Способы выражения концентрации растворов.
Молярная концентрация См– отношение количества вещества в молях
(n) к объему раствора в
литрах:
Если вещество обозначить через Xто:
Нормальная концентрация или молярная
концентрация эквивалента Сн
– отношение количества эквивалентов
вещества к объему раствора
Молярная и нормальная концентрации
связаны между собой: См
= Сн∙f
или Сн = См
/f
Титр (Т) – часто используется на
практике. Титр раствора –это масса
вещества в граммах в 1 мл раствора (г/мл).
Если Т(HNO3) = 0,006354
г/мл, то это значит, что в 1 мл раствора
содержится 0,006354 г азотной кислоты.
Титр раствора по определяемому
веществу– это масса вещества в г,
взаимодействующая с 1 мл титранта.
Например, ТHCl/NaOHсоставляет 0,003954 г/мл, это означает, что
1 мл раствораHCl(титранта)
реагирует с 0,003954 гNaOH(определяемого вещества).
Массовая доля вещества (ω)––
отношение массы растворенного вещества
(mв-ва) к массе
раствора(mр-ра).
Массовая доля – величина безразмерная,
ее представляют либо в долях, либо в
процентах. Например, для 5%-го раствора
хлорида кальция, широко применяемого
в медицине, ω%(CaCl2)
=5% или в долях ω=0,05. И это означает, что
в 100 г раствора содержится 5 г хлорида
кальция.
ω
где ρ – плотность раствора.
Моляльная концентрация Cm– отношение количества молей растворенного
вещества к 1000 г растворителя, т.е. число
молей растворенного в-ва в 1000 г
растворителя.
Формулы для перерасчета концентраций.
(плотность (ρ) раствора дана в г/мл)
ω,% |
См, |
Сн, |
Т, г/мл |
|
ω,% |
||||
См, |
|
|||
Сн, |
|
|||
Т, г/мл |
Приготовление рабочих растворов
Растворы
титр, которых известен, называются
титрованными. Титрованный раствор можно
приготовить, если точную навеску
растворить в мерной колбе. Например,
навеску 0,2750 г Nа2SО4поместим в колбу на 200 мл и доведем объем
дистиллированной водой до метки, то
титр приготовленного раствора точно,
конечно, известен:
Т= 0,2750/200 =0,0013750 г/мл
Вещества,
из которых готовят растворы с известным
титром, называются исходными (стандартными
веществами). Исходные вещества должны
удовлетворять следующим требованиям:
а) они
должны быть химически чистыми (примеси
не более 0,05-0,1 %);
б) состав
должен строго соответствовать химической
формуле;
в)
устойчивы при хранении в растворе и в
твердом состоянии;
г)
величина эквивалента должна быть
наибольшей.
Раствор,
приготовленный таким образом, называется
стандартными раствором с приготовленным
титром. Способ приготовления титрованных
растворов зависит от свойств вещества
и агрегатного состояния
1. Из
веществ кристаллических х.ч. готовят
по точной навеске.
Например:
приготовить 250 мл 0,1н раствораNa2CO3,
М(Na2CO3)
= 106 г/моль. Эквивалентная масса Э(Na2CO3)
= 53 г/моль,
Необходимо:
а)
рассчитать навеску, необходимую для
приготовления раствора:
m
= CH∙
M(1/z Na2CO3)∙V(л)
= 0,1∙53∙0,25 = 1,325 (г)
б)
отвесить навеску на аналитических
весах,
в)
навеску количественно перенести в
мерную колбу на 250 мл, растворить в
небольшом количестве дистиллированной
воды и долить ею до метки, тщательно
перемешивая.
2.
Приготовление из фиксанала.Готовят
раствор, сразу разбивая фиксанал в
мерную колбу нужного объема, и вымывают
из фиксанала все кристаллы дистиллированной
водой и доводят раствор до метки.
3. Из
кристаллических веществ, загрязненных,
гигроскопичных, летучих и т.д.
Необходимо
для приготовления;
а)
рассчитать навеску,
б)
отвесить ее на технических весах,
перенести в любую склянку на 250 мл,
растворить в дистиллированной воде и
долить до метки,
в)
установить точную концентрацию
приготовленного раствора по исходному
веществу (титрованному раствору).
Растворы, титр которых находят не по
точной навеске, а путем титрования
титрованным раствором, называют растворы
с установленным титром.
Примеры:
1.
Приготовить400мл 0,05 н раствора буры
из кристаллической.
Решение:
Определить
массу навески буры, она равна:
m=
Э(Nа2В4О7∙10Н2О)∙Сн∙V(л)=190,71∙0,05∙0,4=3,81
г.
Отвешиваем
на аналитических весах навеску, переносим
в мерную колбу, тщательно растворяем и
доводим до метки 400 мл.
2.Приготовить
100 мл0,15 н раствора из 3н раствора её.
Вопросы
к задаче: а) в каких объемах реагируют
растворы с одинаковой концентрацией?
б) какая зависимость между объемами
реагирующих веществ и нормальными
концентрациями?
Данную
задачу можно решить по формуле: Сн1∙V1= Сн2∙V2;
Сн1
и Сн2 – концентрации растворов
моль/л;V1иV2
– объемы исходного и конечного
раствора в мл,
V1= Сн2∙V2/ Сн1= 0,15 100 / 3 = 5 мл
Значит,
для приготовления 100 мл 0,15 н раствора
нужно взять 5 мл 3н раствора и довести
до метки 100 мл дистиллированной водой.
3.Приготовить
100г 14% раствора,хлорида натрия из 22%-
го и 10%-го растворов этой соли.
Весовое
соотношение исходных растворов находим
по правилу смешения (правило креста):
10%
8 весовых частей
14%
22%
4 весовые части
Из
большего числа вычитаем меньшее: 22-14= 8
в.ч. 10%-го
14-10 = 4
в.ч. 22%-го
Получим
12 г 14% -го раствора
Дальше
рассуждаем:
на 12 г
14%-го раствора нужно 8 г 10%-ного
на 100 г
Х
Х =66,7 г
на 12 г
14%-го раствора нужно 4 г 22%-ного
на
100 г Х
Х = 33,3 г
Измеряем ареометром плотность исходных
растворов. Разделив массы растворов на
плотность, получим объемы исходных
растворов, необходимых для приготовления
нужного раствора. Отмериваем их и
переливаем в склянку для использования
в работе.
Определить
титр раствора хлорида натрия, если
известно, что на титрование его 10 мл
расходовалось 9,2 мл 0,1 н раствора нитрата
серебра. Титр можно определить:
по
закону эквивалентов: (Cн∙V)NaCl= (Cн∙V)AgNO3
Cн
(NaCl) = (9,2∙0,1)/10 = 0,092 моль/л,
Т = (58,5∙0,092)/1000 = 0,005382 г/мл
58,5 –
это эквивалентная масса хлорида натрия.
ФИКСИРОВАНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ
Установление состояния эквивалентности
является очень важным моментом в
проведении анализа. Несоответствие
момента прекращения титрования (точки
эквивалентности) приводит к возникновению
индикаторных ошибок титрования, к
неправильным ответам, что чревато
последствиями. В принципе, индикаторная
ошибка неизбежна при любом определении,
но при правильном определении точки
конца реакции столь мала, что ею можно
пренебречь. Точку эквивалентности можно
определить химическими методами
(применение индикаторов) и физико-химическими
методами (потенциометрическими,
кондуктометрическими, фотоколометрическими).
В
некоторых случаях изменения в системе
титрования столь заметны, что не требуется
каких то заметных особых приемов для
обнаружения конца реакции. Проблема
выбора способа фиксирования точки
эквивалентности всегда решается
применительно к конкретной практике
(методике исследования). Чаще всего
используют индикаторы. Полученные
результаты должны быть достоверны, т.е.
должны быть подвергнуты статистической
обработке. Методику статобработки см.
в данном методическом руководстве.
Метод нейтрализации
и его применение в медико-санитарной
практике
Медико биологическое значение.
Метод кислотно-основного титрования
позволяет определять количественно в
исследуемых объектах кислые и основные
продукты.
Так, в санитарно-гигиенической практике
этим методом определяют кислотность и
щелочность многих пищевых продуктов,
питьевых и сточных вод.
