Как найти константу в производной

Содержание:

  • Формула
  • Примеры вычисления производной константы

Формула

Производная константы равна нулю.

Напомним, что константой называется постоянная, неизменяющаяся величина. Примером констант есть, например, число 2, число
$Pi$ и т.д., и т.п.

Примеры вычисления производной константы

Пример

Задание. Найти производную функции $y(x)=e^2$

Решение. Так как выражение функции не зависит от переменой
$x$, то оно является константой, то есть заданная функция
принимает одно и тоже значение при различных значениях переменной, а тогда производная от нее равна нулю:

$$y^{prime}(x)=left(e^{2}right)^{prime}=0$$

Ответ. $y^{prime}(x)=0$

Пример

Задание. Вычислить производную функции $y(x)=x^{2}-ln 2$

Решение. Производная от разности функций равна разности производных:

$$y^{prime}(x)=left(x^{2}-ln 2right)^{prime}=left(x^{2}right)^{prime}-(ln 2)^{prime}$$

Производную от первого слагаемого берем как
производную от степенной функции, а второе слагаемое является константой (не зависит от
переменной $x$ ), а поэтому производная от него равна нулю:

$$y^{prime}(x)=2 cdot x^{2-1}-0=2 x^{1}=2 x$$

Ответ. $y^{prime}(x)=2 x$

Читать дальше: производная икс (x)’.

Производная константы всегда равна нулю . Постоянное правило гласит, что если f (x) = c, то f ‘(c) = 0, учитывая, что c является константой. В обозначениях Лейбница мы запишем это правило дифференцирования следующим образом:

d / dx (c) = 0

Постоянная функция – это функция, тогда как ее y не изменяется для переменной x. С точки зрения непрофессионала, постоянные функции – это функции, которые не двигаются. В основном это числа. Считайте константы переменной, возведенной в степень нуля. Например, постоянное число 5 может быть 5×0, а его производная по-прежнему равна нулю.

Производная постоянной функции – одно из самых простых и простых правил дифференциации, которое должны знать студенты. Это правило дифференциации, производное от правила мощности, которое служит кратчайшим путем к нахождению производной любой постоянной функции и обходу пределов решения. Правило дифференцирования постоянных функций и уравнений называется постоянным правилом.

Постоянное правило – это правило дифференцирования, которое имеет дело с постоянными функциями или уравнениями, даже если это π, число Эйлера, функции квадратного корня и многое другое. При построении графика постоянной функции результатом является горизонтальная линия. Горизонтальная линия предполагает постоянный наклон, что означает отсутствие скорости изменения и наклона. Это предполагает, что для любой заданной точки постоянной функции наклон всегда равен нулю.

Производная от константы

Джон Рэй Куэвас

Почему производная от постоянного нуля?

Вы когда-нибудь задумывались, почему производная константы равна 0?

Мы знаем, что dy / dx является производной функцией, и это также означает, что значения y меняются для значений x. Следовательно, y зависит от значений x. Производная означает предел отношения изменения в функции к соответствующему изменению в ее независимой переменной, когда последнее изменение приближается к нулю.

Константа остается постоянной независимо от любого изменения любой переменной в функции. Константа всегда является константой, и она не зависит от любых других значений, существующих в конкретном уравнении.

Производная константы происходит из определения производной.

f ′ (x) = lim h → 0 / h

f ′ (x) = lim h → 0 (c − c) / h

f ′ (x) = lim h → 0 0

f ′ (x) = 0

Чтобы дополнительно проиллюстрировать, что производная константы равна нулю, давайте нанесем константу на ось Y нашего графика. Это будет прямая горизонтальная линия, поскольку постоянное значение не меняется с изменением значения x на оси x. График постоянной функции f (x) = c – это горизонтальная линия y = c, наклон которой равен 0. Итак, первая производная f ‘(x) равна 0.

График производной константы

Джон Рэй Куэвас

Пример 1: Производная постоянного уравнения

Какая производная y = 4?

