Равноускоренное движение
Равноускоренное движение – это движение, при котором вектор ускорения не меняется по модулю и направлению (в случае равнозамедленного движения модуль скорости равномерно меняется). Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение, в отличие от неравномерного, – частный случай ускоренного в равной степени движения с ускорением, равным нулю.
Рассмотрим случай свободного падения (тело брошено под углом к горизонту) более подробно с вычислением. Такое движение можно рассчитать и представить в виде суммы движений относительно вертикальной и горизонтальной осей.
Как найти ускорение в физике? Нахождение ускорения в физике происходит с учетом того, что в любой точке траектории на тело действует ускорение свободного падения g→, которое не меняется по величине и всегда направлено в одну сторону.
Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y – движение равноускоренное и прямолинейное. Будем рассматривать определенные проекции векторов скорости и ускорения на оси.
Формулы для равноускоренного движения
Формула для скорости (формула ускорения) при равноускоренном движении:
v=v0+at.
Здесь v0 – начальная скорость тела, a=const – ускорение.
Покажем на графике, что при равноускоренном движении зависимость v(t) имеет вид прямой линии. Вот небольшой тест.
Как найти ускорение? Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC. Вот как выглядит формула ускорения в физике.
a=v-v0t=BCAC
Чем больше угол β, тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.
Для первого графика: v0=-2 мс; a=0,5 мс2.
Для второго графика: v0=3 мс; a=-13 мс2.
По данному графику физик может также вычислить (произвести определение) перемещение тела за время t. Как это сделать?
Выделим на графике малый отрезок времени ∆t. Будем считать, что он настолько мал, что движение за время ∆t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆t. Тогда, перемещение ∆s за время ∆t будет равно ∆s=v∆t.
Разобьем все время t на бесконечно малые промежутки ∆t. Перемещение s за время t равно площади трапеции ODEF.
s=OD+EF2OF=v0+v2t=2v0+(v-v0)2t.
Мы знаем, что v-v0=at, поэтому окончательная формула или расчет для перемещения тела примет вид:
s=v0t+at22
Для того чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение (расстояние). Изменение координаты в зависимости от времени выражает закон равноускоренного движения.
Какова будет формула пути при равноускоренном движении? В этом случае путь изменяется согласно квадратной зависимости: 8=v0t + at²/2.
Закон равноускоренного движения
y=y0+v0t+at22.
Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения – находить координаты при заданных значениях начальной и конечной скоростей и ускорения.
Исключая из записанных выше уравнений t и решая их, получаем:
s=v2-v022a.
По известным начальной скорости, ускорению и перемещению может находиться конечная скорость тела:
v=v02+2as.
При v0=0 s=v22a и v=2as
Величины v, v0, a, y0, s, входящие в выражения, являются алгебраическими величинами. Они могут принимать как положительные, так и отрицательные значения – это будет зависеть от характера движения и направления координатных осей в условиях конкретной задачи.
Равноускоренное движение в поле тяжести Земли. На рисунке видно, что перемещение складывается из прямолинейного равномерного движения и свободного падения
Равноуско́ренное движе́ние — движение тела, при котором его ускорение постоянно по модулю и направлению[1].
Скорость при этом определяется формулой
- ,
где — начальная скорость тела, — время. Траектория имеет вид участка параболы или прямой.
Примером такого движения является полёт камня, брошенного под углом к горизонту в однородном поле силы тяжести: камень летит с постоянным ускорением , направленным вертикально вниз.
Частным случаем равноускоренного движения является равнозамедленное, когда векторы и противонаправлены, а модуль скорости равномерно уменьшается со временем (в примере с камнем реализуется для при подъёме).
Характер равноускоренного движения[править | править код]
Равноускоренное движение происходит в плоскости, содержащей векторы ускорения и начальной скорости . С учётом того, что (здесь — радиус-вектор), траектория описывается выражением
- .
На заданном интервале времени она представляет собой участок параболы, который при параллельности (то есть со или противо- направленности) векторов и превращается в отрезок прямой.
Для каждой из координат, скажем , могут быть записаны аналогичные по структуре выражения:
- ,
где — составляющая ускорения вдоль оси , а — радиус-вектор материальной точки в момент (, , — орты).
