Как найти конечную точку перемещения

Содержание:

Путь и перемещение:

Вы знаете, что любой вид движения совершается по определенной траектории.

Траектория – это линия, которую описывает материальная точка при своем движении в данной системе отсчета. Эта линия может быть и невидима, например, траектория движения рыбы в воде, самолета в небе, пчелы в воздухе и др., которые можно только вообразить. По форме траектории механическое движение делится на прямолинейное и криволинейное.

Движение, траектория которого представляет собой прямую линию относительно данной системы отсчета, называется прямолинейным движением (b), а движение, траектория которого кривая линия, – криволинейным (с).

Длина траектории движения материальной точки, называется пройденным путем. Пройденный путь является положительной скалярной величиной, обозначается буквой Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Для полного описания движения материальной точки необходимо определить изменение его положения в пространстве с течением времени, т.е. определить изменение координат материальной точки, или же изменение его радиус-вектора.

Изменение любой физической величины равно разности его конечного и начального значений и обозначается знаком Путь и перемещение в физике - формулы и определения с примерами (буква греч. алфавита) перед этой величиной.

Изменение координат материальной точки во время движения

Изменение координат материальной точки во время движения может быть, как положительным, так и отрицательным. Например, предположим, что муравей, двигаясь по показанной на рисунке траектории, попадает из точки М в точку N (d). Так как координата муравья по оси X увеличивается Путь и перемещение в физике - формулы и определения с примерами то изменение координаты по этой оси будет положительным: Путь и перемещение в физике - формулы и определения с примерами Координата же муравья по оси У уменьшается Путь и перемещение в физике - формулы и определения с примерами поэтому изменение его координаты по этой оси будет отрицательным: Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Изменение радиус-вектора материальной точки во время движения

На следующем рисунке представлены радиус-векторы Путь и перемещение в физике - формулы и определения с примерами и Путь и перемещение в физике - формулы и определения с примерами начального и конечного положения, материальной точки (муравья) соответственно (е). Вектор Путь и перемещение в физике - формулы и определения с примерами соединяющий концы этих радиус-векторов Путь и перемещение в физике - формулы и определения с примерами называют перемещением данной материальной точки за промежуток времени Путь и перемещение в физике - формулы и определения с примерами Согласно правилу сложения векторов: Путь и перемещение в физике - формулы и определения с примерами Из последнего выражения получается, Путь и перемещение в физике - формулы и определения с примерами или Путь и перемещение в физике - формулы и определения с примерами где Путь и перемещение в физике - формулы и определения с примерами — перемещение материальной точки.

Путь и перемещение в физике - формулы и определения с примерами

Перемещение – это направленный отрезок прямой, соединяющий начальное положение движущейся материальной точки с ее конечным положением. Перемещение — векторная величина.

Векторная величина – это величина, определяемая, кроме числового значения (модуля), также и направлением.

К вектору перемещения, как векторной величине, можно применить известные действия над векторами – сложение и вычитание векторов, определение результирующего вектора методом треугольника и параллелограмма.

Единицей измерения перемещения, как и пути, в СИ является метр, однако, перемещение имеет отличающийся физический смысл: перемещение показывает, на какое расстояние и в каком направлении изменилось начальное положение материальной точки за данный промежуток времени.

Внимание! Только при прямолинейном движении без изменения направлении, модуль перемещения равен пройденному пути, во всех остальных случаях (при изменении направления прямолинейного движения, криволинейном движении) пройденный путь больше модуля перемещения (е).

Путь и перемещение в физике - формулы и определения с примерами

Материальная точка прошла расстояние Путь и перемещение в физике - формулы и определения с примерами от точки М до точки N по прямой линии. В этом случае пройденный путь равен модулю перемещения: Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Материальная точка прошла расстояние Путь и перемещение в физике - формулы и определения с примерами от точки М до точки N по прямой линии, а затем по этой же линии вернулась назад в точку Путь и перемещение в физике - формулы и определения с примерами В этом случае материальная точка прошла путь, равный Путь и перемещение в физике - формулы и определения с примерами а модуль перемещения равен нулю:

Путь и перемещение в физике - формулы и определения с примерами

Если при движении материальной точки на плоскости известны его начальные координаты и вектор перемещения, то можно определить координаты конечного положения точки. Например, предположим, что материальная точка совершила перемещение Путь и перемещение в физике - формулы и определения с примерами Опуская перпендикуляры на оси ОХ и OY из начала и конца этого вектора, получаем проекции перемещения Путь и перемещение в физике - формулы и определения с примерами и Путь и перемещение в физике - формулы и определения с примерами (h). Как видно из рисунка, эти проекции равны разности начальных и конечных координат материальной точки: 

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Одинаковы ли путь и перемещение

Задача:

Велосипедист движется по круговому велотреку радиусом 80 м. Он стартует из точки А. Определите путь и перемещение велосипедиста при первом прохождении точки В (i).

