Как найти координатную плоскость xoy

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат Oxyz в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x, y, и z, которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Теорема 1

Любую плоскость, заданную в прямоугольной системе координат Oxyz трехмерного пространства, можно определить уравнением Ax + By + Cz + D = 0. В свою очередь, любое уравнение Ax + By + Cz + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A, B, C, D – некоторые действительные числа, и числа A, B, C не равны одновременно нулю.

Доказательство 

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида Ax + By + Cz + D = 0. Допустим, задана некоторая плоскость и точка M0(x0, y0, z0), через которую эта плоскость проходит. Нормальным вектором этой плоскости является n→= (A, B, C). Приведем доказательство, что указанную плоскость в прямоугольной системе координат Oxyz задает уравнение Ax + By + Cz + D = 0.

Возьмем произвольную точку заданной плоскости M(x, y, z).В таком случае векторы n→= (A, B, C) и M0M→=(x-x0, y-y0, z-z0) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n→, M0M→=Ax-x0+B(y-y0)+C(z-z0)=Ax+By+Cz-(Ax0+By0+Cz0)

Примем D=-(Ax0+By0+Cz0) , тогда уравнение преобразуется в следующий вид: Ax + By + Cz + D = 0. Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида Ax + By + Cz + D = 0 задает некоторую плоскость в прямоугольной системе координат Oxyz трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А, B, C одновременно не являются равными нулю. Тогда существует некоторая точка M0(x0, y0, z0), координаты которой отвечают уравнению Ax + By + Cz + D = 0, т.е. верным будет равенство Ax0 + By0 + Cz0 + D = 0. Отнимем левую и правую части этого равенства от левой и правой частей уравнения Ax + By + Cz + D = 0. Получим уравнение вида

A(x-x0) + B(y-y0) + C(z-z0) + D = 0, и оно эквивалентно уравнению Ax + By + Cz + D = 0. Докажем, что уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 задает некоторую плоскость.

Уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n→=(A, B, C) и M0M→=x-x0, y-y0, z-z0. Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A(x-x0) + B(y-y0) + C(z-z0) + D = 0 множество точек M(x, y, z) задает плоскость, у которой нормальный вектор n→=(A, B, C). При этом плоскость проходит через точку M(x0, y0, z0). Иначе говоря, уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 задает в прямоугольной системе координат Oxyz трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение Ax + By + Cz + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Общее уравнение плоскости: основные сведения

Уравнение вида Ax + By + Cz + D = 0 называют общим уравнением плоскости в прямоугольной системе координат Oxyz трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ·Ax+λ·By+λ·Cz+λ·D=0, где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением Ax+By+Cz+D=0, поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x-2·y+3·z-7=0 и -2·x+4·y-23·z+14=0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства. 

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида Ax+By+Cz+D=0( при конкретных значениях чисел A, B, C, D). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4x + 5y – 5z + 20 = 0, и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4x + 5y – 5z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Общее уравнение плоскости: основные сведения

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M0(x0, y0, z0) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением Ax+By+Cz+D=0 в том случае, когда подставив координаты точки M0(x0, y0, z0) в уравнение Ax+By+Cz+D=0, мы получим тождество.

Пример 1

 Заданы точки M0(1, -1, -3) и N0(0, 2, -8) и плоскость, определяемая уравнением 2x+3y-z-2=0. Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

Решение 

Подставим координаты точки М0 в исходной уравнение плоскости:

2·1+3·(-1)-(-3)-2=0⇔0=0

Мы видим, что получено верное равенство, значит точка M0(1, -1, -3) принадлежит заданной плоскости.

 Аналогично проверим точку N0. Подставим ее координаты в исходное уравнение:

2·0+3·2-(-8)-2=0⇔12=0

Равенство неверно. Таким, образом, точка N0(0, 2, -8) не принадлежит заданной плоскости.

