Как найти конечную скорость без времени

Есть ряд задач, в которых есть скорости в начале V, м/с и в конце Vo, м/с процесса, ускорения a, м/с ², пройденное расстояние S, м, а вот времени нет (секундомер забыли 🙂 )! В этом случае потребуется так называемая “Формула без времени”.

Формула 1. "Формула без времени".
Формула 1. “Формула без времени”.

Эту формулу проще выучить, чем каждый раз выводить из “базовых” формул и поэтому её мы можем найти в наших шпаргалках (статья канала “Шпаргалки по Физике“). Но физический смысл этой формулы не очень понятен, да и выглядит она как-то сложновато. Попробуем понять откуда она взялась, может быть и не такой страшной будет.
Начнём с простых формул:

Формула 2. Изменение координаты тела при равноускоренном движении.
Формула 2. Изменение координаты тела при равноускоренном движении.
Формула 3. Изменение скорости тела при равноускоренном движении.
Формула 3. Изменение скорости тела при равноускоренном движении.

Выразим из 3-ой формулы время:

Формула 4. Время.
Формула 4. Время.

Вспоминаем формулу пройденного расстояния и переписываем
формулу 2:

Формула 5. Появилось пройденное расстояние.
Формула 5. Появилось пройденное расстояние.

В 5-ой формуле время заменяем правой частью формулы 4:

Формула 6. Убрали время.
Формула 6. Убрали время.

Упрощаем формулу 6

Формула 7. Выходим на 1-ю формулу.
Формула 7. Выходим на 1-ю формулу.

И вновь мы пришли к нашей формуле, но теперь она выглядит более понятой и физически законной:

Формула 1. И снова "Формула без времени"
Формула 1. И снова “Формула без времени”

Заключение

Надеюсь, одной сложной формулой стало меньше и мы двигаемся дальше по пути изучения физики ( Статья канала ” Работаем с Физикой на сайте “Решу ЕГЭ“).

Автор с благодарностью примет любые пожертвования на развитие канала “От сложного к простому” https://money.yandex.ru/to/4100170126360

В этой статье мы собираемся изучить различные способы определения скорости без учета времени, а также примеры, некоторые факты и способы решения связанных проблем.

Исходя из этого, энергия объекта сохраняется; скорость объекта равна квадратному корню из удвоенного произведения его ускорения на расстояние, которое он проходит, также в зависимости от начальной скорости объекта.

Как найти конечную скорость без времени?

Ускоряющийся объект со временем меняет свою скорость.

Скорость, достигаемая объектом за период времени, пока он не перестанет ускоряться в течение этого времени, называется конечной скоростью объекта.

Давайте посмотрим, как найти конечную скорость без использования временного символа.

Рассмотрим график скорость-время, показывающий изменение скорости объекта при равномерном линейном движении во времени. Из графика видно, что время T = 0, скорость = u, а в момент времени T = t скорость = v.

как найти конечную скорость без времени

График скорости-времени

Поскольку скорость – это отношение изменения положения с изменяющимся временем, смещение будет равно

х=vt — (1)

Приведенный выше график связан со смещением соотношением, показанным в уравнении (1).

Измерим площадь, покрытую объектом, общая площадь будет равна сумме площадей треугольника (∆ABC) и четырехугольника (□ ACDO).

х = Ar(∆ABC)+ Ar(∆ACDO)

=1/2 бч+фунт

=1/2 t*(vu)+ut—(3)

Поскольку ускорение равно изменению скорости со временем, т.е.

а=dv/dt — (4)

а=ву/т-0=ву/т

ву=ат—(5)

Подставляя уравнение (5) в уравнение (3)

х=1/2 t * at+ut

х=1/2 при2+ут—(6)

Таким образом,

Из уравнения (4) имеем

дв=адт

Интегрируя это уравнение, получаем

∫dv=∫dt

v = при + C

При t = 0 v = u, следовательно, C = u

Следовательно,

v=u+at —(7)

Теперь это уравнение является уравнением, зависящим от времени, а время t из приведенного выше соотношения равно

t=vu/a —(8)

Средняя скорость – это сумма всех скоростей, достигнутых объектом в разные промежутки времени, деленная на общее количество скоростей, суммированных вместе. Здесь у нас есть две скорости: начальная скорость u и конечная скорость v, поэтому средняя скорость равна

Vсредний=Vокончательный+Vначальный/Общее количество скоростей

Vсредний=(v+u)/2 — (9)

Используя уравнение (1), x=vt

Подставляя уравнения (8) и (9) в уравнение (1)

х=(v+u)/2 *(vu)/a

х=v2-u2/2а

2акс = v2-u2/2

v2=u2+2акс — (10)

Приведенное выше уравнение не зависит от времени и показывает связь между начальной скоростью объекта, постоянным ускорением и перемещением объекта.

Problem1: Мяч движется в прямолинейное движение с ускорением 2 м/с. Если начальная скорость мяча 4 м/с, то какой будет его скорость, когда он преодолеет расстояние 20 м?

Дано: a = 2 м / с

u = 4 м / с

d = 20 м

Используя уравнение (10),

v2=u2+2 оси

=42+2*2*20

= 16 + 80 = 96 м / с

поэтому v=9.8 м/с

Следовательно, когда мяч преодолеет расстояние 60 метров, скорость мяча составит 9.8 м / с.

Как определить скорость падающего объекта без учета времени?

Линейная скорость зависит от времени и представляет собой отношение изменения положения во времени.

Падение предмета сопровождается энергии внутри него, в форме кинетической энергии и потенциальной энергии, и энергия не может быть ни создана, ни исчезнуть. На основании этого факта мы можем рассчитать скорость объекта независимо от времени.

Когда объект поднимается на высота над землей приобретает некоторый потенциал энергия, которая затем преобразуется в кинетическую энергию и используется во время полета.

Рассмотрим объект массы m, который стоит на столе высотой h.1, он испытывает внешнюю силу, набирает обороты и начинает ускоряться по направлению к земле. Поскольку объект покоится на столе, его начальная скорость u = 0 и, следовательно, кинетическая энергия также равна нулю. Объект на высоте h1 имеет потенциальную энергию U1 связанные с ним.

U1= mgh1

Начиная свой путь к земле, эта потенциальная энергия преобразуется в кинетическую энергию.

KE2=1/2мВ2

После падения на землю потенциальная энергия тела U2= mgh0; так как ч0=0, U_2=0.

Поскольку энергия объекта сохраняется, сумма кинетической энергии и потенциальной энергии до и после падения на землю будет равна.

KE1+U1=КЭ2+U2

U1=КЭ2

MGH1=1/2мВ2

v2=2гх1

v = √2gh1-(Один)

Следовательно, скорость объекта, падающего на землю под действием силы тяжести, определяется уравнением (11).

Problem2: Мальчик играет с мячом. Он подбросил мяч высоко в воздух и наблюдает за его свободным падением. Какова будет скорость мяча при приближении к земле, если мяч поднимется на высоту 8 метров над поверхностью Земли?

Дано: Высота h = 8м,

g = 9.8 м / с2

Используя уравнение (11),

v = √2gh1

=√2*9.8*8

=√156.8=12.52 м/с

Следовательно, конечная скорость мяча, приближающегося к земле, будет равна 12.5 м / с.

Как найти горизонтальную скорость без времени?

Объект, движущийся в горизонтальном направлении независимо от ускорения свободного падения Земли и приложенной силы, называется горизонтальной скоростью.

Горизонтальная скорость в простоте равна отношению расстояния, пройденного объектом, и времени, затраченного на преодоление расстояния. Это,

Горизонтальная скорость VH= пройденное расстояние/затраченное время

Для объекта, движущегося в движении снаряда, объект связан с двумя компонентами скорости: горизонтальной составляющей по оси x ‘V Cosθ’ в направлении движения и вертикальной составляющей по оси y ‘V Sinθ’, действующей вверх. при ускорении вверх, а затем вниз по отрицательной оси Y при ускорении по направлению к земле.

как найти скорость без времени

График движения снаряда, показывающий постоянная горизонтальная скорость

Из приведенного выше графика, чтобы вычислить горизонтальную скорость, которая является постоянной и в направлении оси x, компонент косинуса по тригонометрии равен

Cosθ=соседний/гипотенуза=горизонтальная скорость/начальная скорость

Cosθ=VH/V

VH= V Cos θ — (12)

Вышеупомянутое соотношение показывает уравнение для определения горизонтальной скорости независимо от времени.

Пример: Мяч подбрасывается в воздух и движется по параболической траектории под углом 60 °.0 с поверхности Земли. Если начальная скорость мяча равна 5 м / с, найдите горизонтальную скорость мяча.

Дано: θ = 600

Начальная скорость u = 5 м / с

Используя уравнение,

VH=VCosθ

=5*Кос(60)

=5*1/2=2.5 м/с

Следовательно, горизонтальная скорость мяча составляет 2.5 м / с.

Дальность полета снаряда – это расстояние, которое объект преодолеет от своей начальной точки, которая находится в точке (0,0) на приведенном выше графике, в зависимости от горизонтальной скорости объекта и того, как долго объект находится в воздухе.

То есть,

Р=ВHTf-(Один)

Где R – диапазон, ВH – горизонтальная скорость объекта, а Tf время полета.

Время, необходимое объекту во время движения снаряда, чтобы вернуться на землю при y = 0, упоминается как время полета.

Выведем уравнение для времени пролета, используя уравнение прямолинейного движения, приведенное ниже.

V=U+at—(14)

Начальная скорость объекта U=VSinθ

Конечная скорость V Cosθ =0

И a = -g, поскольку ускорение находится в отрицательной оси y.

Уравнение становится,

V= V Sinθ –gt

С момента финала скорость равна нулю,

0= VSinθ –gt

V Sinθ =gt

t=V Sinθ/g — (15)

Это время, необходимое объекту для достижения максимальной высоты во время полета.

Это означает, что время достижения максимальной высоты будет равно времени, необходимому объекту для покрытия оставшейся половины полета.

Значит, время для полета

Tf=2 В Sinθ/g — (16)

Подставляя уравнение (12) и уравнение (16) в уравнение (13),

R=V Cosθ*2V Sinθ/g

Р=В2/г* 2SinθCosθ

Р=В2 Sin2θ/g — (17)

Следовательно, скорость движущегося снаряда объекта также равна

V=√Rg/Sin2θ — (18)

Скорость может быть рассчитана путем измерения дальности полета и угла, который объект составляет относительно земли.

Подробнее о Снаряд Движение.

Как найти центростремительную скорость без учета времени?

Объект, движущийся по круговой траектории со временем, приобретает центростремительную скорость.

Направление скорости объекта по круговой траектории остается касательным к окружности и перпендикулярно центростремительной силе, направленной к центру.

Рассмотрим объект массы m, ускоряющийся по круговой траектории из-за внешней силы, приложенной к объекту. Центростремительная сила, действующая на объект, прямо пропорциональна квадрату, умноженному на скорость, достигаемую объектом, и обратно пропорциональна расстоянию от объекта до центра круга. Приложенная сила равна центростремительной силе, действующей на объект.

Ф=Фc

ма=мв2/r

а=в2/r

v2=ар

v=√ar—(19)

Скорость объекта при круговом движении равна квадратному корню из ускорения объекта и радиуса круговой траектории и не зависит от времени.

Пример: Представьте машину, движущуюся по круговой дорожке за пределами футбольной площадки с ускорением 40 км / ч. Диаметр земли 80 метров. Найдите скорость автомобиля.

Given: a=40km h=40*1000/60*60=11.1m/s

d=80м, r=80/2=40м

v=√ар

=√11.1 м/с*40 м

=√444

= 21.1 м / с2

=75.96 км/ч~ 76 км/ч

Следовательно, скорость автомобиля, разгоняющегося по круговой траектории, составляет 76 км / ч.

Подробнее о Как найти скорость с ускорением: разные подходы, проблемы, примеры.

Часто задаваемые вопросы

Q1. Две девушки играют в передачу с мячом; одна девушка бросает мяч высоко в воздух, образуя угол 450 с направлением горизонтальной скорости передача мяча девушке, стоящей на расстоянии 10 м от нее. Какая скорость набирает мяч при броске?

Дано: θ = 450

Дальность полета мяча на броске R = 10 метров

Р=В2 без2θг

V=√Rg sin2θ

V=√10*9.8/Sin(2*60)

V=√98/Sin(120)

V=√98/0.86

V=√113.95

V=10.67 м/с

Следовательно, скорость мяча во время полета составляет 10.67 м / с.

Какая средняя скорость?

Ускоряющийся объект меняет направление скорости и скорости вместе с определенной продолжительностью времени.

Сумма всех скоростей, изменяющихся во времени, деленная на общее количество изменений, называется средней скоростью.

Равнопеременное прямолинейное движение

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx

Как посчитать путь ускоряющегося тела не используя время

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

( large v_ <0>left( frac<text<м>> right)) – начальная скорость тела;

( large v left( frac<text<м>> right)) – конечная скорость;

( large a left( frac<text<м>>> right)) – ускорение тела;

( large S left( text <м>right)) – путь, пройденный телом;

(large t left( c right)) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

Что сделать, чтобы получить формулу пути, в которой отсутствует время:

  • сначала получить выражение для времени t из уравнения для скорости;
  • затем в формулу пути подставить полученное выражение вместо времени t.

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

[ large v = v_ <0>+ a cdot t ]

Избавимся в правой части от начальной скорости, обозначенной символом ( v_<0>). Для этого из обеих частей уравнения вычтем число ( v_<0>). Получим такую запись:

[ large v — v_ <0>= a cdot t ]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

Умножим числитель дроби на число (v_<0>).

  • сначала числитель обособим скобками;
  • затем запишем число (v_<0>) перед скобками;
  • а потом внесем это число внутрь скобок.

В числитель дроби, обособленный с помощью скобок помещаем число (v_<0>):

Теперь необходимо умножить скобку на число (v_<0>). На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Нужно к каждой скорости в скобках дописать число (v_<0>), умножая его на эти скорости. Получим такое выражение:

То есть, вместо первоначальной записи, мы получили такую запись:

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

Правильно возвести дробь в степень поможет рисунок 3.

В результате возведения в квадрат дробь приобретет такой вид:

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

Теперь можем записать полученную дробь:

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:

Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.

Итак, поменяем местами знаменатели дробей:

Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:

А перемножив числители и знаменатели двух дробей, получим такую запись:

Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:

Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».

Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.

Приводим к общему знаменателю дроби в правой части уравнения

Вернемся еще раз к первоначальному уравнению:

Заменим правую часть этого уравнения выражениями, которые мы получили:

Сравним знаменатели дробей.

Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.

Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:

Примечания:

  1. Нам известно, что если какое-либо число умножить на единицу, то после умножения это число не изменится. Значит, если какое-либо выражение умножить на единицу, то полученное выражение останется равным самому себе. На единицу можно умножать все, что угодно – дроби, выражения в скобках и т. п.
  2. Математики часто применяют прием умножения на единицу. А после этого единицу записывают в виде некоторой дроби. При этом используют правило: Единица – это дробь, у которой числитель и знаменатель равны (одинаковые).

Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:

Получим такую дробь:

Поместим ее в выражение для пути:

Дроби с одинаковыми знаменателями складываем

Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:

Раскроем скобки в числителе полученного выражения:

Примечание: Обратим внимание на то, что в числителе дважды встречается член (2v_ <0>v), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа (2v_<0>v) вычитается такое же число (2vv_<0>). В конце концов, это число покидает нашу запись и, она упрощается:

Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:

Вычтем подобные члены, содержащие ( v^<2>_<0>):

В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:

Примечания:

  1. Это формула, с помощью которой можно рассчитать путь тела, когда известны его начальная и конечная скорость, а, так же, ускорение.
  2. Видно, что время t в правой части этого выражения отсутствует.
  3. Мы выводили эту формулу для случая, когда тело увеличивало скорость.

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

Выводы

Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:

Прямолинейное равнопеременное движение

Прямолинейное равнопеременное движение — движение тела вдоль прямой, характеризующееся постоянным по модулю и направлению линейным ускорением.

Траектория такого движения — прямая, поэтому в задачах равнозначными являются понятия пути и модуля перемещения. Такое движение может быть описано несколькими соотношениями:

  • вектор скорости тела при равнопеременном движении
  • где
    • — вектор конечной скорости движения
    • — вектор начальной скорости движения
    • — вектор ускорения
    • — время движения
  • вектор перемещения тела при равнопеременном движении

Однако это векторные уравнения, с которыми работать достаточно сложно, а иногда, просто не хочется. Попробуем, анализируя условия задачи, составить уравнения скалярного вида, спроецировав вектора на некую ось.

Рис. 1. Равноускоренное движение 1

Пример 1. Тело движется прямо с начальной скоростью и ускоряется. По задаче выставляем вектора на ось OX (движение прямолинейное) (рис. 1). Сказано, что тело движется вдоль оси (вектор направлен по оси) и ускоряется (вектор также направлен вдоль оси). Осталось зафиксированные вектора спроецировать:

  • Для уравнения (1):
  • Для уравнения (2):

В общем случае, мы не можем предугадать направления векторов и , соответственно, мы не можем указать точный знак проекции этих векторов на выбранную ось. Но не заморачиваемся: в результате решения задачи мы получим одно и то же по модулю число, даже если ошибёмся. Т.е. выбираем направления как хотим, а потом анализируем ответ.

Рис. 2. Равноускоренное движение-2

Пример 2. Тело движется в положительном направлении оси и затормаживает. По задаче тело движется вдоль оси (вектор направлен по оси), а торможение говорит о том, что вектор ускорения ( ) направлен против оси OX (рис. 2). Проецируем:

  • Для уравнения (1):
  • Для уравнения (2):

Рис. 3. Равноускоренное движение-3

Пример 3. Тело движется в отрицательном направлении оси и затормаживает. По задаче тело движется в обратную сторону оси OX (вектор направлен против оси), а торможение говорит о том, что вектор ускорения ( ) направлен против движения, а значит, по оси OX (рис. 3). Проецируем:

  • Для уравнения (1):
  • Для уравнения (2):

Рис. 4. Равноускоренное движение-4

Пример 4. Тело движется в отрицательном направлении оси и ускоряется. По задаче тело движется в обратную сторону оси OX (вектор направлен против оси), а ускорение говорит о том, что вектор ускорения ( ) направлен в сторону движения, а значит, против оси OX (рис. 4). Проецируем:

  • Для уравнения (1):
  • Для уравнения (2):

Вывод: только что мы получили восемь различных формул, применимых для решения задач. Очень не хотелось бы их помнить. К счастью, есть выход: запомнить и понять векторный вид этих уравнений (1) и (2), а далее, применительно к данной вам задаче, просто адаптировать их, используя проекции.

Кроме формул (1) и (2), имеется ещё одна расчётная формула, которая чаще всего используется, когда в задаче на нужно найти время или его не дано. Воспользуемся уже имеющимися (1) и (2), считая движение тела равноускоренным. Выделим из (1) время:

Подставим (3) в (2) при условии :

Таким образом, мы получили формулу, в которой нет параметра времени.

[spoiler title=”источники:”]

http://www.abitur.by/fizika/teoreticheskie-osnovy-fiziki/mexanicheskoe-dvizhenie/pryamolinejnoe-ravnoperemennoe-dvizhenie/

[/spoiler]

Формула скорости без времени. помогите пожалуйста вывести формулу скорости без данных о времени!

Светлана Лавренова



Знаток

(346),
закрыт



10 лет назад

Николай Хижняк

Мастер

(2036)


10 лет назад

Формулы скорости без времени не бывает. Если нет данных о времени, то должны быть какие-то другие данные, из которых можно получить время.

Источник: Математика для блондинок

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Формула, по которой можно вычислить путь тела без учета времени движения

Рис.1. Так выглядит формула, по которой можно вычислить путь тела, не зная, сколько времени занимало движение

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

[ large begin{cases} S  = v_{0} cdot t + displaystylefrac{a}{2} cdot t^{2} \ v  = v_{0} + a cdot t end{cases} ]

( large v_{0} left( frac{text{м}}{c} right)) – начальная скорость тела;

( large v left( frac{text{м}}{c} right)) – конечная скорость;

( large a left( frac{text{м}}{c^{2}} right)) – ускорение тела;

( large S left( text{м} right)) – путь, пройденный телом;

(large t left( c right)) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

Что сделать, чтобы получить формулу пути, в которой отсутствует время:

  • сначала получить выражение для времени t из уравнения для скорости;
  •  затем в формулу пути подставить полученное выражение вместо времени t.

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

[ large v  = v_{0} + a cdot t ]

Избавимся в правой части от начальной скорости, обозначенной символом ( v_{0}). Для этого из обеих частей уравнения вычтем число ( v_{0}). Получим такую запись:

[ large v — v_{0} = a cdot t ]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

[ large frac{ v — v_{0}}{a} = t ]

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

[ large begin{cases} S  = v_{0}cdot t + displaystyle frac{a}{2}cdot t^{2}\ displaystyle frac{v — v_{0}}{a} = t end{cases} ]

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

[large v_{0} cdot frac{ v — v_{0}}{a} ]

Умножим числитель дроби на число (v_{0}).

Для этого:

  • сначала числитель обособим скобками;
  • затем запишем число (v_{0}) перед скобками;
  • а потом внесем это число внутрь скобок.

В числитель дроби, обособленный с помощью скобок помещаем число (v_{0}):

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ v_{0} cdot (v — v_{0})}{a} ]

Теперь необходимо умножить скобку на число (v_{0}).  На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Правильно умножить скобку на число можно так

Рис. 2. Чтобы умножить скобку на число, нужно умножить каждое слагаемое в скобке на это число

Нужно к каждой скорости в скобках дописать число (v_{0}), умножая его на эти скорости. Получим такое выражение:

[large frac{ v_{0} cdot (v — v_{0})}{a} = frac{ (v_{0} cdot v — v_{0} cdot v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

То есть, вместо первоначальной записи, мы получили такую запись:

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

[large left( frac{ v — v_{0}}{a} right)^{2}]

Правильно возвести дробь в степень поможет рисунок 3.

Чтобы дробь возвести в степень, нужно отдельно возвести в эту степень ее числитель и знаменатель отдельно

Рис. 3. Дробь возводим в степень, отдельно возводя в эту степень ее числитель и знаменатель

В результате возведения в квадрат дробь приобретет такой вид:

[large left( frac{ v — v_{0}}{a} right)^{2} = frac{ (v — v_{0})^{2}}{a^{2}}]

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Вид формул сокращенного умножения, удобный для запоминания

Рис. 4. Удобный для запоминания вид формул сокращенного умножения

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

[large ( v — v_{0})^{2} = (v^{2} + v^{2}_{0} — 2vv_{0})]

Теперь можем записать полученную дробь:

[large frac{ (v — v_{0})^{2}}{a^{2}} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} ]

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}}]

Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.

Итак, поменяем местами знаменатели дробей:

[large frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} = frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:

[large frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

А перемножив числители и знаменатели двух дробей, получим такую запись:

[large frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».

Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.

Приводим к общему знаменателю дроби в правой части уравнения

Вернемся еще раз к первоначальному уравнению:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Заменим правую часть этого уравнения выражениями, которые мы получили:

[large S = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Сравним знаменатели дробей.

Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.

Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1]

Примечания:

  1. Нам известно, что если какое-либо число умножить на единицу, то после умножения это число не изменится. Значит, если какое-либо выражение умножить на единицу, то полученное выражение останется равным самому себе. На единицу можно умножать все, что угодно – дроби, выражения в скобках и т. п.
  2. Математики часто применяют прием умножения на единицу. А после этого единицу записывают в виде некоторой дроби. При этом используют правило: Единица – это дробь, у которой числитель и знаменатель равны (одинаковые).

Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1 = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2}]

Получим такую дробь:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2} = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} ]

Поместим ее в выражение для пути:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Дроби с одинаковыми знаменателями складываем

Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} ) + (v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Раскроем скобки в числителе полученного выражения:

[large S = frac{ 2v_{0} v – 2v^{2}_{0} + v^{2} + v^{2}_{0} — 2vv_{0}}{2a}]

Примечание: Обратим внимание на то, что в числителе дважды встречается член (2v_{0} v), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа (2v_{0}v) вычитается такое же число (2vv_{0}). В конце концов, это число покидает нашу запись и, она упрощается:

[large S = frac{ – 2v^{2}_{0} + v^{2} + v^{2}_{0}}{2a}]

Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:

[large S = frac{ v^{2} + v^{2}_{0} – 2v^{2}_{0}}{2a}]

Вычтем подобные члены, содержащие ( v^{2}_{0}):

[large v^{2}_{0} – 2v^{2}_{0} = – v^{2}_{0} ]

В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:

[large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]

Примечания:

  1. Это формула, с помощью которой можно рассчитать путь тела, когда известны его начальная и конечная скорость, а, так же, ускорение.
  2. Видно, что время t в правой части этого выражения отсутствует.
  3. Мы выводили эту формулу для случая, когда тело увеличивало скорость.

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Выводы

Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:

  1. Когда движение равноускоренное и скорость тела увеличивается: [large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]
  2. А когда движение равнозамедленное и скорость уменьшается: [large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Добавить комментарий