Путь и перемещение в физике - формулы и определения с примерами

Дано:

Путь и перемещение в физике - формулы и определения с примерами

Решение:

Пройденный путь Путь и перемещение в физике - формулы и определения с примерами равен длине дуги: Путь и перемещение в физике - формулы и определения с примерами

Модуль перемещения же равен диаметру окружности: Путь и перемещение в физике - формулы и определения с примерами

Вычисление:

Путь и перемещение в физике - формулы и определения с примерами

Что такое путь и перемещение

Путь и перемещение в физике - формулы и определения с примерами

Автобус отправился из Москвы в 9 часов утра. Можно ли определить, где находился автобус в 11 часов, если известно, что он проделал путьПуть и перемещение в физике - формулы и определения с примерами

Конечно, нет. Ясно лишь, что в 11 часов он находился в месте, удаленном от Минска не более чем на 100 км (т. е. внутри окружности, изображенной на рисунке 37). Не исключено, что к 11 часам автобус вернулся в Москву.

Значит, для определения конечного положения тела недостаточно знать его начальное положение и пройденный им путь.

Мы нашли бы местонахождение автобуса в 11 часов, если бы знали траекторию его движения (зеленая линия на рисунке 38). Отсчитав 100 км от начальной точки маршрута вдоль траектории, найдем, что в 11 часов автобус прибыл в Борисов.

А можно поступить иначе. Конечное положение автобуса можно определить, зная его начальное положение и всего одну векторную величину, называемую перемещением.

Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением (для данного промежутка времени).

Обозначим перемещение символом Путь и перемещение в физике - формулы и определения с примерами На рисунке 38 вектор Путь и перемещение в физике - формулы и определения с примерами — это перемещение автобуса из Минска в Мытищи, вектор Путь и перемещение в физике - формулы и определения с примерами — из Мытищь в Балашиху, а вектор Путь и перемещение в физике - формулы и определения с примерами — из Минска в Борисов.

Теперь, даже не зная траектории, по начальной точке и перемещению мы можем найти конечную точку для каждого из участков движения автобуса и для всего маршрута в целом.

Путь и перемещение в физике - формулы и определения с примерами

Можно ли сравнивать путь S, пройденный телом, с его перемещением Путь и перемещение в физике - формулы и определения с примерами Нельзя, поскольку путь S — скаляр, а перемещение Путь и перемещение в физике - формулы и определения с примерами — вектор.

Сравнивать путь S можно с модулем перемещения Путь и перемещение в физике - формулы и определения с примерами который является скалярной величиной. Равен ли путь модулю перемещения?

В рассматриваемом примере путь, пройденный автобусом за два часа, Путь и перемещение в физике - формулы и определения с примерами Он равен длине траектории движения автобуса от Москвы через Мытищи до Балашихи (см. рис. 38). А модуль перемещения автобуса за это время равен расстоянию от Минска до Борисова: Путь и перемещение в физике - формулы и определения с примерами Путь автобуса больше модуля его перемещения: Путь и перемещение в физике - формулы и определения с примерами

Пройденный путь был бы равен модулю перемещения, если бы автобус все время двигался по прямой, не изменяя направления движения.

Следовательно, путь всегда не меньше модуля перемещения:

Путь и перемещение в физике - формулы и определения с примерами

Как складывают между собой пути и как — перемещения? Из рисунка 38 находим:

Путь и перемещение в физике - формулы и определения с примерами

Пройденные пути складывают арифметически, а перемещения — по правилам сложения векторов.

Равен ли при этом модуль Путь и перемещение в физике - формулы и определения с примерами сумме модулей Путь и перемещение в физике - формулы и определения с примерами Ответьте самостоятельно.

Мы выяснили, что путь и траектория относительны. Покажите на примерах, что перемещение тоже относительно, т. е. зависит от выбора системы отсчета.

Путь и перемещение в физике - формулы и определения с примерами

При решении задач важно уметь находить проекции перемещения. Построим вектор перемещения куска мела по школьной доске из точки А в точку С (рис. 39). Из рисунка видно, что проекции вектора Путь и перемещение в физике - формулы и определения с примерами на координатные оси Ох и Оу равны разности координат конца и начала этого вектора:

Путь и перемещение в физике - формулы и определения с примерами

Главные выводы:

  1. Путь — это длина участка траектории, пройденного телом за данный промежуток времени. Путь — положительная скалярная величина.
  2. Перемещение тела — это вектор, соединяющий начальное положение тела с его конечным положением (для данного промежутка времени).
  3. Путь не меньше модуля перемещения тела за то же время.
  4. Пройденные пути складываются арифметически, а перемещения — по правилам сложения векторов.

Пример:

Путь и перемещение в физике - формулы и определения с примерамиПуть и перемещение в физике - формулы и определения с примерами
Конькобежец пересек прямоугольную ледовую площадку по диагонали АВ, а пешеход прошел из точки А в точку В по краю площадки (рис. 40). Размеры площадки 60 х 80 м. Определите модули перемещения конькобежца и пешехода и пути, пройденные ими.

Решение

Из рисунка 40 видно, что перемещения пешехода и конькобежца одинаковы. Модуль перемещения:

Путь и перемещение в физике - формулы и определения с примерами

Путь конькобежца: Путь и перемещение в физике - формулы и определения с примерами

Путь пешехода: Путь и перемещение в физике - формулы и определения с примерами

Ответ: Путь и перемещение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Траектория движения

Возьмите лист бумаги и карандаш. Поставьте на листе точки А и В и соедините их кривой линией (рис. 7.1). Эта линия совпадает с траекторией движения кончика карандаша, то есть линией, в каждой точке которой последовательно побывал кончик карандаша во время своего движения.

Траектория движения — это воображаемая линия, которую описывает в пространстве движущаяся точка. Обычно мы не видим траектории движения тел, но иногда бывают исключения.

Так, в без­облачную погоду высоко в небе можно увидеть белый след, который во время своего движения оставляет самолет*. По этому следу можно определить траекторию движения самолета. Траектории движения каких тел можно восстановить по следам, изображенным на рис. 7.2? В каких случаях траекторию движения «заготавливают» заранее? Форма траектории может быть разной: прямая, окружность, дуга, ломаная и т. д. В зависимости от формы траектории разли­чают прямолинейное и криволинейное движе­ния тел (рис. 7.3).

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Форма траектории движения тела зависит от того, относительно какой системы отсчета рассматривают движение. Приведем пример. У мальчика, едущего в автобусе, упало из рук яблоко (рис. 7.4). Для девочки, сидящей напротив, траектория движения яблока — короткий отрезок прямой. В этом случае система отсчета, относительно которой рассматривается движение яблока, связана с салоном автобуса. Но все время, пока яблоко падало, оно «ехало» вместе с автобусом, поэтому для человека, стоящего на обочине дороги, траектория движения яблока абсолютно другая. Система отсчета в таком случае связана с дорогой.

Чем путь отличается от перемещения

Вернемся к началу (см. рис. 7.1). Чтобы найти путь, который прошел конец карандаша, рисуя кривую линию, необходимо измерить длину этой линии, то есть найти длину траектории (рис. 7.5). Путь — это физическая величина, равная длине траектории. Путь обозначают символом l. Единица пути в СИ — метр: [l]= м. Используют также дольные и кратные единицы пути, например миллиметр (мм), сантиметр (см), километр (км):

Путь и перемещение в физике - формулы и определения с примерами

Путь, пройденный телом, будет разным относительно разных систем отсчета. Вспомним яблоко в автобусе (см. рис. 7.4): для пассажиров яблоко прошло путь около полуметра, а для человека на обочине дороги — несколько метров. Вернемся к рис. 7.1. Соединив точки А и В отрезком прямой со стрелкой, получим направленный отрезок, который покажет, в каком направлении и на какое расстояние переместился конец карандаша (рис. 7.6).

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Направленный отрезок прямой, соединяющий начальное и конечное положения тела, называют перемещением. Перемещение обозначают символом Путь и перемещение в физике - формулы и определения с примерами . Стрелка над символом показывает, что перемещение — это векторная физическая величина*. Чтобы правильно задать перемещение, необходимо указать не только его значение (модуль), но и направление.

Модуль перемещения, то есть расстояние, на которое переместилось тело в определенном направлении, также обозначают символом s, но без стрелки. Единица перемещения в СИ такая же, как и единица пути, — метр: [s]= м. В общем случае перемещение не совпадает с траекторией движения тела (рис. 7.7, а, б), поэтому путь, пройденный телом, обычно больше модуля перемещения. Путь и модуль перемещения равны только в том случае, когда тело движется вдоль прямой в неизменном направлении (рис. 7.7, в).

Итоги:

Воображаемая линия, которую описывает в пространстве движущаяся точка, называется траекторией. В зависимости от формы траектории различают прямолинейное и криволинейное движения тел. Путь l — это физическая величина, равная длине траектории. Перемещение Путь и перемещение в физике - формулы и определения с примерами — это направленный отрезок прямой, соединяющий начальное и конечное положения тела. Единица пути и перемещения в СИ — метр (м).

Физические величины, имеющие значение и направление, называется векторными а имеющие только значение — скалярными.

  • Равномерное прямолинейное движение
  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы Траектория и Путь), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия.

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения  (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно Аx и Вx. Длина отрезка АxВx на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

Sx = AxBx

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, Sx). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

Sx = x – x0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Sy = y – y0
Sz = z – z0

Здесь x0, y0, z0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х0 и у0, то есть А(х0, у0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

Sx = x – x0
Sy = y – y0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора, с помощью которой можно найти модуль вектора перемещения, так как

АС = sx
CB = sy

По теореме Пифагора

S2 = Sx2 + Sy2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

Путь и перемещение, теория и онлайн калькуляторы

Путь и перемещение

При своем движении материальная точка описывает некоторую линию, которую называют ее траекторией движения. Траектория может быть прямой линией, а может представлять собой кривую.

Путь

Определение

Путь – длина участка траектории, который прошла материальная точка за рассматриваемый отрезок времени. Путь – это скалярная величина.

При прямолинейном движении в одном направлении пройденный путь ($Delta s$) равен модулю изменения координаты тела. Так, если тело двигалось по оси X, то путь можно найти как:

[Delta s=left|x_2-x_1right|left(1right),]

где $x_1$ – координата начального положения тела; $x_2$ – конечная координата тела.

Его можно вычислить, если известен модуль скорости ($v=v_x$):

[Delta s=vt left(2right),]

где $t$ – время движения тела.

Графиком, который отображает зависимость пути от времени при равномерном прямолинейном движении, является прямая (рис.1). С увеличением величины скорости увеличивается угол наклона прямой относительно оси времени.

Путь и перемещение, рисунок 1

Если по графику $Delta s(t)$ необходимо найти путь, который проделало тело за время $t_1$, то из точки $t_1$ на оси времени проводят перпендикуляр до пересечения с графиком $Delta s(t)$. Затем из точки пересечения восстанавливают перпендикуляр к оси $Delta s$. На пересечении оси и перпендикуляра получают точку ${Delta s}_1$, которая соответствует пройденному пути за время от $t=0 c$ до $t_1$.

Путь не бывает меньше нуля и не может уменьшаться при движении тела.

Перемещение

Определение

Перемещением называют вектор, который проводят из начального положения движущейся материальной точки в ее конечное положение:

[Delta overline{r}=overline{r }left(t+Delta tright)-overline{r }left(tright)left(3right).]

Вектор перемещения численно равен расстоянию между конечной и начальной точками и направлен от начальной точки к конечной.

Приращение радиус-вектора материальной точки – это перемещение ($Delta overline{r}$).

Путь и перемещение, рисунок 2

В декартовой системе координат радиус-вектор точки представляют в виде:

[overline{r }left(tright)=xleft(tright)overline{i}+yleft(tright)overline{j}+zleft(tright)overline{k}left(4right),]

где $overline{i}$, $overline{j}$,$ overline{k}$ – единичные орты осей X,Y,Z. Тогда $Delta overline{r}$ равен:

[Delta overline{r}=left[xleft(t+Delta tright)-xleft(tright)right]overline{i}+left[yleft(t+?tright)-yleft(tright)right]overline{j}+left[zleft(t+?tright)-zleft(tright)right]overline{k}left(5right).]

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и длина вектора перемещения равна пройденному точкой пути:

[left|Delta overline{r}right|=Delta s left(6right).]

Длину вектора перемещения (как и любого вектора) можно обозначать как $left|Delta overline{r}right|$ или просто $Delta r$ (без указания стрелки).

Если тело совершает несколько перемещений, то их можно складывать по правилам сложения векторов:

[Delta overline{r}=Delta {overline{r}}_1+Delta {overline{r}}_2+dots left(7right).]

Если направление движения тела изменяется, то модуль вектора перемещения не равен пройденному телом пути.

Примеры задач на путь и перемещение

Пример 1

Задание: Мяч бросили вертикально вверх от поверхности Земли. Он долетел до высоты 20 м. и упал на Землю. Чему равен путь, который прошел мяч, каков модуль перемещения?

Решение: Сделаем рисунок.

Путь и перемещение, пример 1

В нашей задаче мяч движется прямолинейно сначала вверх, затем вниз. Так как путь – длина траектории, то получается, что мяч дважды прошел расстояние h, следовательно:

[Delta s=2h.]

Перемещение – направленный отрезок, соединяющий начальную точку и конечную при движении тела, но тело начало движение из той же точки, в которую вернулось, следовательно, перемещение мяча равно нулю:

[Delta r=0.]

Ответ: $ Путь Delta s=2h$. Перемещение $Delta r=0$

   

Пример 2

Задание: В начальный момент времени тело находилось в точке с координатами $(x_0=3;; y_0=1)$(см). Через некоторый промежуток времени оно переместилось в точку координаты которой ($x=2;;y=4$) (см). Каковы проекции вектора перемещения на оси X и Y?

Решение: Сделаем рисунок.

Путь и перемещение, пример 2

Радиус – вектор начальной точки запишем как:

[{overline{r }}_0left(tright)=x_0left(tright)overline{i}+y_0left(tright)overline{j}=3overline{i}+1overline{j}left(2.1right).]

Радиус – вектор конечной точки имеет вид:

[overline{r}left(tright)=xleft(tright)overline{i}+yleft(tright)overline{j}=2overline{i}+4overline{j}left(2.2right).]

Вектор перемещения представим как:

[Delta overline{r}=left[xleft(tright)-x_0left(tright)right]overline{i}+left[уleft(tright)-у_0left(tright)right]overline{j}=left[2-3right]+left[1-4right]overline{j}=-1overline{i}+3overline{j}(2.3).]

Из формулы видим, что:

[Delta r_x=-1;;Delta r_y=3. ]

Ответ: $Delta r_x=-1;;Delta r_y=3 $

   

Читать дальше: равнодействующая всех сил.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Определения

Механика — раздел физики, который изучает механическое движение физических тел и взаимодействие между ними.

Основная задача механики — определение положение тела в пространстве в любой момент времени.

Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение и его виды

По характеру движения точек тела выделяют три вида механического движения:

  • Поступательное. Это движение, при котором все точки тела движутся одинаково. Если через тело мысленно провести прямую, то после изменения положения этого тела в пространстве данная прямая останется параллельной самой себе.
  • Вращательное. Это движение, при котором все точки тела движутся, описывая окружности.
  • Колебательное. Это движение тела, которое повторяется точно или приблизительно через определенные интервалы времени. От вращательного движения его отличает то, что при колебаниях тело перемещается в двух взаимно противоположных направлениях.

По типу линии, вдоль которой движется тело, выделяют два вида движения:

  • Прямолинейное — тело движется по прямой линии.
  • Криволинейное — тело движется по кривой линии, в том числе замкнутой.

По скорости выделяют два вида движения:

  • Равномерное — скорость движущегося тела остается неизменной.
  • Неравномерное — скорость движущегося тела с течением времени меняется.

По ускорению выделяют три вида движения:

  • Равноускоренное — тело движется неравномерно с постоянным ускорением (положительным). Скорость увеличивается.
  • Равнозамедленное — тело движется неравномерно с постоянным замедлением (отрицательным ускорением). Скорость уменьшается.
  • Ускоренное — тело движется неравномерно с меняющимся ускорением. Скорость может, как увеличиваться, так и уменьшаться.

Что нужно для описания механического движения?

Для описания механического движения нужно выбрать, относительно какого тела оно будет рассматриваться. Движение одного и того же объекта относительно разных тел неодинаковое. К примеру, идущий человек относительно дерева движется с некоторой скоростью. Но относительно сумки, которую он держит в руках, он находится в состоянии покоя, так как расстояние между ними с течением времени не изменяется.

Решение основной задачи механики — определения положения тела в пространстве в любой момент времени — заключается в вычислении координат его точек. Чтобы вычислить координаты тела, нужно ввести систему координат и связать с ней тело отсчета. Также понадобится прибор для измерения времени. Все это вместе составляет систему отсчета.

Система отсчета — совокупность тела отсчета и связанных с ним системы координат и часов.

Тело отсчета — тело, относительно которого рассматривается движение.

Часы — прибор для отсчета времени. Время измеряется в секундах (с).

При описании движения тела важно учитывать его размеры, так как характер движения его отдельных точек может различаться. Но в рамках некоторых задач размер тела не влияет на результат решения. Тогда его можно считать пренебрежительно малым. Тогда тело рассматривают как движущуюся материальную точку.

Материальная точка — это тело, размерами которого можно пренебречь в условиях конкретной задачи. Допустимо принимать тело за точку, если оно движется поступательно или его размеры намного меньше расстояний, которые оно проходит.

Виды систем координат

В зависимости от характера движения тела для его описания выбирают одну из трех систем координат:

  • Одномерную. Используется, когда положение материальной точки можно задать только одной координатой x — M(x) . В этом случае тело движется прямолинейно.
  • Двумерную. Используется, когда положение материальной точки можно задать двумя координатами x и y — M(x,y). Тело в этом случае движения по плоскости.
  • Трехмерную. Используется, когда положение материальной точки можно задать тремя координатами x, y и z — M(x,y,z). Тело в этом случае изменяет положение в трехмерном пространстве.

Способы описания механического движения

Описать механическое движение можно двумя способами:

  1. координатным
  2. векторным

Координатный способ

Указать положение материальной точки в пространстве можно, используя трехмерную систему координат. Если эта точка движется, то ее координаты с течением времени меняются. Так как координаты точки зависят от времени, можно считать, что они являются функциями времени. Математически это записывается так:

Эти уравнения называют кинематическими уравнениями движения точки, записанными в координатной форме.

Векторный способ

Радиус-вектор точки — вектор, начало которого совпадает с началом системы координат, а конец — с положением этой точки.

Указать положение точки в трехмерном пространстве также можно с помощью радиус-вектора. При движении точки радиус-вектор со временем изменяется. Он может менять направление и длину. Это значит, что радиус-вектор тоже можно принять за функцию времени. Математически это записывается так:

Эта формула называется кинематическим уравнением движения точки, записанным в векторной форме.

Характеристики механического движения

Движение материальной точки характеризуют три физические величины:

  1. перемещение
  2. скорость
  3. ускорение

Перемещение

Определение

Перемещение (вектор перемещения) — направленный отрезок, начало которого совпадает с начальным положением точки, а конец — с его конечным положением. Обозначается как S.

Перемещение точки определяется как изменение радиус-вектора. Это изменение обозначается как Δr. С точки зрения геометрии вектор перемещения равен разности радиус-векторов, задающих конечное и начальное положение точки:

Траектория — линия, которую описывает тело во время движения.

Путь — длина траектории. Обозначается буквой s. Единица измерения — метры (м).

Путь есть функция времени:

Модуль перемещения — длина вектора перемещения. Обозначается как |Δr|. Единица измерения — метры (м).

Внимание!

Модуль перемещения необязательно должен совпадать с длиной пути.

Пример №1. Человек обошел круглое поле диаметром 1 км. Чему равны пройденный путь и перемещение, которое он совершил.

Путь равен длине окружности. Поэтому:

Человек, обойдя круглое поле, вернулся в ту же точку. Поэтому его начальное положение совпадает с конечным. В этом случае человек совершил перемещение, равное нулю.

Пример №2. Точка движется по окружности радиусом 10 м. Чему равен путь, пройденный этой точкой, в момент, когда модуль перемещения равен диаметру окружности?

Диаметр — это отрезок, который соединяет две точки окружности и проходит через центр. Перемещение равно длине этого отрезка в случае, если один из концов этого отрезка является началом вектора перемещения, а другой — его концом. Траекторией движения в этом случае является дуга, равная половине окружности. А длина траектории есть путь:

Скорость

Определение

Скорость — векторная физическая величина, характеризующая быстроту перемещения тела. Численно она равна отношению перемещения за малый промежуток времени к величине этого промежутка.

В физике скорость обозначается V. Математически скорость определяется формулой:

Скорость характеризуется не только направлением вектора скорости, но и его модулем.

Модуль скорости — расстояние, пройденное точкой за единицу времени. Обозначается буквой V и измеряется в метрах в секунду (м/с).

Математическое определение модуля скорости:

Величина скорости тела в данный момент времени есть первая производная от пройденного пути по времени:

Ускорение

Определение

Ускорение — векторная физическая величина, которая характеризует быстроту изменения скорости тела. Численно она равна отношению изменения скорости за малый промежуток времени к величине этого промежутка.

В физике ускорение обозначается a. Математически оно определяется формулой:

Модуль ускорения — численное изменение скорости в единицу времени. Обозначается буквой a. Единица измерения — метры в секунду в квадрате (м/с2).

Математическое определение модуля скорости:

v — скорость тела в данный момент времени, v0— его скорость в начальный момент времени, t — время, в течение которого эта скорость менялась.

Ускорение тела есть первая производная от скорости или вторая производная от пройденного пути по времени:

Проекция вектора перемещения на ось координат

Определение

Проекция вектора перемещения на ось — это скалярная величина, численно равная разности конечной и начальной координат.

Проекция вектора на ось OX:

Проекция вектора на ось OY:

Знаки проекций перемещения

  • Проекция является положительной, если движение от начала проекции вектора к проекции конца происходит сонаправленно оси координат.
  • Проекция является отрицательной, если движение от начала проекции вектора к проекции конца направлено в сторону, противоположную направлению координатной оси.

Внимание!

Проекция вектора перемещения на ось считается нулевой, если вектор расположен перпендикулярно этой оси.

Модуль перемещения — длина вектора перемещения:

Модуль перемещения измеряется в метрах (м).

Вместе с собственными проекциями модуль перемещения образует прямоугольный треугольник. Сам он является гипотенузой этого треугольника. Поэтому для его вычисления можно применить теорему Пифагора. Выглядит это так:

Выразив проекции вектора перемещения через координаты, эта формула примет вид:

Выражение проекций вектора перемещения через угол его наклона по отношению к координатным осям:

Общий вид уравнений координат:

Пример №3. Определить проекции вектора перемещения на ось OX, OY и вычислить его модуль.

Определяем координаты начальной точки вектора:

Определяем координаты конечной точки вектора:

Проекция вектора перемещения на ось OX:

Проекция вектора перемещения на ось OY:

Применяем формулу для вычисления модуля вектора перемещения:

Пример №4. Определить координаты конечной точки B вектора перемещения, если начальная точка A имеет координаты (–5;5). Учесть, что проекция перемещения на OX равна 10, а проекция перемещения на OY равна 5.

Извлекаем известные данные:

Для определения координаты точки В понадобятся формулы:

Выразим из них координаты конечного положения точки:

 

Точка В имеет координаты (5; 10).

Задание EF17612

Тело начинает двигаться из состояния покоя с ускорением 4 м/с2. Через 2 с его скорость будет равна…


Алгоритм решения

  1. Записать исходные данные в определенной системе отсчета.
  2. Записать формулу ускорения.
  3. Выразить из формулы ускорения скорость.
  4. Найти искомую величину.

Решение

Записываем исходные данные:

  • Тело начинает двигаться из состояния покоя. Поэтому его начальная скорость v0 = 0 м/с.
  • Ускорение, с которым тело начинает движение, равно: a = 4 м/с2.
  • Время движения согласно условию задачи равно: t = 2 c.

Записываем формулу ускорения:

Так как начальная скорость равна 0, эта формула принимает вид:

Отсюда скорость равна:

v = at

Подставляем имеющиеся данные и вычисляем:

v = 4∙2 = 8 (м/с)

Ответ: 8

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 38.9k

Добавить комментарий