Как найти конечную скорость автомобиля

Здесь, в этой статье, мы обсудим, как найти конечную скорость с ускорением и расстоянием и как на нее влияют импульс и сила. 

Мы рассчитываем конечную скорость объекта, используя различные уравнения, содержащие силу, массу, время, расстояние и импульс. Для каждой переменной мы можем использовать разные уравнения для определения конечной скорости. 

Например, чтобы найти конечную скорость, используя импульс объекта, можно использовать уравнение импульса, котороеР = мв где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит скорость, импульс и массу, поэтому оно может помочь в вычислении конечной скорости, когда известны масса и импульс. Точно так же, если масса дана без импульса, то мы можем использовать математическую форму второго закона движения Ньютона, то есть F = ma, где m — масса объекта, F — передняя работа над объектом, а a — ускорение объекта. Наконец, для времени и расстояния кинематические уравнения движения являются лучшими инструментами для определения скорости кого-либо или объекта.

как найти конечную скорость через ускорение и расстояние

Изображение предоставлено: Быстрая коза
График силы, импульса, ускорения и скорости

Как найти конечную скорость через силу, массу и время?

Как я уже упоминал, математическая форма второго закона движения Ньютона для нахождения конечной скорости с использованием силы, массы и времени. Математическая форма второго закона движения F = ма, где m — масса объекта, F — передняя работа над объектом, а — ускорение объекта. 

Уравнение содержит непосредственно силу, массу и ускорение. 

Как мы знаем, ускорение — это «скорость изменения скорости по отношению ко времени».

Итак, по этой формуле мы можем найти скорость, зная массу, силу и время. Если тело движется с переменной скоростью, что влечет за собой изменение скорости и/или направления, считается, что изменение происходит в этом движении.

Второй закон движения Ньютона, который подразумевает, как сила производит корректировку в движении, касается этого движения. Второй закон движения Ньютона иллюстрирует числовую связь между силой, массой и ускорением и используется для количественной оценки того, что происходит в сценариях, включающих силы и движение. Второй закон чаще всего формулируется численно как F = ма

Как найти конечную скорость через расстояние и время?

Используя первое, второе и третье уравнения движения.

Первое кинематическое уравнение v=u+at представляет собой комбинацию конечной скорости, начальной скорости, ускорения, расстояния и времени. То, какое уравнение следует использовать, будет зависеть от конкретного случая. Иногда можно использовать более одного уравнения.  

Чтобы найти конечную скорость, когда известны начальная скорость и расстояние, третье уравнение движения, которое v2=u2+ 2к может быть использован. И если время дано с расстоянием, и нам нужно вычислить конечную скорость, то, во-первых, мы можем узнать начальную скорость, используя второе уравнение движения, которое s=ut+1/2 в2 а затем, используя третье уравнение движения, которое v2 = ты2+ 2к, мы можем рассчитать конечную скорость объекта. 

Вычисление начальной и конечной скорости является частью нескольких физических формулировок и уравнений. В моделях для сохранение импульса или законы движения, разрыв между начальной и конечной скоростью говорит вам о скорости предмета до и после, что угодно происходит. Это может быть сила, приложенная к предмету, удар или что-то еще, что изменяет траекторию и скорость объекта.

Соответствующее уравнение движения можно использовать для вычисления конечной скорости объекта, испытывающего постоянное ускорение. Чтобы связать их друг с другом, эти уравнения требуют сочетания расстояния, начальной скорости, конечной скорости, ускорения и времени.

Как найти конечную скорость по импульсу?

Используя уравнение импульс то есть P = mv], где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит массу объекта и скорость объекта. Выражение, подобное приведенному выше, можно рассматривать как технику решения вопросов. Можно определить последнюю переменную в формуле, имея целочисленные данные всех переменных, кроме одной, в формулах.

Точно так же выражение можно рассматривать как фразу, объясняющую значимое отношение между двумя переменными. В выражении две переменные можно рассматривать либо как линейно коррелированные, либо как обратно связанные. И масса, и скорость прямо пропорциональны импульсу. При неизменной скорости увеличение массы приведет к увеличению импульса, переносимого предметом.

Соответственно, увеличение скорости (при неизменной массе) приведет к увеличению мамы предмета.энтум. Мы можем предсказать, насколько сильно изменение одной переменной повлияет на другую, рассматривая и вычисляя пропорционально количества. Импульс — это элемент вектора, который имеет величину (математическую величину), а также направление. Вектор импульса обычно движется по той же траектории, что и вектор скорости.

С импульс – это вектор, сложение двух векторов импульса выполняется так же, как сложение любых двух других векторов. Когда два вектора направлены в разные стороны, один из них считается отрицательным, а другой — положительным. В большинстве вопросов этой группы задач для эффективного решения необходимо учитывать векторный характер импульса.

Как найти конечную скорость после столкновения?

Использование выражения для упругих и неупругих столкновений.

Импульс P, то есть P = mv, где m — масса объекта, P — импульс объекта, а v — скорость объекта.

По закону сохранения импульса: «Импульс до столкновение = импульс после столкновение»

Выражение для упругих столкновений

Формула для расчета конечной скорости данного объекта

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

Формула для расчета конечной скорости сталкивающегося объекта

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (vi)

Выражение для неупругого столкновения

m1v1+m2v2=m1v1f+m2v2f

где m1 – масса объекта до столкновения, v1 – скорость данного объекта до столкновения, m2  – масса сталкивающегося объекта до столкновения, v2 – скорость сталкивающегося объекта до столкновения, а v1f – конечная скорость данного объекта, а v2f – конечная скорость сталкивающегося объекта. 

Эластичный или неэластичный столкновения возможны. Оба импульс и кинетическая энергия сохраняются при упругих столкновениях, а кинетическая энергия не сохраняется при неупругих столкновениях. Неупругие столкновения происходят, когда кинетическая энергия не сохраняется, например, при столкновении транспортных средств. Сохранение импульс относится к неупругим столкновениям.

В результате импульс до удара равен импульсу после контакта. Слово «импульс» соответствует количеству переменных, содержащихся в движущемся предмете. Произведение массы на скорость — вот как это называется. а его единицы – кгм/с.

Можно эффективно определить скорость транспортного средства после столкновения, используя приведенную ниже формулу, если мы знаем начальную массу и скорость транспортного средства и сталкивающегося объекта.

Когда частицы сталкиваются в неупругое столкновение, они не действуют как упругие во время столкновения. Это указывает на то, что частицы не деформируются упруго в месте столкновения; вместо этого они могут необратимо деформироваться, что приводит к рассеиванию энергии во время столкновения. Это отличается от упругого столкновения, при котором частицы упруго изгибаются в месте удара, ведя себя как безупречно упругие пружины, поглощая и высвобождая равное количество энергии.   

Как найти конечную скорость без учета времени?

С помощью третьего уравнения движения. 

Третье уравнение движения не содержит времени, поэтому оно не зависит от времени.  

Третье уравнение движения, которое есть v2=u2+2asis комбинация начальной скорости, конечной скорости, ускорения и расстояния. Таким образом, мы можем легко вычислить конечную скорость, когда известны другие переменные. И ему не нужно время, чтобы быть Познанным. 

Если положение объекта меняется относительно стандартного местоположения, считается, что он находится в движении относительно этой стандартной точки, а если нет, то считается, что он находится в неподвижном состоянии относительно этой точки. Мы создаем несколько классических формул, относящихся к определениям расстояния, смещения, скорости, скорости и ускорения объекта, с помощью формул, называемых уравнениями движения для хорошего понимания или взаимодействия с различными условиями покоя и движения.  

Как найти конечную скорость без ускорения? 

Как мы обсуждали ранее, приведенная ниже формула содержит начальную скорость объекта и сталкивающегося объекта до столкновения, а также массу объекта и сталкивающегося объекта до столкновения и конечную скорость. Итак, отсюда легко вычислить конечную энергию объекта, не зная его ускорения.  

Учитывая м1 – масса объекта до столкновения, v1 – скорость данного объекта до столкновения, м2  – масса сталкивающегося объекта до столкновения, v2 – скорость сталкивающегося объекта до столкновения, а v1f – конечная скорость данного объекта и v2f – конечная скорость сталкивающегося объекта. 

Для упругого столкновения;  

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (v1i) 

Для неупругого столкновения; 

m1v1+m2v2=m1v1f+m2v2f

Если у нас есть исходная масса и скорость предоставленного объекта и сталкивающегося предмета, мы можем использовать приведенную ниже формулу для вычисления скорости предмета после столкновения. 

Как найти конечную скорость без начальной скорости?

Если начальная скорость объекта не указана, то можно считать, что изначально объект находился в состоянии покоя.

Таким образом, мы можем рассчитать конечную скорость по различным формулам, таким как кинематические уравнения, приравняв начальную скорость к нулю. Также мы можем найти скорость объекта по числовой форме второго закона движения, если известна масса объекта. Другой способ найти скорость — использовать формулу импульса, если известны масса и импульс объекта.  

Примеры 

Пример 1 

Допустим, автомобиль массой 100 кг движется со скоростью 80 м/с. Другой автомобиль массой 120 кг движется со скоростью 100 м/с. Они сталкиваются друг с другом. Конечная скорость первого автомобиля после столкновения равна 100 м/с. Какой будет конечная скорость второго автомобиля после столкновения? 

дорожный знак-дорожный-знак-щит-6771.png

Изображение предоставлено: Быстрая коза
Столкнулись две машины

Решения

В этом случае масса m1 то есть масса первого автомобиля до столкновения, скорость v1 первого автомобиля перед столкновением, масса m2 второго автомобиля до столкновения, скорость v2 второго автомобиля перед столкновением и конечной скоростью v1f первого автомобиля после столкновения известны. 

Данный; 

m1= 100 кг

v1= 80 м/см2= 120 кг

v2= 100 м / с

v1f = 100 м / с

Используя формулу упругого столкновения, мы можем вычислить конечную скорость второго автомобиля после столкновения. 

v2f=m2-m1/m1+m2 (vf)+m1-m2/m1+m2 (vi)  

v2f=(120- 100/120+ 100)100+(120(100+20))80

v2f= (0.090) 100 + 43.6363

v2f= 52.64 м / с

Таким образом, конечная скорость второго автомобиля после столкновения равна v.2f= 52.64 м / с.

Пример 2  

Автомобиль начал двигаться с начальной скоростью 30 м/с и преодолел расстояние 5 км. Автомобиль достигает ускорения a=10 м/с.2. Какой должна быть конечная скорость автомобиля и сколько времени это займет? 

В этом примере известна начальная скорость автомобиля, ускорение автомобиля и перемещение автомобиля, а конечная скорость автомобиля и время, затраченное автомобилем, задаются.  

Для нахождения конечной скорости мы будем использовать третье уравнение движения, которое представляет собой комбинацию начальной скорости, конечной скорости, смещения и ускорения. 

Данный; 

Начальная скорость, u = 30 м / с

Ускорение, а=10м/с2

Водоизмещение, с=5000м

Для нахождения конечной скорости мы будем использовать третье уравнение движения, то есть; 

v2 = u2 + 2as

где v — конечная скорость объекта, u — начальная скорость объекта, а — ускорение объекта при смещении объекта.   

Ввод заданных значений в приведенную выше формулу 

v2= 30 м / с2+2(10м2s2)(5000м)

v2= 900 m2s2+(20м/s2)(5000м)

v2= 900 m2s2+100000m2/s2

v2= 100900 m2/s2

v = 317.645 м / с

Значит, конечная скорость автомобиля будет равна 317.645 м/с.

Теперь, чтобы найти время, необходимое для покрытия заданного перемещения, мы будем использовать первое уравнение движения, которое имеет вид v=u+at. 

Подставляя заданные значения в это уравнение, мы получим 

317.645 м/с=30 м/с+ 10 м/с2t

317.645 м/с-30 м/с= 10м/с2t

287.645 м/с = 10м/с2t

t=287.645 м/с / 10 м/с}

t = 28.7 с

Таким образом, время, которое потребуется машине, чтобы добраться до конечной точки, составляет 28.7 секунды.  

Часто задаваемые вопросы | Часто задаваемые вопросы  

В. С точки зрения физики, что такое импульс? 

Импульс — это двумерная величина, которая включает в себя как величину, так и направление. Поскольку у импульса есть направление, его можно использовать для прогнозирования направления и скорости движения сталкивающихся тел. 

В. Какую роль играет импульс в движении? 

Когда два тела сталкиваются друг с другом, тело, имеющее большую скорость, что приводит к большему импульсу, передает большую мощность телу, имеющему меньшую скорость или движущемуся медленнее. 

Тело с малой стартовой скоростью должно сместиться с большей скоростью и импульсом по сравнению с телом с большей скоростью при старте после столкновения. 

В. Каковы подходы к сохранению импульса? 

Переменная, называемая импульсом, которая определяет движение в замкнутом наборе компонентов и никогда не меняется в соответствии с принципом сохранения импульса; то есть «общий импульс системы остается постоянным». 

Импульс эквивалентен импульсу, необходимому для остановки предмета за заданный промежуток времени, когда его масса умножается на его скорость. Общий импульс набора сущностей равен сумме их различных импульсов.

Однако, поскольку импульс — это вектор, который включает в себя как направление, так и амплитуда движения, импульсы объектов, движущихся в противоположных направлениях, могут компенсироваться, давая общую сумму нулю. 

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

Unit Converter

Enter the initial velocity, acceleration, and total time into the calculator to determine the final velocity of an object.

  • All Velocity Calculators
  • Initial Velocity Calculator
  • Velocity Calculator
  • Terminal Velocity Calculator
  • Escape Velocity Calculator
  • Acceleration Calculator
  • Average Velocity Calculator
  • Change in Velocity Calculator

Final Velocity Formula

The following formula is used to calculate the final velocity of a moving object.

Vf = Vi + a * t

  • Where Vf is the final velocity
  • Vi is the initial velocity
  • a is the acceleration
  • t is the time

Typical units for these values are m/s for velocity, m/s2 for acceleration, and seconds for time. With that said, other values can be used as long as they match up. For example, m/s could be ft/s as long as acceleration is then ft/s^2.

Final Velocity Definition

A final velocity is defined as the final speed of a moving object with an initial velocity and acceleration over some time.

Final Velocity Example

How to calculate final velocity?

First, determine the initial velocity. For this example, problem, the initial velocity is measured to be 50 m/s.

Next, determine the acceleration. During the duration of the movement, this object accelerates at a are of 5m/s^2.

Next, determine the total time of acceleration. The object in this example accelerated for a total time of 5 seconds.

Finally, calculate the final velocity using the formula above:

Vf = Vi + a * t

Vf = 50 + 5 * 5

Vf = 75 m/s.


FAQ

What is a final velocity?

A final velocity is a speed at which an object is moving after having gone through an acceleration over some time.

How is final velocity calculated?

Finally, velocity is calculated by adding the acceleration times time to the initial velocity.

How to calculate final velocity?

  1. First, determine the initial velocity.

    Measure the initial velocity.

  2. Next, determine the acceleration.

    Calculate the total acceleration.

  3. Next, determine the time.

    Measure the total time.

  4. Finally, calculate the final velocity.

    Calculate the final velocity using the formula above.



final velocity calculator
final velocity formula

Время на прочтение
3 мин

Количество просмотров 9.5K

Немного теории.

Для начала разберемся с тем, что такое лошадиные силы и устроим небольшой экскурс в школьную физику.

1 л.с. – это мощность, затрачиваемая при вертикальном подъёме груза массой 75 кг со скоростью 1 м/с.

F = mg = 75text{ кг} cdot 9.8text{ Н/кг} = 735 text{ Н} - text{сила тяжести груза}

Как известно, мощность показывает, какую работу совершает тело в единицу времени:

P = dfrac{A}{t}

Работа равна произведению силы на перемещение: A = F*S. Учитывая, что скорость V=S/t, получим:

P = Fcdot dfrac{S}{t} = Fcdot V = 735text{ Н} cdot 1 text{ м/с} = 735 text{ Вт}

Получаем формулу для перевода лошадиных сил в принятую в международной системе СИ единицу измерения мощности – Ватт:

1 text{ л.с.} = 735 text{ Вт}

Перейдем к основной части, а именно – к техническим характеристикам автомобиля.

Некоторые характеристики и расчёты будут приводиться приближенно, поскольку мы не претендуем на умопомрачительную точность расчетов, важнее понять физику и математику процесса.

m = 2 тонны = 2000 кг – масса автомобиля (масса авто 1940 кг, считаем что в ней водитель массой 60 кг и больше ничего/никого).
P = 670 л.с. (по паспорту 625 л.с., но реально мощность выше – измерено на динамометрическом стенде в ролике DSC OFF https://www.youtube.com/watch?v=ysg0Depmyjc. В этой статье мы ещё обратимся к замерам отсюда.)
Разгон 0-100 км/ч: 3.2-3.3 с (по паспорту, замерам)
Разгон 100-200 км/ч: 7.5-7.6 с (по паспорту, замерам)

Мощность двигателя генерируется на маховике, потом через сцепление передается в КПП, далее через дифференциалы, привода, карданный вал передается на колёса. В результате эти механизмы поглощают часть мощности и итоговая мощность, поставляемая к колесам, оказывается меньше на 18-28%. Именно мощность на колесах определяет динамические характеристики автомобиля.

У меня нет сомнений в гениальности инженеров БМВ, но, для начала, возьмем для удобства потери мощности 20%.

Вернемся к нашим физическим баранам. Для вычисления разгона нам нужно связать мощность со скоростью и временем разгона. Для этого воспользуемся вторым законом Ньютона:

F = ma, text{где } F - сила, m - text{масса тела}, \a - text{ускорение, сообщаемое силой } F text{ телу массой }m.\a = (V-V_0)/t - ускорение - text{изменение скорости за время } t.\S = x_0 + V_0cdot t + dfrac{at^2}{2} - text{путь, пройденный телом за время }t, \x_0 - text{начальная координата}, V_0 - text{начальная скорость}, a - ускорение. \ text{Для удобства будем считать }x_0 = 0.text{ Для разгона }0-100 dfrac{км}{ч}: V_0 = 0.

Вооружившись этими знаниями, получим конечную формулу:

P = dfrac{FS}{t}=dfrac{macdot S}{t} = dfrac{ma cdot dfrac{at^2}{2}}{t} = dfrac{ma^2t}{2} = dfrac{mleft(dfrac{V-V_0}{t}right)^2 t}{2}=dfrac{m(Delta V)^2}{2t}

Выражая отсюда t, получим итоговую формулу для вычисления разгона:

t = dfrac{m(Delta V)^2}{2P}

На самом деле в паспорте автомобиля указывается максимальная мощность, достигаемая двигателем при определенном числе оборотов. Ниже приведена зависимость мощности двигателя от числа оборотов (синяя линия). Строго говоря, параметры этой кривой зависят от номера передачи, так что для определенности скажем, что график для 5й передачи.

Главное, что мы должны усвоить из этого графика – мощность автомобиля не постоянна во время движения, а увеличивается по мере роста оборотов двигателя.

Перейдем к расчету разгона от 0 до 100 км/ч. Переведем скорость в м/с:

100 dfrac{км}{ч} = 28 dfrac{м}{с}

При разгоне от 0 до 100 км/ч автомобиль практически сразу переключается с первой передачи на вторую, и при достижении около 90 км/ч переключается на третью. Будем считать, что на всём протяжении разгона автомобиль разгоняется на второй передаче, причем максимальная мощность будет меньше 670 л.с., поскольку передача ниже пятой. Возьмём в качестве начальной мощности при 0 км/ч мощность 150 л.с. (при 2000 об/мин), конечную – 600 л.с. (7000 об/мин):

Чтобы не считать сложные интегралы для вычисления средней мощности, скажем следующие слова: учитывая приближенный характер наших расчетов, проскальзывание авто при ускорении, а также сопротивление воздуха (хотя при разгоне от 0 до 100 оно играет не такую большую роль, как при разгоне до 200 км/ч), будем считать, что мощность зависит от скорости линейно, тогда средняя мощность при разгоне от 0 до 100 км/ч составляет:

<P>=dfrac{150+600}{2}=375 text{ л.с.}

Пришло время учесть потери мощности, о которых было сказано ранее, а заодно перевести мощность в кВт (1 кВт = 1000 Вт) для удобства. Потери мощности 20%, значит эффективность 80%=0.8:

P = P_{реальная}=375cdot 735 text{ Вт} cdot 0.8 = 220500 text{ Вт} = 220 text{ кВт}

Теперь подставляем всё в конечную формулу:

t = dfrac{m(Delta V)^2}{2P} = dfrac{2 cdot 10^3 text{ кг}cdot left(28 dfrac{м}{с} right)^2}{2cdot 220 cdot 10^3 text{ Вт}} simeq 3.6 text{ с}

Получили довольно близкий к “паспортным” 3.3 с результат, ура! Специально не стал ничего дополнительно подгонять, дабы подчеркнуть приближенный характер расчёта, хотя это было довольно просто сделать, взяв, например, чуть больше мощность.

Теперь, ради интереса и проверки самих себя, вычислим разгон 100-200 км/ч.

С ростом скорости растёт трение воздуха, для движения используются более высокие передачи КПП (3-я, 4-я, 5-я), но при этом уменьшается проскальзывание колес. Так что оставим среднюю мощность 375 л.с.

Так делать конечно же нельзя! После 2-й передачи двигатель работает на “комфортных” для себя оборотах 4000-7000 об/мин, поэтому средняя мощность будет гораздо выше, поскольку выше будет начальная мощность для каждой передачи. Здесь уже не получится считать, что автомобиль едет только на 4-й передаче на всем протяжении разгона, но можно считать, что он проехал одинаковые промежутки времени на 3-й, 4-й и 5-й передаче, и пусть график зависимости мощности от числа оборотов для них одинаков, поэтому построим общую условную кривую зависимости мощности от скорости:

Опять же, считаем для простоты зависимость мощности от скорости линейной, тогда получаем среднюю и реальную мощность:

<P>=dfrac{400+600}{2}=500 text{ л.с.} \P = P_{реальная}=500cdot 735 text{ Вт} cdot 0.8 simeq 300 text{ кВт}

Тогда итоговое время разгона 100-200 км/ч:

t = dfrac{m (V^2 - V_0^2)}{2P} = dfrac{2 cdot 10^3 text{ кг}cdot left[left(56 dfrac{м}{с} right)^2 -  left(28 dfrac{м}{с} right)^2 right]}{2cdot 300 cdot 10^3 text{ Вт}} simeq 7.8 text{ с}

Время разгона “по паспорту” 7.6 с. И снова мы оказались близко к истине!

P.S. не хочу объяснять, откуда взялось (V^2 – V_0^2), можете повыводить на досуге 🙂

Ну и в общем-то всё. Приведенные рассуждения и вычисления не претендуют на истину в последней инстанции и большую точность, но показывают, что зная “школьные” формулы по физике, можно решать такие интересные задачки, связанные с жизнью.

Как найти скорость

Расстояние

Мы постоянно ходим пешком и ездим на транспорте из одной точки в другую. Давайте узнаем, как можно посчитать это пройденное расстояние.

Расстояние — это длина от одного пункта до другого.

  • Например: расстояние от дома до школы 3 км, от Москвы до Петербурга 705 км.

Расстояние обозначается латинской буквой S.

Единицы расстояния чаще всего выражаются в метрах (м), километрах (км).

Формула пути

Чтобы найти расстояние, нужно умножить скорость на время движения:

Скорость

Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.

Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.

Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.

Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.

Формула скорости

Чтобы найти скорость, нужно разделить путь на время:

Показатели скорости чаще всего выражаются в м/сек; км/час.

Скорость сближения — это расстояние, которое прошли два объекта навстречу друг другу за единицу времени. Чтобы найти скорость сближения, нужно сложить скорости объектов.

Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, которые движутся в противоположных направлениях.

Чтобы найти скорость удаления, нужно сложить скорости объектов.

Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.

Время

Время — самое дорогое, что у нас есть. Но кроме философии, у времени есть важная роль и в математике.

Время — это продолжительность каких-то действий, событий.

  • Например: от метро до дома — 10 минут, от дома до дачи — 2 часа.

Время движения обозначается латинской буквой t.

Единицами времени могут быть секунды, минуты, часы.

Формула времени

Чтобы найти время, нужно разделить расстояние на скорость:

Эта формула пригодится, если нужно узнать за какое время тело преодолеет то или иное расстояние.

Взаимосвязь скорости, времени, расстояния

Скорость, время и расстояние связаны между собой очень крепко. Одно без другого даже сложно представить.

Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t.

Задачка 1. Мы вышли из дома и направились в гости в соседний двор. Мы дошли до соседнего двора за 15 минут. Фитнес браслет показал, что наша скорость была 50 метров в минуту. Какое расстояние мы прошли?

Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Умножив 50 метров на 15, мы определим расстояние от дома до магазина:

s = v × t = 50 × 15 = 750

Ответ: мы прошли 750 метров.

Если известно время и расстояние, то можно найти скорость: v = s : t.

Задачка 2. Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до магазина с мороженым 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?

Быстрее добежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. В этой задаче скорость школьников это расстояние, которое они пробегают за 1 секунду.

Чтобы найти скорость, нужно расстояние разделить на время движения. Найдем скорость первого школьника: для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:

Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).

В нашей задаче расстояние дано в метрах, а время в секундах. Значит будем измерять скорость в метрах в секунду (м/с).

100 м : 25 с = 4 м/с

Так мы узнали, что скорость движения первого школьника 4 метра в секунду.

Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:

Значит скорость движения второго школьника составляет 2 метра в секунду.

Сейчас можно сравнить скорости движения каждого школьника и узнать, кто добежал быстрее.

Скорость первого школьника больше. Значит он добежал до магазина с мороженым быстрее.

Ответ: первый школьник добежал быстрее.

Если известна скорость и расстояние, то можно найти время: t = s : v.

Задачка 3. От школы до стадиона 500 метров. Мы должны дойти до него пешком. Наша скорость будет 100 метров в минуту. За какое время мы дойдем до стадиона из школы?

Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?

Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до стадиона:

t = s : v = 500 : 100 = 5

Ответ: от школы до стадиона мы дойдем за 5 минут.

Специально для уроков математики можно распечатать или нарисовать самостоятельно такую таблицу, чтобы быстрее запомнить и применять формулы скорости, времени, расстояния.

Как найти скорость

Еще больше практики — в детской онлайн-школе Skysmart. Ученики решают примеры на интерактивной платформе: в игровом формате и с мгновенной автоматической проверкой. А еще отслеживают прогресс в личном кабинете и вдохновляются на новые свершения.

Запишите ребенка на бесплатный вводный урок математики: покажем, как все устроено и наметим индивидуальную программу, чтобы ребенок лучше учился в школе и не боялся контрольных.

Давайте школьный урок физики превратим в увлекательную игру! В этой статье нашей героиней станет формула «Скорость, время, расстояние». Разберем отдельно каждый параметр, приведем интересные примеры.

Скорость

Что же такое «скорость»? Можно наблюдать, как одна машина едет быстрее, другая –медленее; один человек идет быстрым шагом, другой – не торопится. Велосипедисты тоже едут с разной скоростью. Да! Именно скоростью. Что же под ней подразумевается? Конечно же, расстояние, которое прошел человек. проехала машина за какое-то определенное время. Допустим, что скорость человека 5 км/ч. То есть за 1 час он прошел 5 километров.

Как найти скорость

Как находить скорость, время, расстояние? Начнем со скорости. Посмотрите внимательно, в чем она измеряется? Естественно, км/ч, м/с. Существуют и другие единицы измерения, например, км/с (в космонавтике), мм/ч (в биохимии). Обратите внимание на то, что стоит перед знаком «/» и после. Во-первых, он означает «дробь», а значит, в числителе – мм, км, м, в знаменателе – ч, с, мин. Во-вторых, кажется это напоминает формулу, не правда ли? Километры, метры – расстояние, длина, а час, секунда, минута – время. Вот вам и подсказка. Чтобы проще было запомнить, как находить скорость, посмотрите не единицы измерения (км/ч, м/с). Одними словами:

Время

Что из себя представляет время? Разумеется, оно зависит от скорости. Например, вы ждете у порога дома маму и старшего брата. Они идут из магазина. Брат дошел намного раньше. Маму пришлось ждать еще минут 5. Почему? Потому что они шли с разной скоростью. Разумеется, чтобы быстрее добраться до места назначения, нужно прибавить скорость: ускорить шаг, надавить на «газ» в авто посильнее, разогнаться на велосипеде. Только при спешке будьте осторожны и бдительны, чтобы не врезаться в кого-то или во что-то.

Как найти скорость

Как находить время? У скорости есть подсказка – км/ч. А как быть со временем? Во-первых, время измеряется в минутах, секундах, часах. Формула «скорость, время, расстояние» здесь преображается следующим образом:

время t[сек., мин., ч]=S[м, мм, км]/v[м/с, мм/мин, км/ч].

Если преобразовать дробь по всем правилам математики, сократить параметр расстояния (длины), то останется только секунда, минута или час.

Расстояние, длина пройденного пути

Здесь будет легче сориентироваться, скорее всего, автомобилистам, у которых есть счетчик пробега в машине. Они смогут определить, сколько километров проехали, а еще и скорость знают. Но так как движение неравномерное, то установить тоное время перемещения не получится, если только мы возьмем среднюю скорость.

Как найти скорость

Формула пути (расстояния) – произведение скорости и времени. Конечно же, самый удобный и доступный параметр — это время. Часы есть у всех. Скорость пешехода не строго 5 км/ч, а приблизительно. Поэтому здесь может быть погрешность. В таком случае, вам лучше взять карту местности. Обратите внимание, какой масштаб. Должно быть указано, сколько километров или метров в 1 см. Приложите линейку и замерьте длину. Например, от дома до музыкальной школы прямая дорога. Отрезок получился 5 см. А в масштабе указано 1 см = 200 м. Значит, реальное расстояние — 200*5=1000 м=1 км. За сколько вы проходите это расстояние? За полчаса? Выражаясь техническим языком, 30 мин=0,5 ч=(1/2) ч. Если мы решим задачу, то получится, что идете со скоростью 2 км/ч. Всегда вам поможет решить задачу формула «скорость, время, расстояние».

Не упустите!

Советую вам не упускать очень важные моменты. Когда вам дается задача, смотрите внимательно, в каких единицах измерения даны параметры. Автор задачи может схитрить. Напишет в дано:

Человек проехал по тротуару на велосипеде 2 километра за 15 минут. Не спешите сразу решать задачу по формуле, иначе у вас получится ерунда, а учитель ее вам не засчитает. Помните, что ни в коем случае нельзя делать так: 2 км/15 мин. У вас единица измерения получится км/мин, а не км/ч. Вам нужно добиться последнего. Переведите минуты в часы. Как это сделать? 15 минут – это 1/4 часа или 0,25 ч. Теперь можете смело 2км/0,25ч=8 км/ч. Теперь задача решена верно.

Вот так легко запоминается формула «скорость, время, расстояние». Только соблюдайте все правила математики, обращайте внимание на единицы измерения в задаче. Если есть нюансы, как в рассмотренном чуть выше примере, сразу же переводите в систему единиц СИ, как положено.

Памятка по математике для учащихся 4 класса по теме » Скорость, время, расстояние»

Скачать:

pamyatka_skorost_vremya_rasstoyanie.docx 13.56 КБ

Предварительный просмотр:

по математике 4 класс по теме

«Скорость, время, расстояние»

S – расстояние ( путь); измеряется в км, м и т.д.

V – скорость ( это расстояние, преодолеваемое за единицу времени); измеряется в км/ч, м/ мин и т.д.

t- время ; измеряется в часах, минутах и т.д.

  1. Чтобы найти расстояние, нужно скорость умножить на время. S =V х t
  2. Чтобы найти скорость , нужно расстояние разделить на время.
  1. Чтобы найти время , нужно расстояние разделить на скорость.

Задача на нахождение расстояния

Пешеход шёл со скоростью 5 километров в час. Какой путь он пройдёт за 3 часа?

Ответ: 15 километров пройдёт пешеход.

Задача на нахождение скорости

Пешеход за 3 часа прошёл 15 километров. С какой скоростью шёл пешеход?

Ответ: 5 км/ ч скорость пешехода.

Задача на нахождение времени

Пешеход шёл со скоростью 5 километров в час и прошёл 15 километров. Сколько времени шёл пешеход?

Ответ: 3 часа шёл пешеход.

По теме: методические разработки, презентации и конспекты

Урок разработан в соответствии с ФГОС. По типу уроков является проблемным.

Презентация к уроку 5 4 класс учебник М.З. Биболетова — содержит материал для фонетической и лексической разминки, грамматические задания и правила «Построение специальных вопросов».

Презентация выполнена к уроку окружающего мира в 4 классе, УМК «Гармония» по теме «Время: Как человек научился считать время».

Решение задач на время, повторение видов углов, и таблиц единиц длины, массы, площади.

Проверочная работа по теме «Время» для 2 класса, система развивающего обучения Занкова. В работе два варианта, в каждом шесть заданий. Задание №1 (Реши задачу) обязательно для всех. Из остальных .

Методическая разработка открытого урока «Простое прошедшее время» включает в себя план-конспект к уроку и презентацию по уроку.

Контрольная работа состоит из 6 заданий, которые включают в себя не только повторение грамматики, но и лексики. В работе используется лексика по теме: «Погода». Также есть задание на обобщение.

Определение и формула скорости

Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора $bar$ точки по времени (t). Обозначают скорость обычно буквой v. Это векторная величина. Математически определение вектора мгновенной скорости записывается как:

Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения. Модуль скорости можно определить как первую производную от длины пути (s) по времени:

Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.

Скорость в разных системах координат

Проекции скорости на оси декартовой системы координат запишутся как:

Следовательно, вектор скоростив декартовых координатах можно представить:

где $bar, bar, bar$ единичные орты. При этом модуль вектора скорости находят при помощи формулы:

В цилиндрических координатах модуль скорости вычисляют при помощи формулы:

в сферической системе координат:

Частные случаи формул для вычисления скорости

Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const). При равномерном движении скорость можно вычислить, применяя формулу:

где s– длина пути, t – время, за которое материальная точка преодолела путь s.

При ускоренном движении скорость можно найти как:

Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:

где $bar_0$ – начальная скорость движения, $bar = const$ .

Единицы измерения скорости

Основной единицей измерения скорости в системе СИ является: [v]=м/с 2

Примеры решения задач

Задание. Движение материальной точки А задано уравнением: $x=2 t^<2>-4 t^<3>$ . Точка начала свое движение при t0=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.

Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:

Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент времении сравним результат с нулем:

Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.

Ответ. Против оси X.

Формула скорости не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Скорость материальной точки является функцией от времени вида:

где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии 10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.

Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:

Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:

Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:

$$ begin 10 t-t^<2>=10(2.2) t_<1>=5+sqrt <15>approx 8,8(c) ; t_<2>=5-sqrt <15>approx 1,13(c) end $$

Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:

При решении уравнения (2.3) нам подойдет корень равный:

Ответ. 1) $x=0 mathrm<

m>$ 2) $t_<1>=8,8 mathrm, t_<2>=1,13 c, t_<3>=11 c$

Класс: 4

Цели:

  • закрепить знания нахождения скорости, времени, расстояния;
  • ввести формулы;
  • учиться решать задачи с этими величинами по формулам и без них;
  • развивать мышление и память;
  • прививать любовь к математике.

1. Организация учащихся.

2. Сообщение темы.

— Сегодня на уроке мы закрепим знания нахождения скорости, времени, расстояния. Будем учиться решать задачи с помощью формул.

— А работать мы будем в форме соревнований трех команд:

  • 1 ряд — автомобилисты
  • 2 ряд — летчики
  • 3 ряд — мотоциклисты

— Баллы будем выставлять на доске

3. Соотнести записи с картинкой.

— Как вы думаете, что написано на доске? (Скорости)

— Соотнесите их с нужной картинкой.

(12 км/ч, 60 км/ч, 5 км/ч, 70 км/ч, 120 км/ч, 800 км/ч, 8 км/с, 50 км/ч,250 км/ч.

Автобус, самолет, ракета, пешеход, поезд, велосипедист , автомобиль, пароход, мотоциклист) Каждая команда выставляет по 3 ученика.

— Как вы понимаете км/сек, км/ч, м/мин.

а) В тетрадь записываете ответ с наименованием.

Таблица на интерактивной доске.

Вложение Размер
Скорость
V
Время
t
Расстояние
S
5 м/с 15 сек. ? м.

Муха летела со скоростью 5 м/сек. 15 сек. Какое расстояние она пролетела?

— Повторите вопрос задачи.

— Как найти расстояние?

— Кто может записать буквами это правило?

— Запишите эту формулу в тетрадь s=v * t.

Скорость
V
Время
t
Расстояние
S
? м/с 3 сек. 78 м.

За 3 сек. Сокол пролетел 78 метров. Какова скорость сокола?

— Повторите вопрос задачи.

— Как найти скорость?

— Кто может записать буквами это правило?

— Запишите эту формулу в тетрадь v=s:t.

Скорость
V
Время
t
Расстояние
S
10 м./сек ? сек. 100 м.

Грач пролетел 100 метров со скоростью 10 м/сек. Сколько времени он был в пути?

— Повторите вопрос задачи.

— Как найти время?

— Кто может записать буквами это правило?

— Запишите эту формулу в тетрадь t=s:v.

б) Составление задач.

  • 1 ряд — нахождение V
  • 2 ряд — нахождение t
  • 3 ряд — нахождение S

в) Заполнить таблицу.

Скорость
V
Время
t
Расстояние
S
90 км/ч 6 ч. ? км. ? км/ч 30 ч. 1500 км 70 м/мин. ? мин. 840 м

Решение записываете в тетрадь с наименованием, рядом записываете формулу.

1500:30=50 (км/ч) v=s:t

4. Работа с учебником.

Коллективное решение задачи стр. 60 №4

Две бабы-яги поспорили, что быстроходнее ступа или помело? Одну и ту же дистанцию в 228 км баба-яга в ступе пролетела за 4 ч, а баба яга на помеле за 3 ч. Что больше, скорость ступы или помела?

а) составление таблицы.

Скорость
V
Время
t
Расстояние
S
ступа помело

б) решение у доски и в тетрадях.

1) 288:4=72 (км/ч) — скорость ступы

2) 288:3=96 (км/ч) — скорость помела

3) 96-72=24 (км/ч) — больше скорость помела, чем скорость ступы.

Ответ запишите самостоятельно.

6. Задача повышенной сложности.

Это очень интересно (на доске написана задача)

— Кто видел счетчик в автомобиле, который ведет отчет километров, которые проехал автомобиль?

— Как он называется (спидометр).

Счетчик автомобиля показал 12921 км. Через 2 час на счетчике опять появилось число, которое читалось одинаково в обоих направлениях. С какой скоростью ехал автомобиль?

1) 13031 — 12921=110 (км) — проехал за 2 ч.

2) 110 :2 = 55 (км/ч) — скорость автомобиля.

— Как найти расстояние, скорость, время (формула).

Молодцы! Всем огромное спасибо!

Туристы ехали в первый день 5 ч. На лодке со скоростью 12 км/ч. Во второй день они были в пути столько же времени, увеличив скорость на 3 км/ч. Сколько километров проехали туристы на лодке во второй день?

Самостоятельно заполнить таблицу и решить задачу.

Ввиду того что такая физическая величина, как скорость, фигурирует во многих задачах, имеющих связь с разделами механики (а именно кинематикой и динамикой), вопрос “как найти скорость” является достаточно актуальным. И эта тенденция будет сохраняться дальше, поскольку вопрос нахождения скорости (хоть она будет начальной, хоть конечной, хоть мгновенной, которая является обобщенной вариацией этих двух скоростей) останется актуальным еще надолго. А раз так, то следует узнать о скорости как физической величине все, что пригодится в последующем для решения задач.

Где упоминается скорость тела?

Как найти скорость

На самом деле, в реальном мире мы сталкиваемся со скоростью ежесекундно. Если так подумать, на Земле постоянно что-то да находится в движении. Вы можете попробовать возразить, ограничившись, например, пределами своей комнаты. То есть, по мнению некоторых людей, ночью в комнате ничего не движется. Кровати, шкафы, стулья, стол и прочие предметы находятся на своих местах, в то время как сам человек спит, то есть не движется.

Следовательно, скорость любого элемента данной системы (комнаты, как мы условились считать) равна нулю. Да, в этом что-то есть, и с одной стороны, человек, выдвинувший такое предположение, мог оказаться правым. Но не следует забывать о том, что своеобразную систему представляет собой сама наша планета Земля, а не только предметы, которые на ней находятся. А ведь все мы знаем, что ежесекундно Земля вращается вокруг своей оси. В этой системе отсчета все тела, находящиеся в пределах планеты, также совершают движение. Поэтому говорить о том, что предмет, который, казалось бы, не двигается, находится в абсолютном покое, нельзя. Это первое, что нужно было бы сказать о скорости тела.

С детской скамьи мы учимся решать много задач не только физического, но и математического характера. Их в настоящее время не так много, и ставка делается больше на гуманитарные дисциплины наподобие иностранного языка, хотя они не должны преподаваться в ущерб родному языку и техническим дисциплинам. Но речь немного не об этом. Так вот, понятие скорости тела мы можем встретить не только в задачах по физике, хотя там она встречается, пожалуй, наиболее часто. Несколько реже, но все же фигурирует скорость тела и в задачах по математике.

Наверняка все помнят эти до ужаса ненавистные (в большинстве случаев) задачи, в которых требовалось найти, через сколько времени встретятся два автомобиля, если они движутся с такими-то скоростями. Условия при этом могут быть самые разные. То движение происходит по круговой траектории (спортсмены на велосипедах или мотоциклах), то по прямолинейной траектории. В общем, задач множество. И как бы там ни было, а наша задача заключается в том, чтобы понять, что нужно делать, столкнувшись с вопросом о том, как найти скорость в том или ином случае.

Скорость в физике

Как найти скорость

Нередко ученики, которые впервые (а возможно и повторно) знакомятся с азами (можно их так назвать) кинематики, задаются вопросом о том, как найти начальную скорость. Это действительно важно, поскольку множество задач из первой части материалов, которые предлагаются ученику для самостоятельного решения на экзамене в 9 и 11 классе, имеют целью нахождение начальной скорости либо величин, каким-либо образом связанных с ней.

Да и вообще, хотелось бы отметить, что в определенных случаях знание формул кинематики (в том числе и формулы начальной скорости при соответствующем виде движения) поможет решить даже задачу из последней части. Разумеется, на соответствующую тему. Итак, как найти начальную скорость в задачах по физике? Давайте вспомним, какие формулы даются в разделе кинематики для использования их в целях нахождения неизвестных величин.

Виды движения

Как найти скорость

Как известно, движение может быть равномерным, а может быть равноускоренным (равнозамедленным). Если из названия непонятно, каковы различия всех этих трех видов движения, то попробуем объяснить более конкретно. Равномерным движением называется движение, осуществляемое при постоянной скорости тела или материальной точки. В то же время равноускоренным движением называется движение, осуществляемое при наличии постоянного ускорения. Равнозамедленное движение – аналог равноускоренного, только ускорение при этом будет отрицательным.

На деле все выглядит так. При равномерном движении есть постоянная скорость, но ускорение отсутствует. Оно равно нулю. Тело при этом за одинаковые промежутки времени будет проходить одинаковые расстояния (если соответствующие условия не изменяются, нет никаких внешних воздействий). О каких воздействиях идет речь? На бумаге все выглядит идеально. Посмотрели на скорость, посмотрели на дистанцию, нашли время. Вот из этих трех параметров – время, скорость, расстояние – складывается своеобразный равносторонний треугольник, на котором строятся многие задачи.

Нюансы

Как найти скорость

На деле же представим, что есть два участка дороги. Один ровный, другой с небольшими бугорками. Скорость у автомобиля пускай будет та же самая, но за счет сопротивления за один и тот же промежуток времени он пройдет на втором участке дороги расстояние меньшее, чем на первом. Однако это уже задача больше из категории динамики, где рассматриваются причины, вызывающие движение тела. Кстати, логично, что при равномерном движении его конечная и начальная скорость совпадают друг с другом, а также с мгновенной скоростью.

При равноускоренном движении все будет несколько иначе. Будет присутствовать положительное ускорение, оно будет постоянным. Но вследствие присутствия ускорения скорость будет ежесекундно изменяться. В связи с этим вопрос о том, как найти скорость в определенный момент времени при наличии ускорения в системе, становится актуальным. Для этого существуют определенные формулы.

Как найти скорость?

Как найти скорость

Чтобы найти скорость тела в определенный момент времени, найти начальную скорость или конечную, необходимо для начала разобраться с типом движения. Если оно равномерное, то все достаточно просто. Для того чтобы найти скорость в этом случае, следует просто поделить пройденное телом расстояние на прошедшее время. Это и будет ответ. Немного сложнее дело обстоит в том случае, если движение равноускоренное или равнозамедленное.

Допустим, что тело в течение некоторого периода времени ускоряется. Вот одна из формул, которая может быть применена к задаче подобного рода: S = V0t +(-) at^2/2. В выражении в качестве результата (левая часть уравнения) указано пройденное телом расстояние. В правой части у нас слева направо располагается начальная скорость, время, ускорение. Почему указаны два знака? Если тело разгоняется, ускорение будет положительным, перед слагаемым будет ставиться знак “плюс”. Если ускорение отрицательное, перед слагаемым будет ставиться знак “минус”.

Как найти скорость сближения?

Допустим, что у нас есть два тела, которые движутся с известными скоростями. В общем виде пускай это будет V1 и V2. Тогда скорость их сближения будет равна модулю разности. То есть V1 – V2, взятое со знаком “плюс”. Модуль берется для того, чтобы не вдаваться в векторные нюансы, то есть не работать с направлением скоростей, поскольку скорость, как и ускорение, — величина не скалярная, а векторная. Но усложнения в школьной программе ни к чему (по крайней мере, подобные), поэтому применяется модуль.

Как найти скорость

В этой статье мы приведем распространенную формулу в физике, связанную со скоростью, временем и расстоянием. Каким образом указать, как с помощью нее можно вычислить любой из трех компонентов? Хотите на примерах убедиться, как решать такие задачи? Тогда приступим.

Чтобы рассчитать физические величины скорость, время и расстояние, необходимо понимать, что это величины связанные с процессом движения. Движение может быть равноускоренное, равнозамедленное, равномерное. Соответственно, при равноускоренном и равнозамедленном движении, скорость тела изменяется со временем. При равномерном движении скорость тела постоянна.

  1. Чтобы найти скорость, необходимо расстояние разделить на время. Допустим, обозначим, что эти символы означают: V – c корость, s — путь, t — время. V = S / t. Например, время за которое движется поезд 2 часа. Он прошёл расстояние 120 км/ч. Какова скорость с которой шёл поезд? Решение : 120/2=60 км/ч
  2. Чтобы найти путь, необходимо скорость умножить на время. Символы означают: V – cкорость, s — путь, t — время. S = V * t. Пример: скорость с которой движется автобус 120 км/ч, а время которое необходимо ему, чтобы добраться до пункта назначения — 4 часа. Какое расстояние необходимо пройти автобусу? Ответ: 120 к/ч* 4= 480 км. Вот расстояние которое прошел автобус.
  3. Как узнать время? Используем те же самые символы. Итак V – cкорость, s — путь, t — время. t = S / v . Например, путь который проехал велосипедист 90 км со скоростью 30 км/ч. Каково время, за которое он проехал ? 90/30 =3 км/ч

Вот Вы и узнали, как найти скорость, время, расстояние. Зная расстояние и время, мы способны найти скорость. Соответственно, зная путь и скорость, мы способны вычислить расстояние. А зная скорость и расстояние – время. Таким образом, чтобы найти один из компонентов, нам необходим другой компонент.

Добавить комментарий