Ответ

Первая производная y = 4 равна y ‘= 0.

Пример 1: Производная постоянного уравнения

Джон Рэй Куэвас

Пример 2: Производная постоянного уравнения F (X)

Найти производную постоянной функции f (x) = 10.

Ответ

Первая производная постоянной функции f (x) = 10 равна f ‘(x) = 0.

Пример 2: Производная постоянного уравнения F (X)

Джон Рэй Куэвас

Пример 3: Производная постоянной функции T (X)

Какая производная постоянной функции t (x) = 1?

Ответ

Первая производная постоянной функции t (x) = 1 равна t ‘(x) = 1.

Пример 3: Производная постоянной функции T (X)

Джон Рэй Куэвас

Пример 4: Производная постоянной функции G (X)

Найти производную постоянной функции g (x) = 999.

Ответ

Первая производная постоянной функции g (x) = 999 по-прежнему равна g ‘(x) = 0.

Пример 4: Производная постоянной функции G (X)

Джон Рэй Куэвас

Пример 5: Производная от нуля

Найдите производную 0.

Ответ

Производная 0 всегда равна 0. Этот пример по-прежнему относится к производной константы.

Пример 5: Производная от нуля

Джон Рэй Куэвас

Пример 6: Производная от Пи

Какая производная от π?

Ответ

Значение π равно 3,14159. По-прежнему константа, поэтому производная π равна нулю.

Пример 6: Производная от Пи

Джон Рэй Куэвас

Пример 7: Производная дроби с постоянным числом Пи

Найти производную функции (3π + 5) / 10.

Ответ

Данная функция является сложной постоянной функцией. Следовательно, его первая производная по-прежнему равна 0.

Пример 7: Производная дроби с постоянным числом Пи

Джон Рэй Куэвас

Пример 8: Производная числа Эйлера “e”

Какая производная функции √ (10) / (e − 1)?

Ответ

Экспонента e – числовая константа, равная 2,71828. Технически данная функция все еще постоянна. Следовательно, первая производная постоянной функции равна нулю.

Пример 8: Производная числа Эйлера “e”

Джон Рэй Куэвас

Пример 9: Производная дроби

Какая производная от дроби 4/8?

Ответ

Производная 4/8 равна 0.

Пример 9: Производная дроби

Джон Рэй Куэвас

Пример 10: Производная отрицательной константы

Какая производная функции f (x) = -1099?

Ответ

Производная функции f (x) = -1099 равна 0.

Пример 10: Производная отрицательной константы

Джон Рэй Куэвас

Пример 11: производная от константы до степени

Найдите производную от e x.

Ответ

Обратите внимание, что e является константой и имеет числовое значение. Данная функция является постоянной функцией, возведенной в степень x. Согласно правилам для производных, производная e x совпадает с его функцией. Наклон функции e x постоянен, при этом для каждого значения x наклон равен каждому значению y. Следовательно, производная e x равна 0.

Пример 11: производная от константы до степени

Джон Рэй Куэвас

Пример 12: Производная константы в степени X

Какая производная 2 x ?

Ответ

Перепишите 2 в формат, содержащий число Эйлера e.

2 x = ( e ln (2)) x ln (2)

2 х = 2 х ln (2)

Следовательно, производная 2 x равна 2 x ln (2).

Пример 12: Производная константы в степени X

Джон Рэй Куэвас

Пример 13: Производная функции квадратного корня

Найдите производную y = √81.

Ответ

Данное уравнение является функцией квадратного корня √81. Помните, что квадратный корень – это число, умноженное на него, чтобы получить результат. В данном случае √81 равно 9. Полученное число 9 называется квадратом квадратного корня.

Согласно правилу констант, производная целого числа равна нулю. Следовательно, f ‘(√81) равно 0.

Пример 13: Производная функции квадратного корня

Джон Рэй Куэвас

Пример 14: Производная тригонометрической функции

Извлеките производную тригонометрического уравнения y = sin (75 °).