В клинической практике кислотно-основное
титрование используют для определения
кислотности желудочного сока, буферной
емкости крови, спинно-мозговой жидкости,
мочи и других биологических жидкостей.
Этот метод широко используется в
фармацевтической химии при анализе
лекарственных веществ, установления
доброкачественных продуктов питания
(например,молока).
Большое значение имеет рассматриваемый
метод и при санитарно гигиенической
оценке объектов окружающей среды.
Промышленные стоки могут содержать или
кислые, или щелочные продукты. Закисление
или защелачивание природных водоемов
и почвы приводит порой к необратимым
последствиям, в связи с чем контроль
кислотно-основного баланса весьма
важен.
МЕТОД НЕЙТРАЛИЗАЦИИ
Краткое описание метода нейтрализации
сводится к следующим моментам:
а)
Реакция
В основе метода лежит реакция взаимодействия
H++ OH– →
H2O.
б)
Определяемые
вещества:
кислоты:
сильные и слабые
основания:
сильные и слабые: соли, подвергающиеся
гидролизу.
в)
Титранты:
Сильные
кислоты (соляная, серная) с концентрацией
от 0,01 до 1,0 моль/л используются для
определения концентрации оснований и
солей, гидролизующихся по аниону.
Сильные
основания: (NaOH, KOH) с концентрацией от
0,01 до 1,0 моль/л
используются
для определения концентрации кислот и
солей, гидролизующихся по катиону.
Чаще всего
титранты для метода нейтрализации
готовят из фиксаналов. Иногда растворы
сильных кислот готовят разбавлением
концентрированного раствора кислоты,
а растворы сильных оснований, растворением
навески твердой щелочи. Последние
способы приготовления растворов, требуют
экспериментального уточнения концентрации
приготовленного титранта с использованием
установочных (исходных) веществ.
Для
титрантов кислот, в качестве установочных
веществ, используют соду Na2CO3
или буру Na2B4O7•10H2O.
Для
титрантов щелочей — щавелевую кислоту
(H2C2O4•2H2O).
г)
Индикаторы
Реакция
между кислотами и основаниями не
сопровождается, как правило, какими-либо
внешними эффектами, поэтому для
фиксирования точки эквивалентности
приходится использовать специальные
вещества-индикаторы. Кислотно-основные
индикаторы это, слабые кислоты или
основания, степень ионизации которых
определяется концентрацией [H+]
ионов в растворе.
H+Ind
↔
H++Ind–
Чем больше
концентрация H+
ионов, тем меньше будет степень ионизации
индикатора. Молекулярная HInd и ионная
HInd формы индикатора имеют разные окраски.
Таким образом, концентрация ионов H+
влияет
на соотношение концентраций HInd и Ind что,
в свою очередь, определяет характер или
яркость окраски.
Для
характеристики кислотности растворов
в химии широко пользуются водородным
показателем, pH — отрицательный десятичный
логарифм молярной концентрации [H+].
В кислых
растворах pH<7, в щелочных pH>7, в
нейтральных
Все
индикаторы изменяют свою окраску не
скачкообразно, а плавно, т.е. в определенном
интервале значений pH, называемом
интервалом перехода.
Поскольку
индикаторы как кислоты или основания
отличаются друг от друга по силе, они
имеют разные интервалы перехода (см.
табл.1).
Таблица
1
N п/п |
Анализ вещество |
pH в точке эквивалент-ности |
Скачок титрования |
Используемые индикаторы |
Интервал перехода окраски индикатора |
1. |
Сильная Сильное или наоборот |
7.0 |
3-11 |
Метилоранж Метилрот Фенолфталеин |
3.1-4.4 4.2-6.3 8.3-10.0 |
2. |
Слабая Сильное основание |
8-10 |
6-11 |
Фенолфталеин |
8.3-10.0 |
3. |
Слабое Сильная кислота |
4-6 |
3-7 |
Метилоранж Метилрот |
3.1-4.4 4.2-6.3 |
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
…
Существует множество способов измерить концентрацию раствора. Это так называемые способы выражения концентрации раствора.
Концентрация раствора — это количество вещества, находящегося в единице объема или массы раствора.
Что такое раствор
Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях.
Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными.
Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве.
Существуют растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.
Концентрацию раствора можно охарактеризовать как:
- качественную
- количественную.
Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.
С этой точки зрения растворы можно классифицировать на:
- Насыщенные – растворы с максимально возможным количеством растворенного вещества. Количество растворяемого вещества, необходимое для получения насыщенного раствора определяет растворимость этого вещества.
- Ненасыщенные – любые растворы, которые все еще могут растворять введенное вещество.
- Пересыщенные – растворы, в которых растворено больше вещества, чем максимально возможное. Такие растворы очень нестабильны и в определенных условиях растворенное вещество будет выкристаллизовываться из него, до тех пор, пока не образуется насыщенный раствор.
Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.
Способы выражения концентрации растворов
Молярная концентрация растворов (молярность)
Наиболее распространенный способ выражения концентрации растворов – молярная концентрация или молярность. Она определяется как количество молей n растворенного вещества в одном литре раствора V. Единица измерения молярной концентрации моль/л или моль ·л-1:
См = n/V
Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества, децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.
Термин «молярная концентрация» распространяется на любой вид частиц.
Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.
Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).
Понятие эквивалентности мы уже вводили. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.
Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде равен 1/5 (KMnO4).
Еще одно необходимое понятие — фактор эквивалентности – это число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции.
Он может быть равен 1 или быть меньше 1. Фактор эквивалентности, например, для KMnO4 в окислительно – восстановительной реакции в кислой среде составляет fэкв(KMnO4) = 1/5.
Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:
Мэ = fэкв· М(х)
Молярная концентрация эквивалента (нормальность) определяется числом молярных масс эквивалентов на 1 литр раствора.
Эквивалент определяется в соответствии с типом рассматриваемой реакции. Единица измерения нормальной концентрации такая же как и у молярной концентрации — моль/л или моль·л-1
Сн = nэ/V
Для обозначения нормальной концентрации допускается сокращение «н» вместо «моль/л».
Процентная концентрация раствора или массовая доля
Массовая концентрация показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора.
Это отношение массы m(х) вещества x к общей массе m раствора или смеси веществ:
ω(х) = m(х)/m
Массовую долю выражают в долях от единицы или процентах.
Моляльная концентрация раствора
Моляльная концентрация раствора b(x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m. Единица измерения моляльной концентрации — моль/кг :
b(x) = n(x)/m
Титр раствора
Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора. Единица измерения титра — г/мл:
Т(х) = m(х)/V,
Мольная или молярная доля
Мольная или молярная доля α(х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:
α(х) = n(х)/Σn
Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети. В разделе задач показано, как произвести такой пересчет, не зная формул.
Пример перевода процентной концентрации в молярную, нормальную концентрацию, моляльность, титр
Дан раствор объемом 2 л с массовой долей FeSO4 2% и плотностью 1029 кг/м3. Определить молярность, нормальность, моляльность и титр этого раствора раствора.
Решение.
1. Рассчитать молярную массу FeSO4:
M (FeSO4) =
56+32+16·4 = 152 г/моль
2. Рассчитать молярную массу эквивалента:
Мэ = fэкв·
М(FeSO4) = 1/2·152
= 76 г/моль
3. Найдем m раствора объемом 2 л
m = V·ρ = 2·10-3 ·1029
= 2,06 кг
4. Найдем массу 2 % раствора по формуле:
m(FeSO4) = ω(FeSO4) · mр-ра
m(FeSO4) =
0,02·2,06 = 0,0412 кг = 41,2 г
5. Найдем молярность, которая определяется как количество молей растворенного вещества в одном литре раствора:
n = m/М
n = 41,2/152 = 0,27 моль
См = n/V
См = 0,27/2 = 0,135 моль/л
6. Найдем нормальность:
nэ = m/Мэ
nэ = 41,2/76 = 0,54 моль
Сн = nэ/V
Сн = 0,54/2 = 0,27 моль/л
7. Найдем моляльность раствора. Моляльная концентрация равна:
b (x) = n(x)/m
Масса растворителя, т.е.
воды в растворе равна:
mH2O = 2,06-0,0412
= 2,02 кг
b
(FeSO4) = n(FeSO4)/m = 0,27/2,02 = 0,13 моль/кг
8. Найдем титр раствора, который показывает какая масса вещества содержится в 1 мл раствора:
Т(х) = m (х)/V
Т(FeSO4) = m (FeSO4)/V = 41,2/2000 = 0,0021 г/мл
Еще больше задач приведены в разделе Задачи: Концентрация растворов, Правило креста
В реальности, химики редко работают с чистыми веществами. В большинстве своем для работы, при проведении химических реакций, расчетов по ним используются различные растворы.
Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия
Подробнее о процессе растворения мы поговорим в следующих статьях.
При решении расчетных задач нам нудно уметь находить количество чистого вещества, находящегося в растворе. Это необходимо затем, что, как правило, в химическое взаимодействие вступает вещество, а не дополнительные продукты, которое оно содержит: примеси, если это не чистое вещество, компоненты растворителя, или инертные для данного химического процесса компоненты смеси (если это смесь веществ).
Если мы работаем с 500 граммами раствора, в котором всего 10 грамм чистого вещества, то в расчеты мы берем 10 грамм, а не 500! – пример, почему необходимо уметь вычислять количественные характеристики чистого вещества.
Способы выражения концентрации растворов
Существуют различные способы выражения концентраций растворов. В задачах могут встретиться любые из них. Рассмотрим основные из них более подробно.
I. Массовая доля вещества
Массовая доля – отношение массы чистого вещества к массе всего раствора. Данная величина безразмерная (говорят доля от единицы, всегда меньше 1, или равна единице для чистого вещества), или выражается в %.
Очень часто можно встретить запись запись, например NaOH, 15% – это значит, что из всей массы раствора на долю гидроксида натрия (NaOH) приходится только 15 %.
Следует не забывать, что масса раствора = масса растворителя + масса чистого вещества.
Зная массовую долю вещества, нетрудно выразить формулу для расчета массы чистого вещества:
В некоторых задачах масса раствора может быть не дана в условии. В этом случае мы сами можем её задать. Как правило в таких случаях, мы задаём массу раствора как 100 г. Дальнейший расчет ведется уже исходя из заданной массы (если требуется перевести одну концентрацию в другую).
Приведем примеры задач:
Мы специально делаем подробное решение, чтобы отследить ход мыслей.
Решим аналогичную задачу:
Более часто встречаются задачи, в которых требуется приготовить раствор из другого раствора путем добавления чистого вещества (в этом случае концентрация увеличится), растворителя (концентрация уменьшится) или другого раствора (концентрация займёт промежуточное значение).
Рассчитайте массу соли, которую необходимо добавить к 150 г 10% -го раствора, чтобы концентрация полученного раствора стала 15%?
Данную задачу можно решать различными способами. В настоящий момент приведем только один (более длинный, но более понятный). Для решения таких задач другим способом мы подготовим видео.
Задачи, в которых добавляется растворитель – решаются проще.
Какое количество воды необходимо добавить к 200 г 15%-го раствора, чтобы его концентрация стала 10%?
Для решения задач, в которых смешиваются два раствора, имеющих различные концентрации, можно использовать следующий алгоритм:
1. Рассчитать количество чистого вещества в обоих растворах и сложить их.
2. Поделить полученное число на сумму масс растворов. Домножить на 100 %.
Решим для примера следующую задачу
Смешали 200 г 10%-го раствора серной кислоты и 100 г 20-% го. Какая массовая доля стала у получившегося раствора?
II. Молярная концентрация вещества
Молярная концентрация вещества – отношение количества вещества к объему раствора. Данная величина показывает нам, сколько (моль) вещества растворено в 1 литре раствора. Единица измерения – моль/л.
Обозначается молярная концентрация заглавной буквой C
В химической лаборатории очень часто для обозначения концентрации используется именно данная величина.
Очень часто, на химических склянках можно увидеть следующие обозначения:
Таким способом также обозначается молярная концентрация. Число перед буквой М обозначает концентрацию: 1 моль/л; 0,1 моль/л; 0,02 моль/л; 3 моль/л; 0,5 моль/л.
Можно также встретить в задачах такое обозначение, связанное с данной формой записи: молярный раствор (1 М) – раствор, концентрация которого составляет 1 моль/л. Децимолярный раствор (0,1 М) – 0,1 моль/л; сантимолярный раствор (0,01 М) – 0,01 моль/л.
Решим некоторые задачи, в которых используется молярная концентрация:
Для приготовления раствора сульфата натрия навеску, содержащую 14,2 г соли растворили в 500 мл воды и довели до метки.
Доведение до метки обозначает, что объем приготовленного раствора составляет (в данном случае) 500 мл.
Часто требуется рассчитать количество вещества:
Прежде чем проводить расчет по уравнению химических реакций, необходимо найти количество вещества.
III. Моляльная концентрация
Моляльная концентрация – отношение количества (моль) растворенного вещества к массе растворителя. Данная концентрация показывает нам, сколько моль вещества необходимо добавить к 1 кг растворителя (воды, например), чтобы получить нужную концентрации. Обозначается данная концентрация См, а измеряется в моль/кг(растворителя).
IV. Мольная доля
Мольная доля – отношение количества вещества к сумме количеств всех компонентов раствора. Данная физическая величина не имеет размерности.
Сумма всех мольных долей раствора равна “1”.
Данная физическая величина нашла широкое применение в химической химии для описания равновесных термодинамических процессов.
V. Титр
Титр – отношение массы вещества к единице объема (выраженного в миллилитрах). Титр показывает, сколько грамм вещества находится в каждом миллилитре раствора. обозначается как “Т” и измеряется в г/мл.
Титр – очень маленькая величина, так как в в 1 миллилитре раствора может находиться незначительное количество вещества.
Титр нашел широкое применение в аналитической химии.
В заключении
По данной теме существует огромное количество расчетных задач. Многие из них мы рассмотрим в следующих статьях. О пока…
Проверьте, как Вы усвоили материал.
Задание №1. Перейдите к гугл-форме и ответьте на вопросы (базовый уровень):
https://forms.gle/7u32uLfxRk1Yug7a8
Задание №2. Решите расчетные задачи: https://vk.com/page-205267346_56951920 (повышенный уровень)
Задание №3. Решите следующую задачу:
Какова молярная концентрация 12%-ного раствора серной кислоты (H2S04) с плотностью р = 1,08 г/см3. Рассчитайте титр данного вещества, моляльную концентрацию, мольную долю.
Отчет о решении задач пришли в беседу “Учебный класс”:
https://vk.me/join/DKsyQe2p0hJ2Wdoch1XOTwi_qZEJow1udOM=
Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.
Растворы. Способы выражения концентрации растворов
Способы выражения концентрации растворов
Существуют различные способы выражения концентрации растворов.
Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:
ωр.в. = mр.в./mр-ра (0 < ωр.в. < 1) (1)
Массовый процент представляет собой массовую долю, умноженную на 100:
ω(Х) = m(Х)/m · 100% (0% < ω(Х) < 100%) (2)
где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.
Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.
Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:
χ(X) = n(X)/(n(X) + n(H2O)) (3)
Мольный процент представляет мольную долю, умноженную на 100:
χ(X), % = (χ(X)·100)% (4)
Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:
φ(Х) = V(Х)/V (0 < φ(Х) < 1) (5)
Объёмный процент представляет собой объёмную долю, умноженную на 100.
φ(X), % = (φ(X)·100)%
Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:
Cм(Х) = n(Х)/V (6)
Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.
Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:
Cн(Х) = nэкв.(Х)/V (7)
Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.
Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см3 раствора:
T(Х) = m(Х)/V (8)
где m(X) – масса растворённого вещества X, V – объём раствора в мл.
Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:
μ(Х) = n(Х)/mр-ля (9)
где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.
Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.
Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:
См = Сн · f(Х) (10)
Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.
Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:
Сн = См/f(Х) (11)
Результаты расчётов приведены в табл. 2.
Таблица 1. К определению молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2 M Na2SO4 | ? | 6 н FeCl3 | ? |
1,5 M Fe2(SO4)3 | ? | 0,1 н Ва(ОН)2 | ? | |
Реакции окисления-восстановления | 0,05 М KMnO4
в кислой среде |
? | 0,03 М KMnO4
в нейтральной среде |
? |
Таблица 2
Значения молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2M Ma2SO4 | 0,4н | 6н FeCl3 | 2М |
1,5M Fe2(SO4)3 | 9н | 0,1н Ва(ОН)2 | 0,05М | |
Реакции окисления-восстановления | 0,05М KMnO4 в кислой среде | 0,25н | 0,03М KMnO4
в нейтральной среде |
0,01М |
Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:
V1 Сн,1 =V2 Сн,2 (12)
Примеры решения задач
Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см3.
Решение.
Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.
Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.
Молярность раствора См = 521,2/98 = 5,32 М.
Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.
Титр раствора Т = 521,2/1000 = 0,5212 г/см3.
Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.
Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.
Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.
Количество вещества воды: n = 781,8/18 = 43,43 моль.
Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.
Мольное отношение равно 5,32/43,43 = 0,1225.
Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см3), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.
Решение.
2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.
Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.
Объём раствора кислоты V = 14/1,611 = 8,69 мл.
Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см3.
Решение.
Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.
Масса раствора m = 5000 + 75,9 = 5075,9 г.
Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.
Количество вещества NH3 равно 100/22,4 = 4,46 моль.
Объём раствора V = 5,0759/0,992 = 5,12 л.
Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.
Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?
Решение.
Переводим молярность в нормальность:
0,1 М Н3РО4 0,3 н; 0,3 М Ва(ОН)2 0,6 н.
Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.
Задача 5. Какой объем, мл 2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?
Плотности растворов NaCl:
С, мас.% | 2 | 6 | 7 | 14 |
ρ, г/см3 | 2,012 | 1,041 | 1,049 | 1,101 |
Решение.
Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:
6,2% =6% + 0,2(7% —6% )/(7 – 6) = 1,0410 + 0,0016 = 1,0426 г/см3.
Определяем массу раствора: m = 150·1,0426 = 156,39 г.
Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.
Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):
156,39 = V1 1,012 + V2 1,101 ,
9,70 = V1·1,012·0,02 + V2·1,101·0,14 .
Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.
Задачи для самостоятельного решения
3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.
12 н.
3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.
0,1 M.
3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.
0,06 н.
3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.
0,02 M.
3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.
1,2 M.
3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?
0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.
3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.
255 мл; 2 н; 0,203 г/мл.
3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.
0,035; 0,0177; 1:55,6.
3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.
74,28 г; 3,05 М; 0,179 г/мл.
3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.
192,4 г; 0,111 г/мл; 0,56 моль/кг.
Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называют безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.
Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].
Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.
Массовая доля[править | править код]
определение | Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. |
---|---|
обозначение | — по рекомендациям ИЮПАК[4].
— чаще в русскоязычной литературе. В технической литературе: — для массовой доли жидкой смеси — для массовой доли газовой смеси |
единицы измерения | доли,
%масс (для выражения в %масс следует умножить указанное выражение на 100 %) |
формула | где:
|
В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.
Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.
Объёмная доля[править | править код]
определение | Объёмная доля — отношение объёма компонента к сумме объёмов компонентов до смешивания. |
---|---|
обозначение | |
единицы измерения | доли единицы,
%об (ИЮПАК не рекомендует добавлять дополнительные метки после знака %) |
формула |
где:
|
При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.
Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.
Молярность (молярная объёмная концентрация)[править | править код]
определение | Молярность — количество вещества (число молей) компонента в единице объёма смеси. |
---|---|
обозначение | По рекомендации ИЮПАК, обозначается буквой или , где B — вещество, концентрация которого указывается.[6] |
единицы измерения | В системе СИ — моль/м³
На практике чаще — моль/л или ммоль/л. Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам. |
формула |
где:
|
Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)[править | править код]
определение | Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. |
---|---|
обозначение | , , |
единицы измерения | Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н. |
формула |
где:
|
Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.
Мольная (молярная) доля[править | править код]
определение | Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. |
---|---|
обозначение | ИЮПАК рекомендует обозначать мольную долю буквой (а для газов — )[7], также в литературе встречаются обозначения , . |
единицы измерения | Доли единицы или %мольн (ИЮПАК не рекомендует добавлять дополнительные метки после знака %) |
формула |
|
Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом её часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.
Моляльность (молярная весовая концентрация, моляльная концентрация)[править | править код]
определение | Моляльная концентрация (моляльность,[5] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя. |
---|---|
обозначение | Примечание: чтобы не путать с массой, в тех формулах где применяется моляльность, массу обозначают как |
единицы измерения | моль/кг.
Также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным. |
формула |
где:
|
Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.
Массовая концентрация (Титр)[править | править код]
определение | Массовая концентрация — отношение массы растворённого вещества к объёму раствора. |
---|---|
обозначение | или — по рекомендации ИЮПАК[8].
— в аналитической химии |
единицы измерения | доли,
%масс (для выражения в %масс следует умножить указанное выражение на 100 %) |
формула |
где:
|
В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой ).
Концентрация частиц[править | править код]
определение | Концентрация частиц — отношение числа частиц N к объёму V, в котором они находятся |
---|---|
обозначение | — по рекомендации ИЮПАК[9].
однако также часто встречается обозначение (не путать с количеством вещества). |
единицы измерения | м−3 — в системе СИ,
1/л |
формула |
где:
|
Весообъёмные (массо-объёмные) проценты[править | править код]
Иногда встречается использование так называемых «весообъёмных процентов»[10], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[11] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[12] и ИЮПАК[13] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.
Другие способы выражения концентрации[править | править код]
Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).
Применимость способов выражения концентрации растворов, их свойства[править | править код]
В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.
Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.
Формулы перехода от одних выражений концентраций к другим[править | править код]
В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.
От молярности к нормальности[править | править код]
- ,
где:
От молярности к титру[править | править код]
- ,
где:
- — молярная концентрация;
- — молярная масса растворённого вещества.
Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.
От массовой доли к молярности[править | править код]
- ,
где:
Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.
От массовой доли к титру[править | править код]
- ,
где:
От моляльности к молярности[править | править код]
где:
- — моляльность,
- — масса растворителя,
- — суммарный объём раствора,
От моляльности к мольной доле[править | править код]
- ,
где:
- — моляльность,
- — молярная масса растворителя.
Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.
Сводная таблица[править | править код]
ωB | φB | xB | cB | CB | mB | TB | |||
---|---|---|---|---|---|---|---|---|---|
массовая доля | г/г | ωB | |||||||
объёмная доля | л/л | φB | |||||||
мольная доля | моль/моль | xB | |||||||
молярность | моль/л | cB | |||||||
нормальность | моль-экв/л | c((1/z) B) | |||||||
концентрация частиц | 1/л | CB | |||||||
моляльность | моль/кгр-ля | mB | |||||||
титр | г/мл | TB |
- — моляльность вещества B,
- — масса вещества B,
- — масса растворителя,
- — масса раствора,
- — титр (массовая концентрация) B,
- — плотность вещества B,
- — плотность раствора,
- — суммарный объём раствора,
- — постоянная Авогадро,
- — количество частиц вещества В,
- — количество вещества В,
- — количество раствора,
- — молярная масса,
Примечания[править | править код]
- ↑ International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.C01222. Архивировано 20 июля 2018 года.
- ↑ International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.F02494. Архивировано 20 августа 2018 года.
- ↑ IUPAC Gold Book internet edition: «concentration».
- ↑ International Union of Pure and Applied Chemistry. IUPAC Gold Book – mass fraction, w (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 13 декабря 2018 года.
- ↑ 1 2 3 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
- ↑ International Union of Pure and Applied Chemistry. IUPAC Gold Book – amount concentration, c (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 21 декабря 2018 года.
- ↑ International Union of Pure and Applied Chemistry. IUPAC Gold Book – amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 22 декабря 2018 года.
- ↑ International Union of Pure and Applied Chemistry. IUPAC Gold Book – mass concentration, γ, ρ (англ.). goldbook.iupac.org. Дата обращения: 16 декабря 2018. Архивировано 7 декабря 2018 года.
- ↑ International Union of Pure and Applied Chemistry. IUPAC Gold Book – number concentration, C,n (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 22 декабря 2018 года.
- ↑ Способы приготовления растворов на МедКурс. Ru. Дата обращения: 24 апреля 2012. Архивировано 29 октября 2012 года.
- ↑ Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
- ↑ The International System of Units (SI). www.bipm.org. Дата обращения: 23 декабря 2018. Архивировано из оригинала 14 августа 2017 года.
- ↑ Quantities, Units and Symbols in Physical Chemistry. www.iupac.org. Дата обращения: 23 декабря 2018. Архивировано из оригинала 20 декабря 2016 года.