Ответ: точка М0 принадлежит заданной плоскости; точка N0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n→=(A, B, C) – нормальный вектор для плоскости, определяемой уравнением  Ax+By+Cz+D=0. Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

Пример 2

В прямоугольной системе координат задана плоскость 2x+3y-z+5=0. Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x, y, z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n→ исходной плоскости имеет координаты 2, 3, -1 . В свою очередь, множество нормальных векторов запишем так:

λ·n→=λ·2, λ·3, -λ, λ∈R, λ≠0

Ответ:  λ·2, λ·3, -λ, λ∈R, λ≠0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n→=(A, B, C)является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M0(x0, y0, z0), принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором  n→=(A, B, C) будет выглядеть так:  Ax+By+Cz+D=0. По условию задачи точка M0(x0, y0, z0) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство:Ax0+By0+Cz0+D=0

Вычитая соответственно правые и левые части исходного уравнения и уравнения Ax0+By0+Cz0+D=0, получим уравнение вида A(x-x0)+B(y-y0)+C(z-z0)=0. Оно и будет уравнением плоскости, проходящей через точку M0(x0, y0, z0) и имеющей нормальный вектор n→=(A, B, C).

Возможно получить это уравнение другим способом.

Очевидным фактом является то, что все точки М (x, y, z) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n→=(A, B, C) и M0M→=(x-x0, y-y0, z-z0) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:

n→, M0M→=A(x-x0)+B(y-y0)+C(z-z0)=0

Пример 3

Задана точка М0(-1, 2, -3), через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n→=(3, 7, -5). Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x0=-1, y0=2, z0=-3, A=3, B=7, C=-5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A(x-x0)+B(y-y0)+C(z-z0)=0 

И получим:

3(x-(-1))+7(y-2)-5(z-(-3))=0⇔3x+7y-5z-26=0

  1. Допустим, М (x, y, z) – некоторая точки заданной плоскости. Определим координаты вектора M0M→ по координатам точек начала и конца:

M0M→=(x-x0, y-y0, z-z0)=(x+1, y-2, z+3)

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

n→, M0M→=0⇔3(x+1)+7(y-2)-5(z+3)=0⇔⇔3x+7y-5z-26=0

Ответ: 3x+7y-5z-26=0

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А, B, C, D отличны от нуля, общее уравнение плоскости Ax+By+Cz+D=0 называют полным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0, мы получаем общее неполное уравнение плоскости: Ax+By+Cz+D=0⇔Ax+By+Cz=0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О (0, 0, 0), то придем к тождеству:

A·0+B·0+C·0=0⇔0≡0

Неполное общее уравнение плоскости

  1. Если А = 0, В ≠ 0, С ≠ 0, или А ≠ 0, В = 0, С ≠0, или А ≠ 0, В ≠ 0, С = 0, то общие уравнения плоскостей имеют вид соответственно: By+Cz+D=0, или Ax+Cz+D=0, или Ax+By+D=0. Такие плоскости параллельны координатным осям Оx, Oy, Oz соответственно. Когда D=0, плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей By+Cz+D=0, Ax+Cz+D=0 и Ax+By+D=0 задают плоскости, которые перпендикулярны плоскостям Oyz, Oxz, Ozy соответственно.

Неполное общее уравнение плоскости

  1. При А=0, В=0, С≠0, или А=0, В≠0, С=0, или А≠0, В=0, С=0 получим общие неполные уравнения плоскостей: Cz+D=0 ⇔z+DC=0⇔z=-DC⇔z=λ, λ∈R или By+D=0⇔y+DB=0⇔y=-DB⇔y=λ, λ∈R или Ax+D=0⇔x+DA=0⇔x=-DA⇔x=λ, λ∈R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям Oxy, Oxz, Oyz соответственно и проходят через точки 0, 0, -DC, 0, -DB, 0 и -DA, 0, 0 соответственно. При D=0 уравнения самих координатных плоскостей Oxy, Oxz, Oyz выглядят так: z=0, y=0, x=0

соответственно.