В примере с камнем , компоненты ускорения , , начальной скорости , , , при этом , а значит, .
Перемещение и скорость[править | править код]
В случае равноускоренного движения любая из компонент скорости, например , зависит от времени линейно:
- .
При этом имеет место следующая связь между перемещением () вдоль координаты и скоростью вдоль той же координаты:
- .
Отсюда можно получить выражение для -составляющей конечной скорости тела при известных -составляющих начальной скорости и ускорения:
- .
Если , то , а .
Выражения для смещений , и компонент скорости вдоль координат и принимают точно такой же вид, как для и , но символ всюду заменяется на или .
Суммарно, по теореме Пифагора, перемещение составит
- ,
а модуль конечной скорости находится как
- .
Равноускоренное движение не может происходить неограниченно долго: это означало бы, что, начиная с какого-то момента времени , модуль скорости тела превысит величину скорости света в вакууме , что исключается теорией относительности.
Условие осуществления[править | править код]
Равноускоренное движение реализуется при действии на тело (материальную точку) постоянной силы , обычно в однородном гравитационном или электростатическом поле, если величина скорости тела значительно меньше, чем скорость света . Тогда, по второму закону Ньютона, ускорение составит
где через обозначена масса тела. В примере с камнем роль играет сила тяжести.
Если же скорость тела сопоставима со скоростью света, то закон Ньютона в выписанном виде неприменим. При этом, в случае действия постоянной силы, происходит так называемое релятивистски равноускоренное движение, при котором постоянно только собственное ускорение, а ускорение в фиксированной ИСО приближается к нулю со временем по мере приближения величины скорости к её пределу .
Теорема о кинетической энергии точки[править | править код]
Формула перемещения при равноускоренном движении используется при доказательстве теоремы о кинетической энергии. Для этого необходимо перенести ускорение в левую часть и домножить обе части на массу тела:
- .
Записав аналогичные соотношения для координат и и просуммировав все три равенства, получим соотношение:
- .
Слева стоит работа постоянной равнодействующей силы , а справа — разность кинетических энергий в конечный и начальный моменты движения. Полученная формула представляет собой математическое выражение теоремы о кинетической энергии точки для случая равноускоренного движения[2].
Равнопеременное движение[править | править код]
Равнопеременным называется движение, при котором тангенциальная (параллельная скорости) составляющая ускорения постоянна[3]. Такое движение не является равноускоренным, кроме ситуации, когда оно происходит по прямой, но в математическом плане может быть рассмотрено аналогично.
В этом случае вводится обобщённая координата , часто называемая путём, соответствущая длине пройденной траектории (длине дуги кривой). Таким образом, формула приобретает вид:
- ,
где — тангенциальное ускорение, «отвечающее» за изменение модуля скорости тела. Для скорости получаем:
- .
При имеем движение с постоянной по модулю скоростью.
Иногда прилагательное равнопеременное заменяют на криволинейное равноускоренное, что вносит путаницу, так как, скажем, равноускоренное движение камня по кривой (параболе) в поле тяжести не равнопеременное.
См. также[править | править код]
- Релятивистски равноускоренное движение
Примечания[править | править код]
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит, 2005. — Т. I. Механика. — С. 37. — 560 с. — ISBN 5-9221-0225-7.
- ↑ Тарг С. М. Краткий курс теоретической механики. — 11-е изд. — М.: «Высшая школа», 1995. — С. 214. — 416 с. — ISBN 5-06-003117-9.
- ↑ См. Физический энциклопедический словарь — М.: Советская энциклопедия, под. ред. А. М. Прохорова (1983), статья «Равнопеременное движение», стр. 602.
Прямолинейное равноускоренное движение — это прямолинейное движение, при котором скорость тела изменяется (увеличивается или уменьшается) на одну и ту же величину за равные промежутки времени.
Ускорение — физическая величина, характеризующая быстроту изменения скорости тела. То есть, показывает, на какую величину изменяется скорость за единицу времени.
Примеры равноускоренного движения:
- разгон самолета перед взлетом;
- падающая с крыши сосулька;
- торможение лыжника на горном склоне;
- разгоняющийся на склоне сноубордист;
- свободное падение в результате прыжка с парашютом;
- камень брошенный под углом к горизонту;
Равномерное прямолинейное движение является частным случаем равноускоренного движения, при котором ускорение равно нулю.
Равноускоренное движение: формулы
Формула для скорости при равноускоренном движении:
Vк=Vн+at
где: Vк — конечная скорость тела,
Vн — начальная скорость тела,
a=const — ускорение (a>0 при ускорении, a<0 при замедлении)
t — время.
Формула для ускорения при равноускоренном движении:
a=(Vк-Vн)/t
Во время движения тела ускорение остается постоянным.
Задача 1
Кирилл ехал на велосипеде со скоростью 6 м/с, затем начал разгоняться на горке. Чему будет равна его скорость через 10 секунд, если ускорение равно 0,5 м/с?
Решение. Vн=6м/с, ускорение a=0,5м/с, время разгона t=10 секунд.
Получаем: Vн= 6 + 0,5 · 10 = 11 м/с.
Ответ: за 10с Кирилл разгонится до скорости 11 м/с.
Формула расстояния при равноускоренном движении
- Если известны время, скорость начальная и скорость конечная
S = t*(Vн+ Vк)/2
- Если известны время, скорость начальная и ускорение
S = Vнt + at2/2 = t*(Vн + at/2)
где: S — путь, пройденный за время t,
Vн — начальная скорость,
Vк — конечная скорость,
a — ускорение тела,
t — время.
В случае равноускоренного движения с неизвестным временем движения, но с заданными начальной и конечной скоростями пройденный путь можно найти с помощью следующей формулы:
2аS = Vк2−Vн2
где S — путь, пройденный за время t ,
V0 — начальная скорость,
V — скорость в момент времени t,
a — ускорение тела.
Задача 2
Таксист получил заказ и начал движение с ускорением 0,1 м/с2. На каком расстоянии от начала движения его скорость станет равной 15м/с?
Решение. Так как таксист начал движение, начальная скорость равна нулю (Vн=0), Vк=15м/с, ускорение a=0,1м/с2.
Получаем:
S = 15^2 — 0^2 =1125 м.
Ответ: на расстоянии 1 125 м от начала движения скорость такси станет равной 15 м/с.
Перемещение при равноускоренном движении
Важно напомнить разницу между путем и перемещением тела.
- Путь — длина траектории. Если тело движется в любом направлении, то его путь увеличивается. Путь — всегда положительное значение.
- Перемещение — вектор, соединяющий начальное и конечное положение тела. Проекция перемещения может принимать отрицательное значение.
Например, если путник прошел в одну сторону расстояние S1, а обратно — S2, то: путь тела равен S1 + S2, а перемещение равно S1 − S2. В некоторых задачах путь и перемещение могут совпадать, но не всегда.
Равноускоренное движение: графически
График зависимости ускорения от времени:
Во время движения тела ускорение остается постоянным.
Взаимосвязь скорости, времени и расстояния:
На рисунке показан график, в котором скорость равномерно увеличивается.
С помощью графика скорости можно определить ускорение тела как тангенс угла наклона графика к оси времени.
Из графика скорости получим формулу пути при равноускоренном движении тела.
Пройденный телом путь при равноускоренном движении численно равен площади фигуры под графиком зависимости скорости от времени. Вычислим площадь трапеции как сумму площадей прямоугольника Vнt и треугольника at2/2. Получим: S = Vнt + at2/2.
Математически зависимость координаты от времени при равноускоренном движении представляет собой квадратичную функцию, ее график — парабола.
Задача 3
Лыжник подъехал со скоростью 3 м/с к спуску длиной 36 м и съехал с него за несколько секунд, при этом его конечная скорость составила 15 м/с. Определите местонахождение лыжника спустя 2с после начала движения из начала координат.
Дано:
Vн = 3 м/с, начальная координата (t) равна нулю,
Vк = 15м/с,
a — скорость лыжника увеличивается, поэтому ускорение — положительное число,
S = 36м — путь с горы,
t — 2с.
Решение:
Найдем ускорение из формулы пути при равноускоренном движении: 2аS = Vк2−Vн2
Получим: а = (Vк2−Vн2 )/2S = (225-9)/(2*36) = 3 м/с2.
Составим уравнение движения лыжника исходя из формулы: S = Vнt + at2/2.
Получаем: x(t) = 3t + 1,5t2
По уравнению определим координату лыжника в момент времени t = 2с:
Получаем: x(2) = 3*2 + 1,5*22 =6+6=12 м.
Ответ: через 2 с после начала движения координата лыжника будет равна 12 м.
Для того, чтобы проверить правильность решения задач на равноускоренное движение, воспользуйтесь калькулятором равноускоренного движения.
Для того, чтобы перевести единицы измерения, воспользуйтесь конвертерами единиц измерения:
- Конвертер единиц измерения расстояния (длины)
- Конвертер единиц измерения скорости
- Конвертер единиц измерения времени
Уравнение координаты — зависимость координаты тела от времени:
x = x(t)
Уравнение координаты при равноускоренном прямолинейном движении:
x0 — координата тела в начальный момент времени, v0x —проекция начальной скорости на ось ОХ, ax —проекция ускорения на ось ОХ, x — координата тела в момент времени t
Зная уравнение координаты, можно определить координату тела в любой момент времени.
Пример №1. Движение автомобиля задано уравнением:
Определить начальное положение автомобиля относительно тела отсчета, его начальную скорость и ускорение. Также найти положение тела относительно тела отсчета в момент времени t = 10 c.
Уравнение координаты — это многочлен. В уравнении выше оно включает в себя только 2 многочлена. Первый — 15 — соответствует начальной координате тела. Поэтому x0 = 15. Коэффициент перед квадратом времени второго многочлена соответствует ускорению тела. Поэтому a = 5 м/с2. Второй многочлен отсутствует. Это значит, что коэффициент перед t равен 0. Поэтому начальная скорость тела равна нулю: v0 = 0 м/с.
В момент времени t = 10 c координата автомобиля равна:
Совместное движение двух тел
Иногда в одной системе отсчета рассматривается движение сразу двух тел. В этом случае движение каждого тела задается своим уравнением. Эти уравнения используются для нахождения различных параметров движения этих тел. Такой способ решения задач называется аналитическим.
Аналитический способ решения задачи на совместное движение тел
Чтобы найти место встречи двух тел, нужно:
- Построить уравнения зависимости x(t) обоих тел: x1(t) и x2(t).
- Построить уравнение вида x1 = x2.
- Найти время встречи двух тел tвстр.
- Подставить найденной время в любое из уравнений x1(t) или x2(t), чтобы вычислить координату xвстрч.
Пример №2. По одному направлению из одной точки начали двигаться два тела. Первое тело движется прямолинейно и равномерно со скоростью 3 м/с. Второе тело — равноускорено с ускорением 1 м/с2 без начальной скорости. Определите, через какое время второе тело догонит первое. Вычислите, на каком расстоянии от тела отсчета это произойдет.
Составим уравнения для движения каждого из тел:
Приравняем правые части этих уравнений и найдем время t:
Отсюда t1 = 0 с, а t2 = 6 с. Первый корень нам не подходит — из условия задачи уже было понятно, что тела начали движение одновременно. Снова они встрется, когда пройдет 6 секунд.
Чтобы найти, какое расстояние они пройдут за это время, подставим известное время в любое из уравнений:
x = 3t = 3∙6 = 18 (м).
Графический способ решения задачи на совместное движение тел
Существует графический способ решения данной задачи. Для этого нужно:
- Построить графики x1(t) и x2(t).
- Найти точку пересечения графиков.
- Пустить перпендикуляр из этой точки к оси ОХ.
- Значение точки пересечения — координата места пересечения двух тел.
Таким способом можно определить, в какое время произойдет встреча двух тел. Нужно лишь провести перпендикуляр к оси времени после построения графиков перемещений.
Графический способ решения задач требует высокой точности построения графиков. Поэтому он применяется редко!
Если в одной системе описывается движение двух тел, и одно тело начинает движение с опозданием tзапазд, то его уравнение координаты принимает вид:
Пример №3. Мальчики соревнуются в беге. По команде «Старт!» Миша побежал с ускорением 1 м/с2 и через 4 секунды достиг максимальной скорости, с которой дальше продолжил движение. Саша отреагировал с опозданием и начал движение спустя 1 с после команды с ускорением 1,5 м/с2, достигнув максимальной скорости через 3 секунды. Найти время, через которое Саша догонит Мишу.
Если Саша догонит Мишу до того, как мальчики станут двигаться с равномерной скоростью, уравнение движения с равномерной скоростью можно игнорировать. Если это так, то корнем уравнения будет время, не превышающее 4 с (через столько времени оба мальчика начнут двигаться равномерно).
В таком случае составим уравнения только для тех участков пути, на которых мальчики двигались равноускорено:
Приравняем правые части уравнений и вычислим t:
В результате получаем два корня: t1 = 0,6 с, а t2 = 3,4 с. Первый корень не подходит, так как в это время Саша еще не начал движение. Второй корень подходит, так как он меньше 4 с. Значит, Саша догонит Мишу через 3,4 с после того, как Миша начнет движение.
Задание EF18609
Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.
В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:
а)
б)
в)
г)
Алгоритм решения
- Определить характер движения материальной точки.
- Записать уравнение координаты материальной точки.
- С помощью графика зависимости координаты от времени и уравнения координаты определить проекции искомых величин.
Решение
Графиком зависимости координаты от времени является парабола. Такой график соответствует равноускоренному прямолинейному движению. Уравнение координаты при равноускоренном прямолинейном движении имеет вид:
Ветви параболы смотрят вверх. Это значит, что коэффициент перед квадратом переменной величины (времени) стоит положительный коэффициент. Следовательно, ax>0. Поэтому варианты «б» и «г» исключаются. Остается выяснить, чему равна скорость: она равна нулю (как в ответе «а») или меньше нуля (как в ответе «в»)?
Моменту времени t=0 соответствует точка, являющая вершиной параболы. Когда ветви параболы смотрят вверх, в ее вершине скорость тела всегда равна нулю, так как эта точка лежит на границе между отрицательной и положительной скоростью. Отсюда делаем вывод, что верный ответ «а».Ответ: а
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17682
Мимо остановки по прямой улице с постоянной скоростью проезжает грузовик. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3 м/с2, и догоняет грузовик на расстоянии 150 м от остановки. Чему равна скорость грузовика?
Алгоритм решения
- Записать исходные данные.
- Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
- Выразить скорость грузовика из уравнения его движения.
- Записать уравнение движения мотоциклиста.
- Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
- Подставить время в формулу скорости грузовика и вычислить ее.
Решение
Исходные данные:
- Координата встречи грузовика и мотоциклиста: x = 150 м.
- Время запаздывания мотоциклиста: tзапазд = 5 с.
- Ускорение, с которым мотоциклист начал движение: a = 3 м/с2.
Запишем уравнение движения грузовика:
Так как начальная координата равна нулю, это уравнение примет вид:
Отсюда скорость движения грузовика равна:
Запишем уравнение движения мотоциклиста:
Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:
Найдем время, через которое грузовик и мотоциклист встретились:
Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:
Ответ: 10
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 14.7k
Содержание:
Прямолинейное равноускоренное движение:
Движение с изменяющейся скоростью называют неравномерным. Простейшим видом неравномерного движения является прямолинейное движение с постоянным ускорением, т. е. прямолинейное равноускоренное движение. Впервые такое движение выделил и исследовал Галилей.
Равноускоренным называется движение, при котором скорость тела (МТ) за любые равные промежутки времени изменяется одинаково.
Ускорением
В СИ основной единицей ускорения является метр в секунду за секунду
При прямолинейном равноускоренном движении ускорение равно отношению изменения скорости к промежутку времени за который это изменение произошло:
где — начальная скорость (в момент времени — скорость в момент времени t.
При таком движении ускорение тела (МТ) всегда равно ее среднему ускорению:
Кинематические уравнения равноускоренного движения имеют вид:
При прямолинейном равноускоренном движении тела (МТ) вдоль оси Ох зависимость координаты от времени выражается уравнением
Если уравнения (3), (5) принимают вид:
Поскольку ускорение при прямолинейном равноускоренном движении постоянно то график зависимости проекции ускорения от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 16).
В случае, когда проекция ускорения положительна отрезок прямой проходит выше оси времени (график 1 на рисунке 16). В противном случае отрезок прямой проходит ниже оси времени (график 2 на рисунке 16).
График зависимости проекции скорости от времени представляет собой линейную функцию (рис. 17). Тангенс угла наклона (tga) этой прямой численно равен проекции ускорения движения:
Если проекция скорости на выбранную ось Ох положительна то угол — острый (угол на рисунке 17), а если отрицательна — тупой (угол на рисунке 17).
График зависимости координаты от времени x(t) при прямолинейном равноускоренном движении представляет собой ветвь параболы (рис. 18). Проекция скорости тела в момент времени численно равна тангенсу угла наклона tga касательной к оси абсцисс.
Подчеркнем, что в процессе движения путь, пройденный материальной точкой, все время увеличивается, в то время как проекция перемещения (координата) может уменьшаться. Вследствие этого график зависимости пути от времени s(t) будет совпадать с графиком зависимости координаты от времени х(t) (рис. 19) на тех участках, где координата увеличивается (см. участок от начала координат до точки В на рисунке).
Соответственно, на тех участках, где координата уменьшается, график зависимости пути от времени является «зеркальным» отражением кривой х(t) от горизонтальной плоскости, проходящей через точку, с которой началось уменьшение координаты (см. точку В на рисунке).
Так как зависимость проекции скорости прямолинейного движения тела вдоль оси Ох от времени является линейной функцией, то проекция средней скорости движения тела при прямолинейном равноускоренном движении равна среднему арифметическому его начальной и конечной проекций скоростей:
Соответственно, в этом случае проекция перемещения на ось Ох (путь)
численно равна площади закрашенной трапеции (рис. 20).
Исключая время t из уравнений прямолинейного равноускоренного движения для скорости v(t) и координаты x(t), можно получить еще одну часто используемую формулу
Прибор для измерения ускорения называется акселерометром.
Примером равноускоренного прямолинейного движения является свободное падение тел, при котором на тело действует только сила тяжести, и оно движется с ускорением где — ускорение свободного падения.
Если ось Оу направлена вертикально вверх, а ось Ох — вдоль поверхности Земли (рис. 21), то движение тела (МТ), брошенного вертикально вверх со скоростью описывается формулами:
В случае, когда зависимости проекции скорости и координаты от времени принимают соответственно вид:
Время подъема тела (МТ) на максимальную высоту, на которой можно
Скорость в момент возвращения тела (МТ) в исходную точку О определяется по формуле и она равна начальной скорости так как время подъема тела (МТ) равно времени его падения
Докажите самостоятельно, что без учета сопротивления воздуха время подъема тела (МТ) равно времени его падения.
Высоту подъема h тела (МТ) (см. рис. 21) за промежуток времени можно определить из соотношения
Максимальная высота подъема тела (МТ) определяется по формуле
Модуль скорости на высоте h (см. рис. 21) можно найти ио формуле
При движении тела (МТ) из начальной точки с начальной скоростью направленной вертикально вниз (рис. 22), его скорость в произвольный момент времени
Пройденный телом (МТ) путь s определяется по формуле
Скорость в конце пути s:
Падение тел с высоты Н без начальной скорости представляет собой частный случай прямолинейного равноускоренного движения. При выборе оси Оу, направленной вертикально вниз скорость в любой момент времена находится из соотношения
При то скорость v = gt.
Координата у и пройденный путь s определяются соответственно по формулам:
Продолжительность свободного падения с высоты Н:
Скорость тела при свободном падении с высоты Н:
Равноускоренное движение
Прямолинейное равномерное движение, то есть движение с постоянной скоростью, -редкое явление в окружающей среде. Значительно чаще придется иметь дело с такими движениями, в которых скорость не является постоянной, а со временем изменяется. Такие движения называют неравномерными.
На всех современных транспортных средствах устанавливают специальные приборы -спидометры (рис. 266), показывающие значение скорости в данный момент времени.
Понятно, что по спидометру нельзя определить направление скорости. Для некоторых средств транспорта, например для морских кораблей и самолетов, необходимо знать также направление скорости движения. Тогда, кроме спидометра, устанавливают еще и другие навигационные приборы, в самом простом случае – компас.
Следовательно, теперь мы знаем, что при неравномерном движении скорость движения тела не является постоянной величиной и в разные моменты времени имеет свое направление и значение.
Для упрощения будем рассматривать такое неравномерное движение, при котором скорость движения тела за каждую единицу времени и вообще за любые равные интервалы времени изменяется одинаково. Такое движение называют равноускоренным.
Движение тела, при котором его скорость за любые равные интервалы времени изменяется одинаково, называют равноускоренным движением.
Во время такого движения скорость может изменяться.
Если за некоторый интервал времени приращение скорости равен то за удвоенный интервал времени приращение скорости будет удвоенным – за утроенный интервал времени З он будет утроенным – и т. д.
При этом если значение изменить, то новому будет соответствовать уже другое значение , но отношение приращения скорости к
приращению времени будет таким же, как и раньше. Следовательно, в
данном равноускоренном прямолинейном движении отношение неизменно, инвариантно относительно выбора интервала времени At.
Вектор , который является постоянным для каждого данного прямолинейного равноускоренного движения, характеризует изменение скорости тела за единицу времени. Эта векторная величина – основная характеристика равноускоренного движения, которую называют ускорением и обозначают буквой
Ускорением тела в его равноускоренном прямолинейном движении называют векторную физическую величину, характеризующую изменение скорости за единицу времени и равную отношению изменения скорости движения тела к интервалу времени, за которое это изменение произошло:
Из определения равноускоренного движения следует, что его ускорение является постоянной величиной
Если в выбранный начальный момент времени t = 0 скорость движения тела равна , а в момент времени t – , то имеем Тогда рассмотренная выше формула имеет вид:
где – ускорение движения тела; – начальная скорость движения тела; – его конечная скорость движения; t – время, за которое это изменение происходило.
Как видно из этой формулы, за единицу ускорения следует взять ускорение такого прямолинейного равноускоренного движения, при котором за единицу времени скорость изменяется также на единицу. И это означает: ускорение равно единице, если за 1 с скорость движения тела изменяется на Следовательно, единицей ускорения в СИ является 1 м/с2.
Равноускоренное движение может быть ускоренным или замедленным. Рассмотрим ускорение и скорость равноускоренного движения в проекциях на ось Ох (рис. 267), тогда ускорение будет приобретать вид:
Если то есть скорость движения тела увеличивается (рис. 267, а), тогда модуль ускорения а его вектор совпадает с направлением движения, то это движение называют равноускоренным.
Если тогда модуль ускорения а его вектор противоположный по направлению движения, то такое движение называют равнозамедленным.
Вам уже известно, как графически изображается равномерное прямолинейное движение тела. Попробуем аналогично представить графически равноускоренное прямолинейное движение.
- Заказать решение задач по физике
Графики равномерного прямолинейного движения тела
Рассмотрим график проекции ускорения движения тела Если вспомнить график проекции скорости тела в равномерном прямолинейном движении, где v = const, и сравнить его со случаем, когда = const, то становится понятно, что эти графики идентичны. Поэтому графиком зависимости проекции ускорения движения тела от времени будет тоже прямая, параллельная оси времени t. В зависимости от значения проекции ускорения – положительная она или отрицательная -прямая расположена или над осью, или под ней (рис. 268).
График проекции скорости движения тела Из кинематического уравнения видно, что зависимость проекции скорости движения тела от времени является линейной, как и в уравнении равномерного прямолинейного движения. Тогда остается только проанализировать его для нашего случая. В зависимости от значений проекций ускорения и начальной скорости движения тела график будет иметь разный вид (рис. 269), в частности:
Если то прямая будет выходить с начала координат и, в зависимости от значения проекции ускорения движения тела, будет направлена вверх или вниз Наклон прямых зависит от значения проекции ускорения: чем больше ускорение движения тела, тем круче подымается или убывает график.
График движения тела х = x(t). