Как найти концентрацию в молекулярной физике

Концентрация
{displaystyle {frac {N}{V}}}
Размерность L−3
Единицы измерения
СИ м−3
СГС см−3

Концентра́ция части́ц — физическая величина, равная отношению числа частиц N к объёму V, в котором они находятся:

{displaystyle n={frac {N}{V}}.}

Размерность в СИ [n] = 1/м3, в системе СГС — [n] = 1/см3.

Если концентрация является функцией координаты {displaystyle n=n({vec {r}}),} то под концентрацией понимают отношение:

{displaystyle n({vec {r}})=lim _{Vrightarrow 0}{frac {N}{V}}.}

Таким образом,

{displaystyle N=int limits _{V}n(mathbf {r} ),mathrm {d} V.}

Однако такое представление является в некоторой степени условным, поскольку концентрация (как, например, и температура) относится к макропараметрам и при переходе к бесконечно малому объёму, по большому счёту, теряет смысл. Бесконечно малый объём в данном случае должен определяться как объём, число частиц в котором велико, однако изменение макропараметров в пределах объёма мало́.

Концентрация имеет следующую связь с плотностью и насыщенностью:

{displaystyle rho ={frac {dm}{dV}}={frac {m_{0}cdot dN}{dV}}=m_{0}cdot n={frac {m_{0}}{V_{0}}}cdot {frac {dN}{dS}}.}

Формулы, в которых присутствует концентрация[править | править код]

p=nkT[1] — давление идеального газа (см. уравнение Клапейрона).
lambda ={frac  {1}{{sqrt  {2}}pi D^{2}n}} — средняя длина свободного пробега молекулы газа (здесь D — эффективный диаметр молекулы).
{displaystyle nu ={frac {nlangle vrangle }{4}}} — число ударов молекул газа о единицу поверхности стенки за единицу времени (здесь {displaystyle langle vrangle } — средняя скорость молекул).
{displaystyle {vec {j}}=qn{vec {v}}} — плотность тока (здесь q — заряд носителя, {vec {v}} — средняя скорость носителей заряда в данной точке).

См. также[править | править код]

  • Концентрация смеси

Примечания[править | править код]

  1. Клапейрона уравнение // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 371. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.

Формулы молекулярной физики

Формула концентрации молекул

Здесь n — концентрация , N — количество молекул (безразмерное), V — объем .

Формула плотности

Здесь — плотность вещества , m — масса вещества (кг), V — объем .

Формула относительной молекулярной массы

Здесь — относительная молекулярная масса (безразмерная), — масса одной молекулы (кг), — масса атома углерода (кг).

Формула количества вещества (количества молей)

Здесь v — количество вещества (количество молей) (моль), m — масса вещества (кг), М — молярная масса (кг/моль).

Формулы массы одной молекулы

Здесь — масса одной молекулы (кг), т — масса вещества (кг), N — количество молекул (безразмерное), М — молярная масса (кг/моль), — число Авогадро, — плотность вещества , n — концентрация молекул .

Формулы количества молекул

Здесь A — количество молекул (безразмерное), п — концентрация молекул , V— объем , v — количество вещества (количество молей) (моль), — число Авогадро , m — масса вещества (кг), — масса одной молекулы.

Формулы средней квадратичной скорости молекул

Здесь — средняя квадратичная скорость молекул (м/с), R = 8,31 Дж/(моль • К) — молярная газовая постоянная, Т — абсолютная температура (К), М — молярная масса (кг/моль), Дж/К — постоянная Больцмана, — масса одной молекулы (кг).

Основное уравнение кинетической теории идеального газа

Здесь р — давление газа (Па), — масса одной молекулы (кг), n — концентрация молекул , — средняя квадратичная скорость молекул (м/с), — средняя кинетическая энергия молекул (Дж).

Формула средней кинетической энергии молекул

Здесь — средняя кинетическая энергия молекул (Дж), — масса одной молекулы (кг), — средняя квадратичная скорость молекул (м/с).

Связь шкал Цельсия и Кельвина

Здесь Т — абсолютная температура (К), t — температура по шкале Цельсия.

Связь средней кинетической энергии молекул идеального газа с абсолютной температурой

Здесь — средняя кинетическая энергия молекул (Дж), k — постоянная Больцмана (Дж/К), Т — абсолютная температура (К).

У равнение состояния идеального газа — уравнение Клапейрона — Менделеева

Здесь р — давление газа (Па), V — объем , т — масса газа (кг), М — молярная масса (кг/моль), R — молярная газовая постоянная (ДжДмоль • К), Т — абсолютная температура (К), v — количество вещества (количество молей) (моль), — объем моля .

Объединенный газовый закон — уравнение Клапейрона

при

Здесь — давление (Па), объем и абсолютная температура (К) газа в первом состоянии, — давление (Па), объем и абсолютная температура (К) газа во втором состоянии.

Закон Бойля — Мариотта (изотермический процесс)

при

Здесь Т — абсолютная температура газа (К), m — масса газа (кг), — давление (Па) и объем газа в первом состоянии, — давление (Па) и объем газа во втором состоянии.

Закон Гей-Люссака (изобарный процесс)

при

Здесь р — давление газа (Па), m — масса газа (кг), и — объем и абсолютная температура (К) газа в первом состоянии, — объем и абсолютная температура (К) газа во втором состоянии.

Закон Шарля

при

Здесь V — объем газа , m — масса газа (кг), — давление (Па) и абсолютная температура (К) газа в первом состоянии, — давление (Па) и абсолютная температура (К) газа во втором состоянии.

Связь давления идеального газа с концентрацией его молекул и температурой

Здесь р — давление газа (Па), к — постоянная Больцмана (Дж/К), п — концентрация молекул газа , абсолютная температура Т (К).

Формулы относительной влажности

Здесь — относительная влажность (безразмерная или в %), р — плотность водяного пара в воздухе при данной температуре — плотность насыщенного водяного пара при той же температуре — давление водяного пара в воздухе при данной температуре (Па), — давление насыщенного водяного пара в воздухе при той же температуре (Па).

Работа при изобарном изменении объема газа

Здесь А — работа (Дж), р — давление газа (Па), — изменение объема газа — соответственно начальный и конечный объемы газа .

Внутренняя энергия идеального одноатомного газа

Здесь U — внутренняя энергия газа (Дж), m — масса газа (кг), М — молярная масса газа (кг/моль), R — молярная газовая постоянная (Дж/(моль • К), Т — абсолютная температура (К), v — количество вещества или число молей (моль), — изменение внутренней энергии (Дж), — изменение температуры (К).

Первый закон термодинамики

Здесь Q — количество теплоты, переданное термодинамической системе (Дж), — изменение внутренней энергии системы (Дж), А — работа против внешних сил (Дж)

Применение первого закона термодинамики к термодинамическим процессам

к изотермическому: при

к изохорному: при V = const

к изобарному: при р = const

к адиабатному: при Q = 0

Здесь Т — абсолютная температура (К), — изменение внутренней энергии (Дж), Q — количество теплоты (Дж), А — работа (Дж), V — объем , р — давление (Па).

Формулы количества теплоты при нагревании или охлаждении тел

Здесь Q — количество теплоты, переданное телу при нагревании или отданное им при охлаждении (Дж), с — удельная теплоемкость вещества (Дж/(кг • К), т — масса тела (кг), — изменение температуры тела по шкале Цельсия, и — температуры тела в начале и в конце процесса передачи теплоты по шкале Цельсия, — изменение абсолютной температуры тела (К), — абсолютные температуры тела в начале и в конце процесса передачи теплоты (К), — теплоемкость тела (Дж/К).

Формула количества теплоты при плавлении или кристаллизации

Здесь Q — количество теплоты (Дж), т — масса тела (кг), — удельная теплота плавления вещества (Дж/кг).

Формула количества теплоты при парообразовании или конденсации

Здесь Q — количество теплоты (Дж), m — масса тела (кг), r — удельная теплота парообразования (Дж/кг).

Формула количества теплоты при сгорании топлива

Здесь Q — количество выделившейся теплоты, m — масса топлива (кг), q — удельная теплота сгорания (Дж/кг).

Коэффициент полезного действия теплового двигателя

Здесь — коэффициент полезного действия (безразмерный или в %), — работа, совершенная двигателем (Дж), — количество теплоты, полученное рабочим веществом от нагревателя (Дж), — количество теплоты, отданное рабочим веществом холодильнику (Дж).

Коэффициент полезного действия идеального теплового двигателя

Здесь — коэффициент полезного действия идеального теплового двигателя (безразмерный или в %), — абсолютная температура нагревателя (К), — абсолютная температура холодильника(К).

Эта теория со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:

Задачи по физике с решением

Возможно вам будут полезны эти страницы:

 Концентрация
частиц (молекул, атомов и т. п.) однородной
системы

n=N/V,

где
V
объем
системы.

 Основное уравнение
кинетической теории газов

p=2/зn<п>,

где р
давление
газа; <п>—
средняя кинетическая энергия*
поступательного
движения молекулы.

 Средняя
кинетическая энергия:

приходящаяся на
одну степень свободы молекулы

<1>=½kT;

  • Здесь и далее
    кинетическая энергия молекул и других
    частиц обозна­чается .

приходящаяся на
все степени свободы молекулы (полная
энергия молекулы)

;

поступательного
движения молекулы

,

где
k

постоянная Больцмана; Т

термодинамическая темпера­тура;
i — число
степеней свободы молекулы;

вращательного
движения молекулы

 Зависимость
давления газа от концентрации молекул
и тем­пературы

p=nkT.

Скорость
молекул:

средняя квадратичная

,
или
;

средняя арифметическая

,
или
;

наиболее вероятная

,
или
,

где
m1

масса одной
молекулы.

Примеры решения задач

Пример
1.
В
баллоне вместимостью
V=6,9 л
находится азот массой m=2,3
г. При нагревании часть молекул
диссоциировали на атомы. Коэффициент
диссоциации*
=0,2.
Определить:
1) об­щее
число
N1
молекул и концентрацию
n1
молекул азота до нагрева­ния;
2) концентрацию
n2
молекул и n3
атомов азота после нагрева­ния.

Решение.
По определению, концентрация частиц
газа есть отношение числа частиц к
вместимости сосуда, занимаемого газом:

n=N/V.
(1)

1.
Число
N1
молекул газа до нагревания найдем из
соотношения

.
(2)

где
v
— количество
вещества азота;
na

постоянная Авогадро;
М
молярная
масса азота;
Mr

относительная молекулярная масса азота;
k=10-3
кг/моль (см. пример
1 на с.
114). Подставив
значения величин в
(2), получим

.

*
См. примечание к задаче
8.15.

Концентрацию
n1
найдем, подставив значения величин в
(1):

.

2.
Концентрацию после нагревания найдем
из соотношения

, (3)

где
N
число
молекул, не распавшихся на атомы.

После подстановки
значений величин в
(3) получим

.

Концентрация
атомов после нагревания азота

. (4)

Число
2 в формуле
(4) выражает
тот факт, что каждая молекула после
распада дает два атома.

Подставим в
(4) значения
величин и произведем вычисления:

.

Пример
2.
В колбе
вместимостью V=0,5
л находится кислород при нормальных
условиях. Определить среднюю энергию
поступательного движения всех молекул,
содержащихся в колбе.

Решение.
Средняя энергия
поступательного
движе­ния всех молекул может быть
выражена соотношением

,
(1)

где <п>—
средняя энергия поступательного движения
одной моле­кулы;
N
число
всех молекул, содержащихся в колбе.

Как известно,

,
(2)

где
k

постоянная Больцмана; Т

термодинамическая темпера­тура.

Число молекул,
содержащихся в колбе, найдем по формуле

N=vNA,
(3)

где
v
— количество
вещества кислорода; NA
— постоянная
Авогадро.

Количество
вещества v найдем из таких соображений:
известно, что при нормальных условиях
молярный объем Vm равен 22,410-3
м3/моль. Так как, по условию задачи,
кислород в колбе находится при нормальных
условиях, то количество вещества
кис­лорода в колбе выражается
соотношением

v=V/Vm.
(4)

Подставив выражение
v
по
(4) в
(3), получим

N=VNA/Vm.
(5)

С учетом
(2) и
(5) выражение
(1) энергии
поступательного движе­ния молекул
примет вид

Проверим, дает ли
правая часть расчетной формулы единицу
энергии (джоуль). Для этого вместо
символов величин подставим единицы, в
которых эти величины выражаются:

.

Подставив значения
величин в
(6) и произведя
вычисления, най­дем

Пример
3.
Найти
среднюю кинетическую энергию одной
моле­кулы аммиака
NH3
при температуре
t=27 °С и
среднюю энергию вращательного движения
этой молекулы при той же температуре.

Решение.
Средняя полная энергия молекулы
определяется по
формуле


(1)

где
i
число
степеней свободы молекулы;
k

постоянная Больцмана; Ттермодинамическая
температура газа: T=t+Т0,
где Т0=273
К.

Число степеней
свободы
i
четырехатомной молекулы, какой явля­ется
молекула аммиака, равно
6.

Подставим значения
величин в
(l):

.

Средняя энергия
вращательного движения молекулы
определя­ется по формуле

,
(2)

где число
3 означает
число степеней свободы поступательного
дви­жения.

Подставим в
(2) значения
величин и вычислим:

.

Заметим, что энергию
вращательного движения молекул ам­миака
можно было получить иначе, разделив
полную энергию ()
на две равные части. Дело в том, что у
трех (и более) атомных молекул число
степеней свободы, приходящихся на
поступательное и враща­тельное
движение, одинаково (по
3), поэтому
энергии поступатель­ного и вращательного
движений одинаковы. В данном случае

Газ обладает высокой реакционной способностью по сравнению с жидкими и твердыми телами ввиду большой площади его активной поверхности и высокой кинетической энергии образующих систему частиц. При этом химическая активность газа, его давление и некоторые другие параметры зависят от концентрации молекул. Рассмотрим в данной статье, что это за величина и как ее можно вычислить.

О каком газе пойдет речь?

В данной статье будут рассмотрены так называемые идеальные газы. В них пренебрегают размерами частиц и взаимодействием между ними. Единственным процессом, который происходит в идеальных газах, являются упругие столкновения между частицами и стенками сосуда. Результатом этих столкновений является возникновение абсолютного давления.

Любой реальный газ приближается по своим свойствам к идеальному, если уменьшать его давление или плотность и увеличивать абсолютную температуру. Тем не менее существуют химические вещества, которые даже при низких плотностях и высоких температурах далеки от идеального газа. Ярким и всем известным примером такого вещества является водяной пар. Дело в том, что его молекулы (H2O) являются сильно полярными (кислород оттягивает на себя электронную плотность от атомов водорода). Полярность приводит к появлению существенного электростатического взаимодействия между ними, что является грубым нарушением концепции идеального газа.

Водяной пар

Универсальный закон Клапейрона-Менделеева

Чтобы уметь рассчитывать концентрацию молекул идеального газа, следует познакомиться с законом, который описывает состояние любой идеальной газовой системы независимо от ее химического состава. Этот закон носит фамилии француза Эмиля Клапейрона и русского ученого Дмитрия Менделеева. Соответствующее уравнение имеет вид:

P*V = n*R*T.

Равенство говорит о том, что произведение давления P на объем V всегда для идеального газа должно быть прямо пропорционально произведению температуры абсолютной T на количество вещества n. Здесь R – это коэффициент пропорциональности, который получил название универсальной газовой постоянной. Она показывает величину работы, которую 1 моль газа выполняет в результате расширения, если его на 1 К нагреть (R=8,314 Дж/(моль*К)).

Концентрация молекул и ее вычисление

Двухатомный идеальный газ

Согласно определению под концентрацией атомов или молекул понимают количество частиц в системе, которое приходится на единицу объема. Математически можно записать:

cN = N/V.

Где N – общее число частиц в системе.

Прежде чем записать формулу для определения концентрации молекул газа, вспомним определение количества вещества n и выражение, которое связывает величину R с постоянной Больцмана kB:

n = N/NA;

kB = R/NA.

Используя эти равенства, выразим отношение N/V из универсального уравнения состояния:

P*V = n*R*T =>

P*V = N/NA*R*T = N*kB*T =>

cN = N/V = P/(kB*T).

Таким образом мы получили формулу для определения концентрации частиц в газе. Как видно, она прямо пропорционально зависит от давления в системе и обратно пропорционально от абсолютной температуры.

Поскольку количество частиц в системе велико, то концентрацией cN пользоваться неудобно при выполнении практических расчетов. Вместо нее чаще используют молярную концентрацию cn. Она для идеального газа определяется так:

cn = n/V = P/(R *T).

Пример задачи

Необходимо рассчитать молярную концентрацию молекул кислорода в воздухе при нормальных условиях.

Химическая формула молекулы кислорода

Для решения этой задачи вспомним, что в воздухе находится 21 % кислорода. В соответствии с законом Дальтона кислород создает парциальное давление 0,21*P0, где P0 = 101325 Па (одна атмосфера). Нормальные условия также предполагают температуру 0 oC (273,15 К).

Мы знаем все необходимые параметры для вычисления молярной концентрации кислорода в воздухе. Получаем:

cn(O2) = P/(R *T) = 0,21*101325/(8,314*273,15) = 9,37 моль/м3.

Если эту концентрацию привести к объему 1 литр, то мы получим значение 0,009 моль/л.

Чтобы понять, сколько молекул O2 содержится в 1 литре воздуха, следует умножить рассчитанную концентрацию на число NA. Выполнив эту процедуру, получим огромное значение: N(O2) = 5,64*1021 молекул.

Добавить комментарий