Неполное общее уравнение плоскости

Пример 4

Задана плоскость, параллельная координатной плоскости Oyz и проходящая через точку М0(7, -2, 3). Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости Oyz, а, следовательно, может быть задана общим неполным уравнением плоскости Ax+D=0, A≠0⇔x+DA=0. Поскольку точка M0(7, -2, 3) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости  x+DA=0, иначе говоря, должно быть верным равенство  7+DA=0 . Преобразуем: DA=-7, тогда требуемое уравнение  имеет вид: x-7=0.

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости Oyz. Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости Oyz: i→=(1, 0, 0). Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:                              

A(x-x0)+B(y-y0)+C(z-z0)=0⇔⇔1·(x-7)+0·(y+2)+0·(z-3)=0⇔⇔x-7=0

Ответ: x-7=0

Пример 5

Задана плоскость, перпендикулярная плоскости Oxy и проходящая через начало координат и точку М0(-3, 1, 2).

Решение 

Плоскость, которая перпендикулярна координатной плоскости Oxy определяется общим неполным уравнением плоскости Ax+By+D=0 (А≠0, В≠0). Условием задачи дано, что плоскость проходит через начало координат, тогда D=0 и уравнение плоскости принимает вид Ax+By=0⇔x+BAy=0.

Найдем значение BA. В исходных данных фигурирует точка М0(-3, 1, 2), координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: -3+BA·1=0, откуда определяем BA=3.

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x+3y=0.

Ответ: x+3y=0.

Раскрывая скобки и обозначая свободный член – Ax0 – By0 – Cz0 = D, получим общее уравнение плоскости В пространстве R3:

Ax+By+Cz+D=0, A2+B2+C2>0. (4)

Итак, линейное относительно текущих координат x, y,z уравнение (4) определяет плоскость в пространстве (причем, =(A, B,C) ее нормаль). Можно показать, что верно и обратное утверждение: всякое линейное уравнение (4) в пространстве R3 определяет некоторую плоскость.

Пример. Написать уравнения координатных плоскостей.

Для того, чтобы написать уравнение любой плоскости надо знать координаты какой-нибудь точки на плоскости и какой-нибудь вектор, перпендикулярный плоскости.

В нашем примере все координатные плоскости проходят через точку M0(0,0,0) – начало координат.

А в качестве нормалей к координатным плоскостям можно взять соответственно базисные векторы .

Плоскость XOY: М0(0,0,0), (0,0,1)=(A, B,C).

0(x – 0) + 0(y – 0) + 1(z – 0)=0

Уравнение плоскости XOY: z=0.

Плоскость YOZ: M0(0,0,0), :

Уравнение плоскости YOZ: x=0.

Плоскость XOZ: M0(0,0,0), :

Уравнение плоскости XOZ: y=0.

Заметим, что в нашем примере в уравнениях координатных плоскостей отсутствуют два члена с текущими координатами (какие-либо два из коэффициентов A, B,C равны нулю).

Уравнение плоскости (4), в котором хотя бы один из коэффициентов A, B,C или D равен нулю, называют Неполным уравнением плоскости. В этих случаях плоскость либо параллельна одной из координатных осей (один из коэффициентов A, B,C равен нулю, или, что то же, вектор нормали ортогонален одной из координатных осей); либо плоскость (4) параллельна одной из координатных плоскостей (два из коэффициентов A, B,C равны нулю, параллелен какой-нибудь координатной оси); если же коэффициент D уравнения (4) равен нулю, т. е. точка (0,0,0) удовлетворяет уравнению плоскости, плоскость проходит через начало координат.

< Предыдущая   Следующая >

Общее уравнение плоскости

В данной статье мы рассмотрим общее уравнение плоскости в пространстве. Определим понятия полного и неполного уравнения плоскости. Для построения общего уравнения плоскости пользуйтесь калькулятором уравнение плоскости онлайн.

Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:

где A, B, C, D − некоторые постоянные, причем хотя бы один из элементов A , B и C отлично от нуля.

Мы покажем, что линейное уравнение (1) в пространстве определяет плоскость и любой плоскость в пространстве можно представить линейным уравнением (1). Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением (1). Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.

Доказательство. Достаточно доказать, что плоскость α определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть в пространстве задана плоскость α. Выберем оси Ox и Oy так, чтобы они располагались на плоскости α, а ось Oz направим перпендикулярно к этой плоскости. Тогда линейное уравнение z=0 будет уравнением плоскости, т.к. координаты любой точки, принадлежащей этой плоскости удовлетворяют уравнению z=0, а координаты любой точки, не лежащей на этой плоскости − нет. Первая часть теоремы доказана.

Пусть фиксирована произвольная декартова прямоугольная система координат Oxyz. Рассмотрим линейное уравнение (1), где хотя бы один из элементов A , B и C отлично от нуля. Тогда уравнение (1) имеет хотя бы одно решение x0, y0, z0. Действительно. Пусть из коэффициентов A≠0. Возьмем произвольные числа y0, z0. Тогда

Таким образом, существует точка M0(x0, y0, z0), координаты которой удовлетворяют уравнению (1):

Вычитая из уравнения (1) тождество (2), получим

которая эквивалентна уравнению (1).

Покажем, что (3) определяет некоторую плоскость, проходящую через точку M0(x0, y0, z0) и перпендикулярную вектору n={A,B,C} (n≠0, так как хотя бы один из чисел A,B,C отлично от нуля).

Если точка M0(x0, y0, z0) принадлежит плоскости α, то ее координаты удовлетворяют уравнению (3), т.к. векторы n={A,B,C} и перпендикулярны (Рис.1) и их скалярное произведение равно нулю:

Если же точка M(x, y, z) не лежит на плоскости α, то векторы n={A,B,C} и не ортогональны. Тогда их скалярное произведение не равно нулю, т.е. координаты точки M(x, y, z) не удовлетворяют условию (3). Теорема доказана.

Одновременно с доказательством теоремы 1 мы получили следующее утверждение.

Утверждение 1. В декартовой прямоугольной системе координат вектор с компонентами (A,B,C) перпендикулярен плоскости Ax+By+Cz+D=0.

Вектор n=(A,B,C) называется нормальным вектором плоскости, определяемой линейным уравнением (1).

Утверждение 2. Если два общих уравнения плоскости

и

определяют одну и ту же плоскость, то найдется такое число λ, что выпонены равенства

Доказательство. Так как уравнения (4) и (5) определяют одну и ту же плоскость, то нормальные векторы n1={A1,B1,С1} и n2={A2,B2, С2} коллинеарны. Так как векторы n1≠0, n2≠0, то существует такое число λ, что n2=n1λ. Отсюда имеем: A2=A1λ, B2=B1λ, С2=С1λ. Докажем, что D2=D1λ. Очевидно, что совпадающие плоскости имеют общую точку M0(x0, y0, z0), так что

и

Умножая уравнение (7) на λ и вычитая из него уравнение (8) получим:

Так как выполнены первые три равенства из выражений (6), то D1λD2=0. Т.е. D2=D1λ. Утверждение доказано.

Неполные уравнения плоскости

Определение 1. Общее уравнение плоскости (1) называется полным, если все коэффициенты A, B, C, D отличны от нуля. Если же хотя бы один из коэффициентов A, B, C, D равен нулю, то общее уравнение плоскости называется неполным.

Рассмотрим все возможные варианты неполных уравнений плоскости:

При D=0, имеем уравнение плоскости Ax+By+Cz=0, проходящей через начало координат (Рис.2). Действительно, точка O(0,0,0) удовлетворяет этой системы линейных уравнений.

При A=0, имеем уравнение плоскости By+Cz+D=0, которая параллельна оси Ox (Рис.3). В этом случае нормальный вектор плоскости n={0,B,C} лежит на координатной плоскости Oyz.

При B=0, имеем уравнение плоскости Ax+Cz+D=0, которая параллельна оси Oy (Рис.4).

При C=0, имеем уравнение плоскости Ax+By+D=0, которая параллельна оси Oz (Рис.5).

При A=0,B=0 имеем уравнение плоскости Cz+D=0, которая параллельна координатной плоскости Oxy (Рис.6).

При B=0,C=0 имеем уравнение плоскости Ax+D=0, которая параллельна координатной плоскости Oyz (Рис.7).

При A=0,C=0 имеем уравнение плоскости By+D=0, которая параллельна координатной плоскости Oxz (Рис.8).

При A=0,B=0,D=0 имеем уравнение плоскости Cz=0, которая совпадает с координатной плоскостью Oxy (Рис.9).

При B=0,C=0,D=0 имеем уравнение плоскости Ax=0, которая совпадает с координатной плоскостью Oyz (Рис.10).

При A=0,C=0,D=0 имеем уравнение плоскости By=0, которая совпадает с координатной плоскостью Oxz (Рис.11).

Рассмотрим примеры построения общего уравнения плоскости.

Пример 1. Построить общее уравнение плоскости, проходящей через точку M(4,−1,2) параллельной координатной плоскости Oxy.

Решение. Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя координаты точки M в (3), получим:

Так как плоскость параллельна координатной плоскости Oxy, то направляющий вектор имеет следующий вид n={A,B,C}={0,0,1}, т.е. A=0, B=0, C=1.

Подставляя коэффициенты A,B,C в (9), получим:

или

Ответ:

Пример 2. Построить общее уравнение плоскости, проходящей через начало координат и имеющий нормальный вектор n=={2,3,1}.

Решение. Начало координат имеет коэффициенты (0,0,0). Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя коэффициенты начальной точки в (3), получим:

Так как плоскость имеет нормальный вектор n={A,B,C}={2,3,1}, т.е. A=2, B=3, C=1, подставляя коэффициенты A,B,C в (10), получим:

или

Ответ:

Онлайн калькулятор для построения общего уравнения плоскости находится здесь. Там же вы найдете примеры построения общего уравнения плоскости, если известны три точки этой плоскости или если известна одна точка и нормальный вектор этой плоскости.

2.4.1.
Общее уравнение плоскости.

2.4.1.1.
Определение. Вектор,
перпендикулярный к плоскости, называется
ее нормальным
вектором.

2.4.1.2. Теорема.
(Общее уравнение плоскости).

Вдекартовой прямоугольной системе
координат плоскость задается уравнением
первой степени.

Доказательство:

Пусть в пространстве
задан ненулевой вектор ,перпендикулярный
плоскостии точка
,
принадлежащая плоскости. Очевидно,
произвольная точка пространствапринадлежит плоскости при условии, что
вектор
ортогонален вектору
.
Таким образом, получаем уравнение

.

(скалярное произведение
ортогональных векторов равно нулю).

В координатном виде это
уравнение имеет вид

Преобразуем это уравнение:
Обозначая,
получим

2.4.1.3.
Определение. Уравнение
вида

(2.6)

называется уравнением
плоскости, проходящей через точку


и имеющей нормальный вектор

.

2.4.1.4.
Определение. Уравнение
вида

(2.7)

называется общим
уравнением плоскости
.

2.4.1.5. Связка
плоскостей.

Связкой плоскостей
называют совокупность плоскостей,
проходящих через одну точку. Очевидно,
уравнение
при произвольных (не равных нулю
одновременно) коэффициентахА,В,С есть уравнение
связки плоскостей
,
проходящих через точку
.

2.4.1.6.
Определение.
Поверхность в пространстве, которая в
декартовой прямоугольной системе
координат задается уравнением первой
степени, называется поверхностью
первого порядка
.

2.4.1.7. Теорема.
(О поверхностях первого порядка в
пространстве).

Поверхностями первого
порядка в пространстве являются
плоскости, и только они.

Доказательство:

Поскольку мы уже доказали
в теореме 2.4.1.2, что плоскость можно
задать уравнением первого порядка,
осталось доказать, что уравнение
при условии
задает плоскость.

Пусть
– некоторое решение
уравнения (2.7). Тогда при подстановке
его в уравнение мы получим тождество:

.

Вычтем полученное
равенство из уравнения (2.7), получим

,

то есть уравнение
плоскости, проходящей через точку
с нормальным вектором
.

Таким образом, доказано,
что всякое уравнение вида (2.7) при условии
задает плоскость и что
всякая плоскость в пространстве может
быть задана уравнением вида (2.7).

2.4.1.8. Частные
случаи общего уравнения плоскости.

1.

плоскость, параллельная оси абсцисс;

2.

плоскость, параллельная оси ординат;

3.

плоскость, параллельная оси аппликат;

4.

плоскость, проходящая через начало
координат;

5.

плоскость, параллельная координатной
плоскости XOY;

6.

плоскость, параллельная координатной
плоскости XOZ;

7.

плоскость, параллельная координатной
плоскости YOZ;

8.

координатная плоскость XOY;

9.

координатная плоскость XOZ;

10.

координатная плоскость YOZ;

2.4.2.
Угол между плоскостями.

Пусть даны две плоскости

с нормальным вектором

и
с нормальным вектором.
Очевидно, косинус угла между плоскостями
равен косинусу угла между нормальными
векторами, поэтому

. (2.8)

Замечание
1.

Если требуется определить
острый угол между плоскостями, то

.

Замечание
2.

Из формулы угла между
плоскостями следуют условия
параллельности и перпендикулярности
плоскостей
.

1. Если плоскости
параллельны
и,
то их нормальные векторы коллинеарны,
то есть их координаты пропорциональны:

.

Если же выполняются
равенства
,
то уравненияиопределяют одну и ту же плоскость.

2. Если плоскости
перпендикулярны,
то их нормальные векторы ортогональны,
то есть их скалярное произведение равно
нулю

.

2.4.3
Расстояние от точки до плоскости.

Пусть плоскость π
задана уравнением
,– произвольная точка пространства. Для
любой точки,
лежащей на плоскости, расстояниеd
от точки

до плоскости π
равно абсолютной величине проекции
вектора
на нормальный вектор.

Вектор
,
следовательно

Так как из принадлежности
точки

плоскости π
следует, что
,
т.е.,
то

. (2.9)

2.4.4. Уравнение
плоскости, проходящей через три заданные
точки.

Пусть
даны три точки,и,
не лежащие на одной прямой (т.е. векторыине коллинеарны). Введем в задачу точку– текущую точку плоскости. Векторы,илежат в одной плоскости, т.е. компланарны,
следовательно, их смешанное произведение
равно нулю:,
или, в координатной форме,

. (2.10)

Уравнении вида (2.10)
называется уравнением
плоскости, проходящей через три данные
точки
.

2.4.5. Уравнение
плоскости в отрезках.

Рассмотрим плоскость,
не проходящую через начало координат
и заданную своим общим уравнением
.
Представим данное уравнение в виде

.

Обозначая ,
получим уравнение

,
(2.11)

которое называется
уравнением плоскости
в отрезках.
К виду
в отрезках может быть приведено уравнение
всякой плоскости, не проходящей через
начало координат.

Замечание.

Отметим, что точки с
координатами (a;0;0),
(0;
b;0)
и (0;0;c)
являются точками

пересечения плоскости
с осями координат.

Лекция
6.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий