Когда вы смешиваете два или более вещества с различными уровнями концентрации, конечный раствор не просто приравнивается к объединенным уровням концентрации исходных ингредиентов. Природа эксперимента определяет используемые ингредиенты, включая их индивидуальные уровни концентрации. Уровни концентрации, как правило, представляют собой процент от исходного ингредиента по объему контейнера, поскольку нет установленных единиц концентрации.
Например, если вы смешиваете 100 мл 10-процентной концентрации соединения А с 250 мл 20-процентной концентрации того же самого соединения, математическая формула включает начальные концентрации двух растворов, а также объем конечного раствора., позволяет отработать конечную концентрацию в процентах от объема нового комбинированного раствора.
-
Рассчитать объем в каждой концентрации
-
Общее количество соединения А
-
Найти общий объем
-
Преобразовать в проценты
-
Вы можете использовать любые единицы измерения для значений концентрации и объемов, если вы используете одинаковые единицы для каждого из двух растворов. Концентрация также может быть выражена в процентном составе по массе, мольной доле, молярности, молярности или нормальности
Например, рассчитайте процентный состав по массе 100 г раствора соли, содержащего 20 г соли, разделив массу концентрации на общую массу растворенного вещества, а затем умножив ее на 100. Формула: (20 г ÷ 100 г) х 100, что составляет 20 процентов.
Если вы не знаете концентраций ваших исходных растворов, рассчитайте молярность путем деления числа молей в растворенном веществе на объем раствора в литрах. Например, молярность 0, 6 моль NaCl, растворенного в 0, 45 литрах, составляет 1, 33 М (0, 6 моль ÷ 0, 45 л). Сделайте это для обоих веществ, чтобы вы могли рассчитать конечную концентрацию раствора. (Помните, что 1, 33 М означает 1, 33 моль / л, а не 1, 3 моль.)
Определите объем каждого концентрированного вещества, использованного в эксперименте, путем преобразования процентного содержания в десятичное число (т. Е. Деления на 100), а затем умножения на общий объем раствора. Расчет для объема соединения А в первой концентрации составляет (10 ÷ 100) х 100 мл, что составляет 10 мл. Расчет для объема соединения А во второй концентрации составляет (20 ÷ 100) х 250 мл, что составляет 50 мл.
Добавьте эти количества вместе, чтобы найти общее количество соединения А в конечной смеси: 10 мл + 50 мл = 60 мл.
Добавьте два объема вместе, чтобы определить общий объем конечной смеси: 100 мл + 250 мл = 350 мл.
Используйте формулу x = ( c ÷ V ) × 100 преобразовать концентрацию ( с ) и объем ( V ) конечного раствора в проценты.
В этом примере с = 60 мл и V = 350 мл. Решите приведенную выше формулу для х , который является процентной концентрацией конечного раствора. В этом случае х = (60 мл ÷ 350 мл) × 100, поэтому х = 17, 14 процента, что означает конечную концентрацию раствора 17, 14 процента.
подсказки
Как определять исходную концентрацию вещества
Вещества, вступающие в химическую реакцию, претерпевают изменения состава и строения, превращаясь в продукты реакции. Концентрация исходных веществ уменьшается вплоть до нуля, если реакция идет до конца. Но может протекать обратная реакция, когда продукты распадаются на исходные вещества. В таком случае устанавливается равновесие, когда скорость прямой и обратной реакции становится одинаковой. Разумеется, равновесные концентрации веществ будут меньше исходных.
Инструкция
Произошла химическая реакция по схеме: А + 2Б = В. Исходные вещества и продукт реакции – газы. В какой-то момент установилось равновесие, то есть, скорость прямой реакции (А + 2Б = В) сравнялась со скоростью обратной (В = А + 2Б). Известно, что равновесная концентрация вещества А равна 0,12 моль/литр, элемента Б – 0,24 моль/литр, а вещества В – 0,432 моль/литр. Требуется определить исходные концентрации А и Б.
Изучите схему химического взаимодействия. Из нее следует, что один моль продукта (элемента В) образовывался из одного моля вещества А и двух молей вещества Б. Если в одном литре реакционного объема образовывалось 0,432 моля элемента В (по условиям задачи), то, соответственно, одновременно расходовалось 0,432 моля вещества А и 0,864 моля элемента Б.
Вам известны равновесные концентрации исходных веществ: [A] = 0,12 моль/литр, [Б] = 0,24 моль/литр. Прибавив к этим величинам те, которые были израсходованы в ходе реакции, вы получите величины исходных концентраций: [A]0 = 0,12 + 0,432 = 0,552 моль/литр; [Б]0 = 0,24 + 0,864 = 1,104 моль/литр.
Также вы можете определить исходные концентрации веществ с помощью константы равновесия (Кр) – отношения произведений равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ. Константа равновесия рассчитывается по формуле: Кр = [C]n [D]m /([A]0x[B]0y), где [C] и [D] – равновесные концентрации продуктов реакции С и D; n, m – их коэффициенты. Соответственно, [A]0, [В]0 – равновесные концентрации элементов, вступающих в реакцию; x,y – их коэффициенты.
Зная точную схему протекающей реакции, равновесную концентрацию хотя бы одного продукта и исходного вещества, а также величину константы равновесия, можно записать условия этой задачи в виде системы двух уравнений с двумя неизвестными.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Смесь, состоящая из частиц растворителя, растворяемого вещества и продуктов их взаимодействия, называется раствором. Это гомогенные структуры однородной консистенции, состоящие из двух либо нескольких компонентов. Решение задач на растворы – определение их концентрации, степени растворимости веществ, условий протекания растворообразующих процессов.
Задачи на растворы по химии
Чистое вещество либо смесь нескольких компонентов, попадая в растворитель, могут проявлять свойства:
- хорошей растворимости;
- малой растворимости;
- быть нерастворимыми.
При растворении в воде образуются многочисленные атомно-молекулярные связи. Их количество зависит от коэффициента растворимости – химической величины, которая рассчитывается путем деления массы растворяемого вещества на массу растворителя.
Кроме этого, в задачах могут присутствовать массовая доля вещества, растворенного в соответствующем растворителе.
Как решать задачи с процентными растворами
Растворы с выраженной концентрацией активного (растворенного) вещества носят название процентных. В задачах по химии ставятся цели определить содержание массы растворенного вещества, массы образовавшегося либо первоначального раствора, процентного содержания вещества до или после растворения.
Растворы, о которых идет речь в задачах по химии, обладают общими свойствами:
- они однородны;
- смешивание компонентов происходит за малый отрезок времени, как и изменение их концентрации;
- в результате смешивания двух (или более) растворов с различной концентрацией, происходит не только увеличение общей массы и объема раствора, но и усреднение процентного содержания растворенного вещества.
Поэтому существуют общие принципы их решения. Так, увеличение концентрации происходит в результате упаривания (испарения растворителя), а уменьшение – разбавления. В результате смешения может наблюдаться как увеличение, так и уменьшение, в зависимости от конкретных условий задачи.
В любом случае характеристики начального и конечного продуктов будут различаться, поэтому важно, данные в условии сведения не перепутать. Для этого применяется их нумерация.
Чтобы грамотно составить алгоритм решения, часто бывает полезно использовать уравнение химической реакции относительно активного вещества либо кислоты.
Концентрация растворов и способы ее выражения
На бытовом уровне понятие концентрации раствора выражается в отношении массы растворенного вещества к массе раствора, выраженном в процентах. Однако правомерно более широкое определение, охватывающее различные способы выражения концентрации.
Концентрация раствора – количественный показатель состава активного вещества в растворе, выраженное в определенных единицах и заключенное в единице массы или объема. Выражается в долях, процентах, массовых долях, молярности, мольных долях, титрах. Из них чаще применяются молярность и мольная доля.
1. О массовой доле ((omega)) идет речь в задачах, когда можно составить соотношение масс растворенного компонента и всего раствора. Для ее выражения существует формула:
(omega=M_{в-ва}div M_{р-ра})
Выражается она в процентах либо долевых частях единицы.
2. Молярность (по-другому – молярная концентрация) или (С) показывает сколько молей растворяемого компонента содержится в литре раствора. Ее формула имеет вид:
(С=ndiv V)
где (n) – это растворенное вещество в молях. Исходя из его значения, раствор может быть одномолярным (содержит 1 моль в 1 литре), децимолярным (0,1 моля в 1 л), сантимолярным (0,01 моль) и т.д.
3. Концентрация моляльная (обозначается (С_х)) – моляльность – показатель количества (n) молей растворенного компонента в 1 кг растворителя ((M_{р-ля})).
(C_x=ndiv M_{р-ля})
4. Для определения содержания (в граммах) вещества в 1 л раствора применяется понятие «титр» ((Т)).
(T=M_{в-ва}div V_{р-ра})
5. Под растворимостью ((S)) понимают максимальную массу растворяемого вещества, способного раствориться в 100 г растворителя:
(S=(M_{в-ва}div M_{р-ля})times100 {})
6. Коэффициент растворимости ((K_s)) – показатель, который определяется отношением массы вещества к массе растворителя при условии получения насыщенного раствора при обозначенной температуре:
(K_s=M_{в-ва}div M_{р-ля})
Решение задач на упаривание растворов
Выпаривание раствора происходит в результате испарения воды, что ведет за собой уменьшение общего объема и массы. В то же время масса растворенного вещества остается без изменений. Существуют случаи, когда, кроме растворителя, испаряется растворенное вещество, если оно обладает повышенной летучестью.
Пример. Водный раствор аммиака
Рассмотрим пример решения задачи на упаривание.
Условие: В наличии 800 г раствора с 15%-ной концентрацией определенного вещества. Нужно увеличить его массовую долю на 5%. Сколько г воды должно испариться?
Этапы решения:
- Какова масса вещества в первичном растворе?
(M_в=omega_вtimes M_р=0,15×800=120)г, где (M_в) – масса вещества, (M_р) – масса раствора
Найденное значение останется постоянным, поскольку при выпаривании изменения массы растворенного вещества не происходит. Значит M’=120г
2. (M_р=M_вdivomega_в= 120÷0.2=600)г
3. Теперь можно найти массу испаренной воды:
(M{исп;в}=M_р-M’=800-600=200)г
Решение задач на разбавление растворов
В результате процесса разбавления масса того вещества, которое растворено, не меняется в отличие от массы всего раствора и растворителя.
Задача
Масса имеющегося раствора NaCl 200г, его концентрация – 15%. К раствору добавлено 40г воды. Определить массовую долю NaCl в конце реакции.
Решение
1. Определение массы раствора в конце процесса:
(M’=M_{р-ра}+M_{добH2O}=240)г
2. Определение массы NaCl в начале процесса:
(M_{NaCl}=(omega_{NaCl}times M_р)div100%=15%times200гdiv100%=30 {})г
В конечном растворе (M’_ {NaCl}=M_{NaCl})
3. Определение массовой доли NaCl в конце процесса:
(omega’_{NaCl}=M_{NaCl}div M’_рtimes100%=12,5%)
Решение задач на концентрирование растворов
Повышение концентрации происходит при добавлении вещества в раствор. При этом конечная масса растворенного вещества равна сумме первоначального содержимого и того, который добавлен.
Задача. Имеется 180 г раствора с 8%-ной концентрацией соли (формула NaCl). В этот раствор всыпали еще 20 г поваренной соли. Какая массовая доля NaCl получилась в конце реакции?
Решение
1. Определение окончательной массы раствора:
(M’_р=M_р+M_{доб}=200)г
2. Определение конечной массы NaCl:
M’=M+Mдоб
Следовательно, нужно найти (M) – массу в начале процесса.
(M=(omega_{NaCl}times M_р)÷100%=14,4)г
Тогда (M’=14,4г+20г=34,4)г
3. Определение массовой доли NaCl в конечном продукте:
(omega’=M’_{NaCl}div M’_рtimes100%=17,2%)
Решение задач на смешение растворов
Смешение растворов с различной концентрацией растворенного вещества происходит с соблюдением «конверта Пирсона». Это – диагональная модель, при которой нельзя складывать массовые доли, а можно – лишь массы растворенных компонентов и растворов.
Задача
Дано два раствора с массами (M) и (M_1). Массовые доли растворенного вещества обозначим соответственно (ω) и (ω_1). В конечном продукте аналогичная величина – (ω_3). Необходимо приготовить третий раствор с отличной от имеющихся концентраций.
Решение
1. Определение общей массы растворенного вещества:
(M_1omega_1+M_2omega_2=omega_3(M_1+M_2))
2. Математические действия:
(M_1(omega_1-omega_3)=M_2=(omega_3-omega_2))
(M_1div M_2=(omega_3-omega_2)div(omega_1-omega_3))
Следовательно, согласно этому математическому выражению, и нужно взять соотношение растворов.
Задачи на определение процентной концентрации раствора
Задача 1
Какая процентная концентрация раствора (KNO_3), если нормальная равна (0,2) моль/л. Плотность равна (1) г/мл.
Решение:
1. Определение массы раствора объемом (1000) мл:
(M=rhotimes V=1times1000=1000)г
2. Составление и решение следующей пропорции:
(20,0)г (KNO_3) – (1000) г раствора
(Х_г) – (100) г раствора
(Х=2,02) г или (ω=2,02%)
Задача 2
Нужно приготовить (300) г 25%-ного раствора соли, имея 60%-ный и 10%-ный. Сколько нужно взять таких компонентов (m1 и m2)?
Для решения применим правило Креста:
1. Определение веса одной из 50-ти частей образуемого раствора:
(300div5=6)
2. Определение массы каждой части (m_1) и (m_2):
(m_1=6times15=90)
(m_2=6times35=210)
Задача 3
Используя 250г 45%-ного раствора соли, нужно понизить его концентрацию до 10%. Сколько воды необходимо использовать?
Концентрация соли в воде, используемой в качестве добавки, равна 0.
По методу креста образуется 45 частей раствора:
Решение
1. Масса одной части первичного раствора равна: (250div10=25)г
2. Определение массы воды, что необходима: (25times35=875)г
С целью проверки можно выполнить следующие действия:
1. Определение массы конечного продукта-раствора:
(875+25=1125г)
2. Для исходного раствора действует пропорция:
В 250г 40%-ного р-ра содержится Хг соли
в 100 г – 45г
Отсюда Х=112,5 г соли
3. Определение конечной концентрации раствора:
1125 г раствора – 112,5 соли
100г – Х
Х=10г или 10%
Следовательно, нужно взять 875 г воды.
Решать задачи на растворы – интересное занятие! Знание основных закономерностей будет полезно с теоретической и практической точек зрения. Однако бывают случаи, когда нужно быстро сдать контрольную либо перепроверить собственные решения. Тогда можно обратиться на сайт ФениксХелп.
Загрузить PDF
Загрузить PDF
В химии концентрация раствора показывает, как много растворенного вещества содержится в растворителе. Согласно стандартной формуле C = m/V, где C — концентрация, m — масса растворенного вещества и V — общий объем раствора. При малых концентрациях удобнее вычислять концентрацию в миллионных долях (ppm). Во время лабораторной работы вас могут попросить также вычислить молярность, или молярную концентрацию раствора.
-
1
Найдите массу растворенного вещества. Это вещество добавляют в растворитель, чтобы получить раствор. Если в условии дана масса растворенного вещества, запишите ее и укажите соответствующие единицы измерения. Если эту массу необходимо найти, взвесьте то вещество, которое вы собираетесь растворить, на лабораторных весах и запишите результат измерений.[1]
- Если растворенное вещество имеет жидкую форму, можно вычислить массу с помощью формулы для плотности D = m/V, где m — масса жидкости и V — ее объем. Чтобы найти массу, умножьте плотность жидкости на объем.
Совет: если необходимо использовать весы, вычтите из общей массы массу емкости, в которой находится взвешиваемая жидкость, чтобы получить правильный результат.
-
2
Запишите общий объем раствора. Этот объем равен сумме объема растворителя и растворенного вещества. Если необходимо измерить объем в лаборатории, приготовьте раствор в мерной пробирке или мензурке и определите объем. Чтобы получить более точный результат, определите объем по верхнему краю поверхности раствора (мениска). Запишите найденную величину.[2]
- Если вы не измеряете объем раствора самостоятельно, возможно, потребуется вычислить его по массе и плотности.
- Например, если следует найти концентрацию 3,45 грамма соли, растворенной в 2 литрах воды, можно определить объем по формуле для плотности. Найдите плотность соли в справочнике или интернете и решите уравнение относительно массы m. В данном случае плотность соли составляет 2,16 г/мл (грамма на миллилитр). Получаем 2,16 г/мл = (3,45 г)/V. Умножим обе части равенства на V и получим V(2,16 г/мл) = 3,45 г. После этого поделим каждую часть на 2,16 и найдем объем: V = (3,45 г)/(2,16 г/мл) = 1,60 мл.
- Прибавьте к объему растворенного вещества объем растворителя. В нашем примере имеем 2 л + 1,6 мл = 2000 мл + 1,6 мл = 2001,6 мл. Можно оставить найденный объем в миллилитрах или перевести его в литры: 2,002 л.
-
3
Поделите массу растворенного вещества на общий объем раствора. Запишите уравнение C = m/V, где m — масса растворенного вещества и V — общий объем раствора. Подставьте величины массы и объема и выполните деление, чтобы определить концентрацию раствора. Не забудьте записать в ответе правильные единицы измерения.[3]
- В нашем примере для концентрации 3,45 грамма соли в 2 литрах воды имеем C = (3,45 г)/(2,002 л) = 1,723 г/л.
- В некоторых задачах требуется найти концентрацию в определенных величинах. Не забудьте перевести значения в соответствующие единицы измерения, прежде чем подставлять их в конечную формулу.
Реклама
-
1
Найдите массу растворенного вещества в граммах. Измерьте массу того вещества, которое вы собираетесь добавить в раствор. Не забудьте вычесть массу емкости, если вы используете ее при взвешивании, чтобы получить правильный результат.[4]
- Если растворяемое вещество находится в жидкой форме, можно вычислить его массу с помощью формулы D = m/V, где D — плотность жидкости, m — ее масса и V — объем. Найдите плотность жидкости в справочнике или интернете и решите уравнение относительно массы.
-
2
Определите общую массу раствора в граммах. Общая масса равна сумме масс растворенного вещества и растворителя. Измерьте эти массы с помощью лабораторных весов или переведите объем растворителя в массу с помощью формулы для плотности D = m/V. Сложите массы растворенного вещества и растворителя, чтобы найти общую массу.[5]
- Например, если вы хотите найти концентрацию 10 граммов порошка какао в 1,2 литра воды, определите массу воды по формуле для плотности. Плотность воды составляет 1000 г/л, поэтому получаем 1000 г/л = m/(1,2 л). Умножим обе стороны равенства на 1,2 литра и найдем массу в граммах: m = 1,2 л×1000 г/л = 1200 г. Прибавим массу порошка какао и получим 1210 г.
-
3
Поделите массу растворенного вещества на общую массу раствора. Определим концентрацию как C = масса растворенного вещества/общая масса раствора. Подставьте в это уравнение значения, чтобы найти концентрацию раствора.[6]
- В нашем примере C = (10 г)/(1210 г) = 0,00826.
-
4
Умножьте ответ на 100, если хотите найти концентрацию в процентах. Если требуется определить концентрацию в процентах, умножьте найденный ответ на 100. Запишите полученный результат со знаком процентов.[7]
- В нашем примере концентрация в процентах составляет 0,00826×100 = 0,826 %.
-
5
Умножьте концентрацию на 1000000, чтобы найти миллионные доли. Возьмите найденное значение концентрации и умножьте его на 1000000, или 106. В результате вы найдете, сколько миллионных долей растворенного вещества содержится в растворе. Укажите в ответе единицы измерения в ppm.[8]
- В нашем примере количество миллионных долей ppm = 0,00826×1000000 = 8260 ppm.
Совет: миллионные доли обычно используют для очень малых концентраций, когда легче записать и понять ответ в них, а не в процентах.
Реклама
-
1
Сложите атомные массы растворенного вещества, чтобы найти молярную массу. Посмотрите, из каких химических элементов состоит данное растворенное вещество. Выпишите атомную массу каждого элемента, поскольку атомная и молярная массы равны. Сложите все атомные массы элементов растворенного вещества, чтобы найти общую молярную массу. Укажите в полученном результате, что это г/моль (количество граммов на моль).[9]
- Например, если в качестве растворенного вещества дан гидроксид калия, найдите атомные массы калия, кислорода и водорода и сложите их. В результате получится молярная масса = 39 +16 + 1 = 56 г/моль.
- Молярность используется в химии в основном тогда, когда известен химический состав растворенного вещества.
-
2
Поделите массу растворенного вещества на его молярную массу, чтобы определить количество молей. При необходимости измерьте массу растворенного вещества с помощью лабораторных весов. Не забудьте вычесть массу емкости, чтобы получить правильный результат. Поделите найденную массу на молярную массу, в результате вы узнаете количество молей. Укажите возле ответа «моль».[10]
- К примеру, если вы хотите найти, сколько молей содержится в 25 граммах гидроксида калия (KOH), уравнение будет выглядеть следующим образом: число молей = (25 г)/(56 г/моль) = 0,45 моль.
- Переведите массу растворенного вещества в граммы, если она указана в других единицах измерения.
- Моли показывают количество молекул в растворе.
-
3
Переведите объем раствора в литры. Определите объем растворителя, прежде чем приготовить раствор. Если объем не дан в условии задачи, используйте мерную пробирку или мензурку. Если вы получите результат в миллилитрах, поделите его на 1000, чтобы перевести в литры.[11]
- В рассматриваемом примере если вы используете 400 миллилитров воды, поделите эту величину на 1000, и у вас получится 0,4 литра.
- Если объем растворителя уже указан в литрах, данный шаг можно пропустить.
Совет: обычно нет необходимости учитывать объем растворенного вещества, так как он, как правило, не сильно влияет на общий объем. Однако если объем заметно изменится после того, как вы добавите растворимое вещество, используйте общий объем раствора.
-
4
Поделите количество молей растворенного вещества на объем раствора в литрах. Запишите молярность следующим образом: M = mol/V, где mol — количество молей растворенного вещества и V — объем растворителя. Найдите ответ и поставьте возле него букву «M».[12]
- В нашем примере M = (0,45 моль)/(0,4 л) = 1,125 M.
Реклама
Советы
- Если вы находитесь в лаборатории и не знаете, сколько растворенного вещества было добавлено, можно титровать раствор другими реактивами. При этом необходимо знать, как записывать химические уравнения в стехиометрическом виде.
Реклама
Об этой статье
Эту страницу просматривали 227 722 раза.
Была ли эта статья полезной?
Способы выражения концентрации растворов.
Молярная концентрация См– отношение количества вещества в молях
(n) к объему раствора в
литрах:
Если вещество обозначить через Xто:
Нормальная концентрация или молярная
концентрация эквивалента Сн
– отношение количества эквивалентов
вещества к объему раствора
Молярная и нормальная концентрации
связаны между собой: См
= Сн∙f
или Сн = См
/f
Титр (Т) – часто используется на
практике. Титр раствора –это масса
вещества в граммах в 1 мл раствора (г/мл).
Если Т(HNO3) = 0,006354
г/мл, то это значит, что в 1 мл раствора
содержится 0,006354 г азотной кислоты.
Титр раствора по определяемому
веществу– это масса вещества в г,
взаимодействующая с 1 мл титранта.
Например, ТHCl/NaOHсоставляет 0,003954 г/мл, это означает, что
1 мл раствораHCl(титранта)
реагирует с 0,003954 гNaOH(определяемого вещества).
Массовая доля вещества (ω)––
отношение массы растворенного вещества
(mв-ва) к массе
раствора(mр-ра).
Массовая доля – величина безразмерная,
ее представляют либо в долях, либо в
процентах. Например, для 5%-го раствора
хлорида кальция, широко применяемого
в медицине, ω%(CaCl2)
=5% или в долях ω=0,05. И это означает, что
в 100 г раствора содержится 5 г хлорида
кальция.
ω
где ρ – плотность раствора.
Моляльная концентрация Cm– отношение количества молей растворенного
вещества к 1000 г растворителя, т.е. число
молей растворенного в-ва в 1000 г
растворителя.
Формулы для перерасчета концентраций.
(плотность (ρ) раствора дана в г/мл)
ω,% |
См, |
Сн, |
Т, г/мл |
|
ω,% |
||||
См, |
||||
Сн, |
||||
Т, г/мл |
Приготовление рабочих растворов
Растворы
титр, которых известен, называются
титрованными. Титрованный раствор можно
приготовить, если точную навеску
растворить в мерной колбе. Например,
навеску 0,2750 г Nа2SО4поместим в колбу на 200 мл и доведем объем
дистиллированной водой до метки, то
титр приготовленного раствора точно,
конечно, известен:
Т= 0,2750/200 =0,0013750 г/мл
Вещества,
из которых готовят растворы с известным
титром, называются исходными (стандартными
веществами). Исходные вещества должны
удовлетворять следующим требованиям:
а) они
должны быть химически чистыми (примеси
не более 0,05-0,1 %);
б) состав
должен строго соответствовать химической
формуле;
в)
устойчивы при хранении в растворе и в
твердом состоянии;
г)
величина эквивалента должна быть
наибольшей.
Раствор,
приготовленный таким образом, называется
стандартными раствором с приготовленным
титром. Способ приготовления титрованных
растворов зависит от свойств вещества
и агрегатного состояния
1. Из
веществ кристаллических х.ч. готовят
по точной навеске.
Например:
приготовить 250 мл 0,1н раствораNa2CO3,
М(Na2CO3)
= 106 г/моль. Эквивалентная масса Э(Na2CO3)
= 53 г/моль,
Необходимо:
а)
рассчитать навеску, необходимую для
приготовления раствора:
m
= CH∙
M(1/z Na2CO3)∙V(л)
= 0,1∙53∙0,25 = 1,325 (г)
б)
отвесить навеску на аналитических
весах,
в)
навеску количественно перенести в
мерную колбу на 250 мл, растворить в
небольшом количестве дистиллированной
воды и долить ею до метки, тщательно
перемешивая.
2.
Приготовление из фиксанала.Готовят
раствор, сразу разбивая фиксанал в
мерную колбу нужного объема, и вымывают
из фиксанала все кристаллы дистиллированной
водой и доводят раствор до метки.
3. Из
кристаллических веществ, загрязненных,
гигроскопичных, летучих и т.д.
Необходимо
для приготовления;
а)
рассчитать навеску,
б)
отвесить ее на технических весах,
перенести в любую склянку на 250 мл,
растворить в дистиллированной воде и
долить до метки,
в)
установить точную концентрацию
приготовленного раствора по исходному
веществу (титрованному раствору).
Растворы, титр которых находят не по
точной навеске, а путем титрования
титрованным раствором, называют растворы
с установленным титром.
Примеры:
1.
Приготовить400мл 0,05 н раствора буры
из кристаллической.
Решение:
Определить
массу навески буры, она равна:
m=
Э(Nа2В4О7∙10Н2О)∙Сн∙V(л)=190,71∙0,05∙0,4=3,81
г.
Отвешиваем
на аналитических весах навеску, переносим
в мерную колбу, тщательно растворяем и
доводим до метки 400 мл.
2.Приготовить
100 мл0,15 н раствора из 3н раствора её.
Вопросы
к задаче: а) в каких объемах реагируют
растворы с одинаковой концентрацией?
б) какая зависимость между объемами
реагирующих веществ и нормальными
концентрациями?
Данную
задачу можно решить по формуле: Сн1∙V1= Сн2∙V2;
Сн1
и Сн2 – концентрации растворов
моль/л;V1иV2
– объемы исходного и конечного
раствора в мл,
V1= Сн2∙V2/ Сн1= 0,15 100 / 3 = 5 мл
Значит,
для приготовления 100 мл 0,15 н раствора
нужно взять 5 мл 3н раствора и довести
до метки 100 мл дистиллированной водой.
3.Приготовить
100г 14% раствора,хлорида натрия из 22%-
го и 10%-го растворов этой соли.
Весовое
соотношение исходных растворов находим
по правилу смешения (правило креста):
10%
8 весовых частей
14%
22%
4 весовые части
Из
большего числа вычитаем меньшее: 22-14= 8
в.ч. 10%-го
14-10 = 4
в.ч. 22%-го
Получим
12 г 14% -го раствора
Дальше
рассуждаем:
на 12 г
14%-го раствора нужно 8 г 10%-ного
на 100 г
Х
Х =66,7 г
на 12 г
14%-го раствора нужно 4 г 22%-ного
на
100 г Х
Х = 33,3 г
Измеряем ареометром плотность исходных
растворов. Разделив массы растворов на
плотность, получим объемы исходных
растворов, необходимых для приготовления
нужного раствора. Отмериваем их и
переливаем в склянку для использования
в работе.
Определить
титр раствора хлорида натрия, если
известно, что на титрование его 10 мл
расходовалось 9,2 мл 0,1 н раствора нитрата
серебра. Титр можно определить:
по
закону эквивалентов: (Cн∙V)NaCl= (Cн∙V)AgNO3
Cн
(NaCl) = (9,2∙0,1)/10 = 0,092 моль/л,
Т = (58,5∙0,092)/1000 = 0,005382 г/мл
58,5 –
это эквивалентная масса хлорида натрия.
ФИКСИРОВАНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ
Установление состояния эквивалентности
является очень важным моментом в
проведении анализа. Несоответствие
момента прекращения титрования (точки
эквивалентности) приводит к возникновению
индикаторных ошибок титрования, к
неправильным ответам, что чревато
последствиями. В принципе, индикаторная
ошибка неизбежна при любом определении,
но при правильном определении точки
конца реакции столь мала, что ею можно
пренебречь. Точку эквивалентности можно
определить химическими методами
(применение индикаторов) и физико-химическими
методами (потенциометрическими,
кондуктометрическими, фотоколометрическими).
В
некоторых случаях изменения в системе
титрования столь заметны, что не требуется
каких то заметных особых приемов для
обнаружения конца реакции. Проблема
выбора способа фиксирования точки
эквивалентности всегда решается
применительно к конкретной практике
(методике исследования). Чаще всего
используют индикаторы. Полученные
результаты должны быть достоверны, т.е.
должны быть подвергнуты статистической
обработке. Методику статобработки см.
в данном методическом руководстве.
Метод нейтрализации
и его применение в медико-санитарной
практике
Медико биологическое значение.
Метод кислотно-основного титрования
позволяет определять количественно в
исследуемых объектах кислые и основные
продукты.
Так, в санитарно-гигиенической практике
этим методом определяют кислотность и
щелочность многих пищевых продуктов,
питьевых и сточных вод.
В клинической практике кислотно-основное
титрование используют для определения
кислотности желудочного сока, буферной
емкости крови, спинно-мозговой жидкости,
мочи и других биологических жидкостей.
Этот метод широко используется в
фармацевтической химии при анализе
лекарственных веществ, установления
доброкачественных продуктов питания
(например,молока).
Большое значение имеет рассматриваемый
метод и при санитарно гигиенической
оценке объектов окружающей среды.
Промышленные стоки могут содержать или
кислые, или щелочные продукты. Закисление
или защелачивание природных водоемов
и почвы приводит порой к необратимым
последствиям, в связи с чем контроль
кислотно-основного баланса весьма
важен.
МЕТОД НЕЙТРАЛИЗАЦИИ
Краткое описание метода нейтрализации
сводится к следующим моментам:
а)
Реакция
В основе метода лежит реакция взаимодействия
H++ OH– →
H2O.
б)
Определяемые
вещества:
кислоты:
сильные и слабые
основания:
сильные и слабые: соли, подвергающиеся
гидролизу.
в)
Титранты:
Сильные
кислоты (соляная, серная) с концентрацией
от 0,01 до 1,0 моль/л используются для
определения концентрации оснований и
солей, гидролизующихся по аниону.
Сильные
основания: (NaOH, KOH) с концентрацией от
0,01 до 1,0 моль/л
используются
для определения концентрации кислот и
солей, гидролизующихся по катиону.
Чаще всего
титранты для метода нейтрализации
готовят из фиксаналов. Иногда растворы
сильных кислот готовят разбавлением
концентрированного раствора кислоты,
а растворы сильных оснований, растворением
навески твердой щелочи. Последние
способы приготовления растворов, требуют
экспериментального уточнения концентрации
приготовленного титранта с использованием
установочных (исходных) веществ.
Для
титрантов кислот, в качестве установочных
веществ, используют соду Na2CO3
или буру Na2B4O7•10H2O.
Для
титрантов щелочей — щавелевую кислоту
(H2C2O4•2H2O).
г)
Индикаторы
Реакция
между кислотами и основаниями не
сопровождается, как правило, какими-либо
внешними эффектами, поэтому для
фиксирования точки эквивалентности
приходится использовать специальные
вещества-индикаторы. Кислотно-основные
индикаторы это, слабые кислоты или
основания, степень ионизации которых
определяется концентрацией [H+]
ионов в растворе.
H+Ind
↔
H++Ind–
Чем больше
концентрация H+
ионов, тем меньше будет степень ионизации
индикатора. Молекулярная HInd и ионная
HInd формы индикатора имеют разные окраски.
Таким образом, концентрация ионов H+
влияет
на соотношение концентраций HInd и Ind что,
в свою очередь, определяет характер или
яркость окраски.
Для
характеристики кислотности растворов
в химии широко пользуются водородным
показателем, pH — отрицательный десятичный
логарифм молярной концентрации [H+].
В кислых
растворах pH<7, в щелочных pH>7, в
нейтральных
Все
индикаторы изменяют свою окраску не
скачкообразно, а плавно, т.е. в определенном
интервале значений pH, называемом
интервалом перехода.
Поскольку
индикаторы как кислоты или основания
отличаются друг от друга по силе, они
имеют разные интервалы перехода (см.
табл.1).
Таблица
1
N п/п |
Анализ вещество |
pH в точке эквивалент-ности |
Скачок титрования |
Используемые индикаторы |
Интервал перехода окраски индикатора |
1. |
Сильная Сильное или наоборот |
7.0 |
3-11 |
Метилоранж Метилрот Фенолфталеин |
3.1-4.4 4.2-6.3 8.3-10.0 |
2. |
Слабая Сильное основание |
8-10 |
6-11 |
Фенолфталеин |
8.3-10.0 |
3. |
Слабое Сильная кислота |
4-6 |
3-7 |
Метилоранж Метилрот |
3.1-4.4 4.2-6.3 |
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #