.ucoz.net/pamjatki/matem-7_1.jpg

Выучи названия компонентов действий и правила
нахождения неизвестных компонентов:

1.   
Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное
слагаемое, нужно из суммы вычесть известное слагаемое.

2.   
Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти
уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти
вычитаемое, нужно из уменьшаемого вычесть разность.

3.   
Умножение: множитель, множитель, произведение. Чтобы найти
неизвестный множитель, нужно произведение разделить на известный множитель.

4.   
Деление: делимое, делитель, частное. Чтобы найти делимое,
нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить
на частное.

        Памятка по
математике

Название и правила
нахождения компонентов при

               сложении
и вычитании.

                        
Сложение

 
       х              
    +             2  
      =         
7                                                                                                               
 первое слагаемое    второе
слагаемое        сумма

 
       5             
    +             х  
      =         
7                                                                                                               
 первое слагаемое    второе
слагаемое        сумма

Правило:  Чтобы найти неизвестное слагаемое,

 нужно из суммы
вычесть известное слагаемое.

                       
Вычитание

       х      
       –              3
             =        
      5

уменьшаемое       вычитаемое  
          разность

Правило: Чтобы найти неизвестное
уменьшаемое,

нужно к разности
прибавить вычитаемое
.

      8       
     –              х  
           =          
    5

уменьшаемое       вычитаемое  
          разность

Правило: Чтобы найти неизвестное вычитаемое,

 нужно из
уменьшаемого вычесть разность.

Компоненты
арифметических действий и их взаимосвязь.

1.              

Компоненты
при сложении:

1 слагаемое, 2 слагаемое, сумма.

2.             

Компоненты
при вычитании:

уменьшаемое, вычитаемое, разность.

3.             

Компоненты
при умножении:

1 множитель, 2 множитель, произведение.

4.              

Компоненты
при делении:

делимое, делитель , частное.

5.             

Назвать
результаты всех действий:

при сложении – сумма

при вычитании – разность

при умножении – произведение

при делении – частное

6.             

Как найти
неизвестное слагаемое?

Чтобы найти неизвестное слагаемое, нужно
из суммы вычесть известное слагаемое.

Х+4=12                      или              4+х=12

Х=12-4                                           х=12-4                                               

Х=8                                                     х=8____

8+4=12                                          4+8=12

  12=12                                          12=12

7.             

Как найти
неизвестное уменьшаемое?

Чтобы найти неизвестное уменьшаемое, надо
к разности прибавить вычитаемое.

Х-7=3

Х=3+7

Х=10

10-7=3

     3=3

8.             

Как найти
неизвестное вычитаемое?

Чтобы найти неизвестное вычитаемое, надо
из уменьшаемого вычесть разность.

8-х =5

х=8-5

х=3

8-3=5

  
5=5

9.         Как
найти неизвестный множитель?

Чтобы найти неизвестный множитель, надо
произведение разделить на известный множитель.

х·3=6                                   4·х=8

х=6:3                                   х=8:4

х=2                                      х=2   

2·3=6                                   4·2=8

  
6=6                                      8=8

10.          Как найти неизвестное делимое?

Чтобы найти неизвестное делимое, надо
частное умножить на делитель.

х:5=3

х=3·5

х=15

15:5=3

    
3=3

11.                 

Как найти
неизвестный делитель?

Чтобы найти неизвестный делитель, надо
делимое разделить на частное.

6:х=2

х =6:2

х=3

6:3=2

  
2=2

Геометрический материал.

Квадрат – это прямоугольник, у которого
все стороны равны.

13.                 

Что такое
прямоугольник?

Прямоугольник – это четырёхугольник, у
которого все углы прямые. Противоположные стороны прямоугольника равны.

14.                 

Что такое
треугольник?

Треугольник – многоугольник, у которого
три угла и три стороны.

15.     Что такое четырёхугольник?

Четырёхугольник – геометрическая фигура,
у которой четыре угла и четыре стороны.

Периметр ( Ρ) – это сумма длин сторон
какой-нибудь геометрической фигуры.

Площадь (S) – это внутренняя часть
какой-нибудь геометрической  фигуры

(прямоугольника, квадрата и т.д)

17.                 

Как найти
периметр квадрата?

У квадрата 4 стороны, равные между
собой. Чтобы найти
периметр (Р) квадрата, нужно длину одной стороны (а) умножить на 4.

Р
a · 4

18.                 

Как найти
периметр прямоугольника?

Чтобы найти периметр
прямоугольника
, нужно сложить все 4 стороны   прямоугольника

 Или

сложить длину и ширину
прямоугольника и
умножить на 2.

          Ρ=a+b+a+b

или

    Ρ=(a+b)·2

19.                 

Как найти
периметр треугольника?

Чтобы найти периметр
треугольника
, нужно сложить все 3 стороны.

20.                 

Как найти
сторону квадрата, если известен периметр?
 

У квадрата 4 стороны, равные между
собой. Чтобы найти
сторону квадрата, нужно Ρ разделить на 4.

a=Ρ:4

21.                 

       Как найти сторону прямоугольника, если известен
периметр и другая сторона?

Чтобы найти сторону
прямоугольника,
нужно

 Ρ разделить на 2 
и  вычесть
другую сторону.

a=Ρ:2 – b

b=Ρ:2 – a

22.         В каких единицах измеряется периметр?

    Периметр
измеряется в
мм, см, дм, метрах.

23.      
  Как найти площадь квадрата?

Площадь квадрата равна произведению двух
его сторон.

S□ = a · a

24.          Как найти площадь прямоугольника?

Чтобы найти площадь прямоугольника, надо
длину прямоугольника умножить на его ширину.

S = a · b

25.          Как найти сторону прямоугольника,
если известна площадь и другая его сторона?

Чтобы найти одну из сторон
прямоугольника, нужно площадь прямоугольника разделить на известную сторону.

a=S :  b

b= S  : a

  
26.   
    В каких
единицах измеряется площадь?

  
Площадь измеряется в квадратных единицах:
мм², см², дм², м².

27.      Назвать единицы длины.

Единицы длины
мм,
см
,
дм, м, км.

28.          Рассказать таблицу мер длины.

1см 
=  10мм

1дм 
=  10см

1дм 
=  100мм

1м 
=    10 дм

1м 
=  100 см

1км = 1000м

29.       Сколько 
квадратных сантиметров

в
1квадратном метре?

1м² 
=  10 000см² 

30.      Сколько 
квадратных  дециметров 

в
1 квадратном  метре?

1м² 
=  100дм² 

31.            Рассказать  таблицу мер площади.

1м² 
=  100дм²  = 10 000см² 

1дм² 
= 100см²  =  10 000мм²

1см² 
=  100мм²

Масса.

32.            Назвать единицы массы.

Масса измеряется в граммах, килограммах,
центнерах, тоннах.

33.           Рассказать таблицу мер массы.

1кг 
= 1000г

1ц 
=  100кг

1т 
=  10ц

1т 
=  1000кг

Время.

34.        Назвать 
единицы измерения времени.

Время 
измеряется секундами, минутами, часами, сутками, неделями, месяцами,
годами, веками.

35.           Рассказать таблицу мер времени.

1мин 
=  60сек.

1час 
=  60мин

1час 
=  3600сек.

1сут. 
=  24часа

1год 
=  12мес.  = 
365сут.  или  366сут.

1век 
=  100лет

Взаимосвязь скорости, времени и расстояния.

36.     Как 
найти  скорость?

Чтобы найти скорость ( v ), надо расстояние ( S ) разделить на время ( t ), затраченное в пути.

v = S : t

37.    Как найти время?

Чтобы найти время ( t ), надо расстояние ( S ) разделить на скорость
( v ).

t = S : v

38.    Как найти расстояние?

Чтобы найти расстояние ( S ),  нужно скорость ( v ) умножить на время ( t ).

S = v · t

Взаимосвязь цены, количества, стоимости.

39.    Что такое цена?

Цена – стоимость одного предмета,
единицы товара.

40.     Как найти стоимость?

Чтобы найти стоимость, нужно цену
умножить на количество.

Ст = Ц · К

41.     Как найти цену?

Чтобы найти цену, нужно стоимость
разделить на количество.

Ц 
=  Ст : К

42.   Как найти 
количество?

Чтобы найти количество, нужно стоимость
разделить на цену.

К = Ст : Ц

43. Задачи на дроби.

Дробь  –

2
– числитель

3
– знаменатель

44.  Как найти дробь числа?

Чтобы найти дробь числа, нужно число
разделить на знаменатель, а потом умножить на числитель.

45.      Как найти число по дроби?

Чтобы 
найти число по дроби, нужно число разделить на числитель и умножить на
знаменатель.

Взаимосвязь
работы, времени и производительности.

46.    Что такое производительность?

         Как найти производительность?

Производительностью
(
v )
называют работу, выполненную за единицу времени.

Чтобы
найти производительность (
v ), надо всю
выполненную работу разделить на время.

v  =  A  :  t

47.    Как найти выполненную работу?

Выполненная работа равна
производительности, умноженной на время работы.

A  =  v  · t

48.   Как найти время работы?

Чтобы узнать время работы, надо работу
разделить на производительность.

t  =  A  :  v

49.   Как 
найти среднее арифметическое?

Чтобы найти среднее арифметическое надо
сумму разделить на число слагаемых.

Правила нахождения компонентов
материал по математике (4 класс) на тему

Правила нахождения компонентов

Скачать:

Вложение Размер
pravila_nahozhdeniya_komponentov.doc 27 КБ

Предварительный просмотр:

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  2. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  3. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  4. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  2. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  3. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  4. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

Урок математики по теме “Решение уравнений” (4-й класс)

Класс: 4

Цель: Рассмотреть практические способы решения уравнений, требующих выполнения более одного арифметического действия.

Оборудование урока: компьютерная презентация устного счета, карточки с уравнениями, карточки трех ступеней для самостоятельной работы над задачами, кубик обратной связи

Ход урока

1. Оргмомент
Проверка готовности к уроку. В тетрадях записывается число, классная работа.

2. Устный счет (компьютерная презентация, слайд №1)
Игра «Соревнование улиток»
Ваш любимый пес Алик на соревновании улиток. Две улитки должны подняться до вершины горы. Кто же из них окажется первой? Наша с вами улитка под №1 слева. Улитка делает шаг, только если мы правильно найдем значение выражения.
Вы готовы?
Сигнал к старту уже прозвучал. Повторяем порядок действий и называем правильные значения выражений.

(122 + 18) : 70 = 2
(64 : 8 + 20) : 7 = 4
20 · (26 + 14) : 100 = 8
1 · (30 + 2) – 4 · 4 = 16
5 · 4 + 12 = 32
(400 – 300) – 36 = 64

У нас получился ряд чисел.
2, 4, 8, 16, 32, 64
Какую закономерность в составлении этого ряда заметили? (каждое следующее число увеличено в два раза)
Продолжите этот ряд чисел и назовите не менее трех следующих чисел. (128, 256, 512…)
Молодцы! Мы решали все правильно, поэтому наша улитка на вершине горы.
За каждым числом зашифрована буква. Перевернем их и прочитаем тему сегодняшнего урока.

2 4 8 16 32 64 128 256 512
У Р А В Н Е Н И Е

Что называется уравнением?
Что называется корнем уравнения?
Что значит решить уравнение?
Мы уже умеем решать простые уравнения, а сегодня мы познакомимся с решением сложных уравнений, где надо выполнить несколько арифметических действий.

3. Решение простых уравнений. Подготовка к введению нового материала.
На магнитной доске в произвольном порядке карточки с уравнениями.
На какие группы можно разделить все эти уравнения? (уравнения распределяются в 3 столбика)

1) 7000 – х = 2489
7000 – х = 3489
7000 – х = 1689
Почему мы выделили эти уравнения в первую группу? (простые уравнения с одинаковым уменьшаемым) Можем мы их решить ?
Найдите среди них уравнение с наибольшим корнем и решите его (один ученик у доски)

2) 71 : х = 20 + 7
х : 3 = 16 + 11 ( это уравнения, в правой части которых выражение)
Можем ли мы решить уравнения второго столбика?
Решите любое из уравнений, но замените в правой части сумму на разность. Корень уравнения при этом должен остаться прежним. (два ученика у доски)

3) ( 490 – х ) – 250 = 70

Посмотрите на оставшееся уравнение. Легко ли нам его решить? Почему?

4. Работа над новым материалом. (фронтальная беседа с классом, в ходе которой рассматривается решение уравнения)

( 490 – х ) – 250 = 70
490 – х = 70 + 250
490 – х = 320
х = 490 – 320
х = 170
( 490 – 170 ) – 250 = 70
70 = 70
Ответ: 70

5. Закрепление.

1) Решение уравнения (один из сильных учеников у доски)
5 · а + 500 = 4500 : 5
5 · а + 500 = 900
5 · а = 900 – 500
5 · а = 400
а = 400 : 5
а = 80
5 · 80 + 500 = 900
900 = 900
Ответ: 80

Решите уравнения.
а + 156 = 17 ∙ 20 (1604 – у) – 108 = 800
252 : 36 ∙ х = 560 103300 : (х + 297) = 25 ∙2

Мы решили два новых сложных уравнения. Посмотрите на уравнения, которые перед вами. Все ли они сложные? Какое уравнение лишнее? Почему? Остальные – в левой части выражение в несколько действий. Найдите среди них с таким порядком действий, которое уже встречалось сегодня.

(1604 – у) – 108 = 800
1604 – у = 800 + 108
1604 – у = 908
у = 1604 – 908
у = 696
(1604 – 696) – 108 = 800
800 = 800
Ответ: 696
Уравнение решают в парах. Один ученик на развороте доски для последующей проверки.

6. Решение задачи
Самостоятельная работа по карточкам 3 ступеней. Выполнив задание первой ступени, ученик переходит к выполнению задания второй ступени, затем третьей.( различные способы дифференцированной работы)

1 ступень 2 ступень 3 ступень
Школьники должны были высадить 25700 саженцев деревьев. После того, как они высадили часть саженцев, им осталось посадить еще12350 деревьев. Сколько деревьев они уже высадили?
Реши задачу, составив уравнение
Измени задачу так, чтобы она решалась уравнением, в правой части которого было бы выражение.
Запиши это уравнение и реши его.
Школьники должны были высадить 25700 саженцев деревьев. После того, как они высадили несколько саженцев липы и 8580 кленов, им осталось высадить 12350саженцев. Сколько лип они уже посадили?

1) 25700 – х = 12350
х = 25700 – 12350
х = 13350
25700 – 13350 = 12350
12350 = 12350
Ответ: 13350 саженцев.

2) 25700 – х = 12000 + 350

3) 25700 – (х + 8580) = 12350
х + 8580 = 25700 – 12350
х + 8580 = 13350
х = 13350 – 8580
х = 4770
25700 – (4770 + 8580) =12350
12350 = 12350
Ответ: 4770 лип.
4) А какое еще уравнение можно было составить?
(25700 – х) – 8580 = 12350

Мы решили три задачи, составив три уравнения. Какое уравнение отнесем к сложным? Почему?

7. Домашнее задание.
Рассмотреть, как решались уравнения в учебнике на стр. 106 и решить уравнение в тетради на печатной основе № 44 (а).
Решить задачу № 47. Дополнительное задание: какие еще вопросы можно поставить к этой задаче?

8. Итог урока.
Какие уравнения учились решать на уроке?
Трудно было?
Кому было легко?

Математика. 4 класс

Конспект урока

Математика, 4 класс

Урок 21. Решение уравнений

Перечень вопросов, рассматриваемых в теме:

  1. Что такое уравнение?
  2. Как решить уравнение, где в ответе не число, а числовое выражение.
  3. Что такое корень уравнения?
  4. Как найти неизвестное вычитаемое?

Глоссарий по теме:

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.

Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении.

Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Обязательная и дополнительная литература по теме урока:

1. Моро М. И. Учебник для 4 класса четырехлетней начальной школы. М. «Просвещение» — 2017.С. 62,63

2. Волкова Е. В. математика Всероссийская проверочная работа за курс начальной школы. Издательство «Экзамен» 2018.С.27

3. Петерсон Л. Г. математика 3 класс. Часть 2. Ювента, 2015.-96с.: ил. С.77-78

Теоретический материал для самостоятельного изучения:

376 + 282; (х – у) : 3

Являются ли эти записи уравнениями?

Это не уравнения, так как в уравнении должен быть знак «=». Это выражения.

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Рассмотрите другие записи:

24 + х = 49; 24 + х = 79 – 30

Это уравнения, так как это равенства, содержащие переменную.

Попробуем их решить.

Что значит решить уравнение?

Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.

Вспомните алгоритм решения уравнений.

  1. Вспомнить компоненты действия данного уравнения.
  2. Определить неизвестный компонент.
  3. Вспомнить правило нахождения неизвестного компонента.
  4. Применить правило и найти неизвестный компонент.
  5. Записать ответ.
  6. Сделать проверку

Используя алгоритм, решите первое уравнение

Значение неизвестного х = 25. Это корень уравнения.

Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении. В данном случае – это х.

Можно ли решить второе уравнение, используя этот же алгоритм?

Такие уравнения не рассматривались. Какова же цель нашего урока?

Цель урока: научиться решать уравнения, в которых в ответе не число, а числовое выражение.

Такие уравнения мы будем называть составные. Поэтому тема урока: «Решение составных уравнений»

Чтобы решить это уравнение, нужно упростить правую часть.

24 + х = 79 – 30, после чего получаем уравнение известного вам вида

Ответ: корень уравнения 25

Составим алгоритм решения составных уравнений.

Алгоритм решения составных уравнений

1. Найти значение числового выражения.

2. Вспомнить компоненты действия данного уравнения.

3. Определить неизвестный компонент.

4. Вспомнить правило нахождения неизвестного компонента.

5. Применить правило и найти неизвестный компонент.

6. Записать ответ.

7. Сделать проверку.

Решим еще одно уравнение:

Применяем алгоритм решения составных уравнений:

  1. Найти значение числового выражения: 75 – х = 9 ∙ 7
  1. Вспомнить компоненты действия данного уравнения: 75 – х = 63

3. Определить неизвестный компонент.

4. Вспомнить правило нахождения неизвестного компонента.

5. Применить правило и найти неизвестный компонент.

6. Записать ответ.

7. Сделать проверку.

Ответ: корень уравнения 12

Вывод: чтобы решить составное уравнение, в которых в ответе не число, а числовое выражение, необходимо упростить правую часть ( т.е решить выражение), после чего получаем уравнение известного вам вида и решаем его, используя алгоритм решения уравнений.

Решим задачу, составив уравнение:

Сумма неизвестного числа и числа 390 равна произведению чисел 70 и 6. Найди это число.

1. Сумма неизвестного числа и числа 390 – обозначим неизвестное число переменной х, тогда получим х + 390

2. Произведение чисел 70 и 6: 70 ∙ 6

3. Получаем уравнение: х + 390 = 70 ∙ 6

Применяя алгоритм решения составных уравнений, решим его:

[spoiler title=”источники:”]

http://urok.1sept.ru/articles/524206

http://resh.edu.ru/subject/lesson/4580/conspect/

[/spoiler]

Добавить комментарий