Ответ

Тригонометрическое уравнение sin (75 °) представляет собой форму sin (x), где x – это любая величина угла в градусах или радианах. Если получить числовое значение sin (75 °), получится 0,969. Учитывая, что sin (75 °) равен 0,969. Следовательно, его производная равна нулю.

Пример 14: Производная тригонометрической функции

Джон Рэй Куэвас

Пример 15: Производная суммирования

Учитывая суммирование ∑ x = 1 10 (x 2)

Ответ

Данное суммирование имеет числовое значение, равное 385. Таким образом, данное уравнение суммирования является константой. Поскольку это константа, y ‘= 0.

Пример 15: Производная суммирования

Джон Рэй Куэвас

Изучите другие статьи по исчислению

  • Решение проблем связанных ставок в исчислении

    Научитесь решать различные виды задач связанных ставок в исчислении. Эта статья представляет собой полное руководство, которое показывает пошаговую процедуру решения проблем, связанных со связанными / связанными ставками.

  • Предельные законы и оценка пределов

    Эта статья поможет вам научиться оценивать пределы, решая различные задачи в исчислении, которые требуют применения предельных законов.

© 2020 Луч

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная – одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Геометрический и физический смысл производной

Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

производная объяснение для чайников

Иначе это можно записать так:

высшая математика для чайников производные

Какой смысл в нахождении такого предела? А вот какой:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Геометрический смысл производной

 

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:

смысл производной

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

производная для чайников в практическом применении

Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.

Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:

производная для чайников в практическом применении

Нам нужно найти скорость в момент времени t=2c. Вычислим производную:

производная для чайников в практическом применении

Правила нахождения производных

Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.

Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.

Таблица производных

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того – это нужно делать. При решении примеров по математике возьмите за правило – если можете упростить выражение, обязательно упрощайте.

Пример. Вычислим производную:

найти производную функции для чайников

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

как найти производную для чайников

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

как найти производную для чайников

Решение:

как найти производную для чайников

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

как считать производные для чайников

Пример: найти производную функции:

как считать производные для чайников

Решение:Производная сложной функции

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

производная сложной функции для чайников

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

производная определение для чайников

Пример:

производная определение для чайников

Решение:

производная определение для чайников

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Если вы ничего не смыслите в том, что такое производная и какими методами можно её вычислить, то совершенно невозможно решать примеры по математике или задачи по физике. Ведь такое понятие, как производная, является одним из самых важных в математическом анализе.

В этой статье мы расскажем вам, что является производной, какой она имеет геометрический и физический смысл. В общем, мы с вами попытаемся понять производную.

как найти производную онлайн?
как найти производную онлайн?

Геометрический и физический смысл производной

Задаём функцию f(x) в интервале (a, b). А точки x и x0 этому интервалу принадлежат. Если изменится x, то и функция тоже изменится. Изменением аргумента является разность его значений x-x0. Записывается эта разность, как дельта икс и имеет название: приращение аргумента. Разность значений функций в двух точках называется приращением или изменением функции. Так каково определение производной?

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Решение производной простыми словами: определение, как найти, примеры решений

Можно записать ещё следующим образом:

Решение производной простыми словами: определение, как найти, примеры решений

Встаёт вопрос, для чего нужно находить такой предел? Вот и ответ:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Решение производной простыми словами: определение, как найти, примеры решений

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Ещё в школе нас учили тому, что скорость – это частное пути x=f(t) и времени (t). Вычисляем среднюю скорость за какой-то временной промежуток:

Решение производной простыми словами: определение, как найти, примеры решений

Для того чтобы нам узнать какова скорость движения в момент t0, необходимо вычислить предел:

Решение производной простыми словами: определение, как найти, примеры решений

Сейчас мы разберем один пример, который продемонстрирует вам применение производной на практике. Допустим, тело движется по закону:

Решение производной простыми словами: определение, как найти, примеры решений

Нам необходимо рассчитать скорость в момент времени t=2c. Вычисляем производную:

Решение производной простыми словами: определение, как найти, примеры решений

Правила нахождения производных

Дифференцирование – это процесс нахождения производной. А дифференцируемая функция – это функция, которая имеет производную в данной точке.

Каким образом нам найти саму производную? Нам необходимо составить отношения приращения функции и аргумента, а после вычислить предел при условии стремящегося к нулю приращения аргумента. Но практика показывает, что такой путь вычисления является очень долгим. Всё, что нам необходимо, уже посчитано. И специально для вас, мы подготовили таблицу с производными элементарных функций.

После таблицы мы рассмотрим правила по вычисления производных. Коснёмся мы и вычисления производных сложных функций. Подробно разберём всё на примерах.

Решение производной простыми словами: определение, как найти, примеры решений

Правило первое: выносим константу

Вынести константы можно за знак производной. Причём делать это необходимо! Когда вы решаете примеры по математике, то всегда помните правило – если есть возможность упростить выражение, то делайте это.

Для примера вычислил с вами производную:

Решение производной простыми словами: определение, как найти, примеры решений

Правило второе: производная суммы функций

Производная суммы двух функций равняется сумме производных этих функций. Это касается и производной разности функций.

Решение производной простыми словами: определение, как найти, примеры решений

Сейчас мы с вами на практике рассмотрим пример доказательства этой теоремы.

Найти производную функции:

Решение производной простыми словами: определение, как найти, примеры решений

Решение:

Решение производной простыми словами: определение, как найти, примеры решений

Правило третье: производная произведения функций

По следующей формуле мы сможем вычислить производную произведения двух дифференцируемых функций:

Решение производной простыми словами: определение, как найти, примеры решений

К примеру: необходимо найти производную функции:

Решение производной простыми словами: определение, как найти, примеры решений

Решение:

Решение производной простыми словами: определение, как найти, примеры решений

Необходимо сказать о том, каким образом вычисляются производные сложных функций.

Производная сложной функции равняется произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В примере, который указан выше, мы можем встретить выражение:

Решение производной простыми словами: определение, как найти, примеры решений

В этом примере промежуточным аргументом является 8x в пятой степени. Чтобы нам вычислить производную данного выражения, то для начала необходимо высчитать производную внешней функции по промежуточному аргументу, а после необходимо умножить на производную непосредственно сам промежуточный аргумент по независимой переменной.

Правило четвертое: производная частного двух функций

Ниже приведена формула для того, чтобы определить производную от частного двух функций:

Решение производной простыми словами: определение, как найти, примеры решений

Пример:

Решение производной простыми словами: определение, как найти, примеры решений

Решение:

Решение производной простыми словами: определение, как найти, примеры решений

В данной статье мы попытались рассказать о производных для тех, кто совершенно не знаком с этой темой. Когда вы будете решать примеры, то будьте очень внимательны, ведь в них часто можно встретить ловушки. Эта тема не так уж и проста, какой кажется на первый взгляд.

Вы можете обратиться в наш студенческий сервис по любым вопросам. Мы с удовольствием поможем решить для вас задачи любой сложности. А занимались вы раньше вычислением производных или нет, не имеет никакого значения. Мы помогаем всем!

Приведем сводную таблицу для удобства и наглядности при изучении темы.

Константа y=C

(C)’=0

Степенная функция y=xp

(xp)’=p·xp-1

Показательная функция y=ax

(ax)’=ax·ln a

В частности, при a=e имеем y=ex

(ex)’=ex

Логарифмическая функция

(logax)’=1x·ln a

В частности, при a=e имеем y=ln x

(ln x)’=1x

Тригонометрические функции

(sin x)’=cos x(cos x)’=-sin x(tgx)’=1cos2x(ctgx)’=-1sin2x

Обратные тригонометрические функции

(arcsin x)’=11-x2(arccos x)’=-11-x2(arctg x)’=11+x2(arcctg x)’=-11+x2

Гиперболические функции

(shx)’=chx(chx)’=shx(thx)’=1ch2x(cthx)’=-1sh2x

Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.

Производная постоянной

Доказательство 1

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x0=x, где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f(x)=C. Составим запись предела отношения приращения функции к приращению аргумента при ∆x→0:

lim∆x→0∆f(x)∆x=lim∆x→0C-C∆x=lim∆x→00∆x=0

Обратите внимание, что под знак предела попадает выражение 0∆x. Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.

Итак, производная постоянной функции f(x)=C равна нулю на всей области определения.

Пример 1

Даны постоянные функции:

f1(x)=3,f2(x)=a, a∈R,f3(x)=4.13722,f4(x)=0,f5(x)=-87

Необходимо найти их производные.

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3. В следующем примере необходимо брать производную от а, где а – любое действительное число. Третий пример задает нам производную иррационального числа 4.13722, четвертый – производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби -87.

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f1′(x)=(3)’=0,f2′(x)=(a)’=0, a∈R,f3′(x)=4.13722’=0,f4′(x)=0’=0,f5′(x)=-87’=0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: (xp)’=p·xp-1, где показатель степени p является любым действительным числом.

Доказательство 2

Приведем доказательство формулы, когда показатель степени – натуральное число: p=1, 2, 3, …

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

(xp)’=lim∆x→0=∆(xp)∆x=lim∆x→0(x+∆x)p-xp∆x

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

(x+∆x)p-xp=Cp0+xp+Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…++Cpp-1·x·(∆x)p-1+Cpp·(∆x)p-xp==Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…+Cpp-1·x·(∆x)p-1+Cpp·(∆x)p

Таким образом:

(xp)’=lim∆x→0∆(xp)∆x=lim∆x→0(x+∆x)p-xp∆x==lim∆x→0(Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…+Cpp-1·x·(∆x)p-1+Cpp·(∆x)p)∆x==lim∆x→0(Cp1·xp-1+Cp2·xp-2·∆x+…+Cpp-1·x·(∆x)p-2+Cpp·(∆x)p-1)==Cp1·xp-1+0+0+…+0=p!1!·(p-1)!·xp-1=p·xp-1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Доказательство 3

Чтобы привести доказательство для случая, когда p – любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x>0. Тогда: xp>0. Логарифмируем равенство y=xp по основанию e и применим свойство логарифма:

y=xpln y=ln xpln y=p·ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

(ln y)’=(p·ln x)1y·y’=p·1x⇒y’=p·yx=p·xpx=p·xp-1

Теперь рассматриваем случай, когда x – отрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x<0, причем является четной: y(x)=-y((-x)p)’=-p·(-x)p-1·(-x)’==p·(-x)p-1=p·xp-1

Тогда xp<0 и возможно составить доказательство, используя логарифмическую производную.

Если p есть нечетное число, тогда степенная функция определена и при x<0, причем является нечетной: y(x)=-y(-x)=-(-x)p. Тогда xp<0, а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y'(x)=(-(-x)p)’=-((-x)p)’=-p·(-x)p-1·(-x)’==p·(-x)p-1=p·xp-1

Последний переход возможен в силу того, что если p – нечетное число, то p-1 либо четное число, либо нуль (при p=1), поэтому, при отрицательных x верно равенство (-x)p-1=xp-1.

Итак, мы доказали формулу производной степенной функции при любом действительном p.

Пример 2

Даны функции:

f1(x)=1×23,f2(x)=x2-14,f3(x)=1xlog712

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y=xp, опираясь на свойства степени, а затем используем формулу:

f1(x)=1×23=x-23⇒f1′(x)=-23·x-23-1=-23·x-53f2′(x)=x2-14=2-14·x2-14-1=2-14·x2-54f3(x)=1xlog712=x-log712⇒f3′(x)=-log712·x-log712-1=-log712·x-log712-log77=-log712·x-log784

Производная показательной функции

Доказательство 4

Выведем формулу производной, взяв за основу определение:

(ax)’=lim∆x→0ax+∆x-ax∆x=lim∆x→0ax(a∆x-1)∆x=ax·lim∆x→0a∆x-1∆x=00

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z=a∆x-1 (z→0 при ∆x→0). В таком случае a∆x=z+1⇒∆x=loga(z+1)=ln(z+1)ln a. Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

(ax)’=ax·lim∆x→0a∆x-1∆x=ax·ln a·lim∆x→011z·ln(z+1)==ax·ln a·lim∆x→01ln(z+1)1z=ax·ln a·1lnlim∆x→0(z+1)1z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

(ax)’=ax·ln a·1lnlimz→0(z+1)1z=ax·ln a·1ln e=ax·ln a

Пример 3

Даны показательные функции:

f1(x)=23x,f2(x)=53x,f3(x)=1(e)x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f1′(x)=23x’=23x·ln23=23x·(ln 2-ln 3)f2′(x)=53x’=53x·ln 513=13·53x·ln 5f3′(x)=1(e)x’=1ex’=1ex·ln1e=1ex·ln e-1=-1ex

Производная логарифмической функции

Доказательство 5

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

(logax)’=lim∆x→0loga(x+∆x)-logax∆x=lim∆x→0logax+∆xx∆x==lim∆x→01∆x·loga1+∆xx=lim∆x→0loga1+∆xx1∆x==lim∆x→0loga1+∆xx1∆x·xx=lim∆x→01x·loga1+∆xxx∆x==1x·logalim∆x→01+∆xxx∆x=1x·logae=1x·ln eln a=1x·ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim∆x→01+∆xxx∆x=e является верным в соответствии со вторым замечательным пределом.

Пример 4

Заданы логарифмические функции:

f1(x)=logln3 x,f2(x)=ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f1′(x)=(logln3 x)’=1x·ln(ln 3);f2′(x)=(ln x)’=1x·ln e=1x

Итак, производная натурального логарифма есть единица, деленная на x.

Производные тригонометрических функций

Доказательство 6

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

(sin x)’=lim∆x→0sin (x+∆x)-sin x∆x

Формула разности синусов позволит нам произвести следующие действия:

(sin x)’=lim∆x→0sin (x+∆x)-sin x∆x==lim∆x→02·sin x+∆x-x2·cosx+∆x+x2∆x==lim∆x→0sin ∆x2·cosx+∆x2∆x2==cosx+02·lim∆x→0sin ∆x2∆x2

Наконец, используем первый замечательный предел:

sin’ x=cos x+02·lim∆x→0sin∆x2∆x2=cos x

Итак, производной функции sin x будет cos x.

Совершенно также докажем формулу производной косинуса:

cos’ x=lim∆x→0cos (x+∆x)-cos x∆x==lim∆x→0-2·sin x+∆x-x2·sinx+∆x+x2∆x==-lim∆x→0sin∆x2·sinx+∆x2∆x2==-sinx+02·lim∆x→0sin∆x2∆x2=-sin x

Т.е. производной функции cos x будет –sin x.

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

tg’x=sin xcos x’=sin’ x·cos x-sin x·cos’ xcos2 x==cos x·cos x-sin x·(-sin x)cos2 x=sin2 x+cos2 xcos2 x=1cos2 xctg’x=cos xsin x’=cos’x·sin x-cos x·sin’xsin2 x==-sin x·sin x-cos x·cos xsin2 x=-sin2 x+cos2 xsin2 x=-1sin2 x

Производные обратных тригонометрических функций

Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.

Производные гиперболических функций

Доказательство 7

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

sh’x=ex-e-x2’=12ex’-e-x’==12ex–e-x=ex+e-x2=chxch’x=ex+e-x2’=12ex’+e-x’==12ex+-e-x=ex-e-x2=shxth’x=shxchx’=sh’x·chx-shx·ch’xch2x=ch2x-sh2xch2x=1ch2xcth’x=chxshx’=ch’x·shx-chx·sh’xsh2x=sh2x-ch2xsh2x=-1sh2x

Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Добавить комментарий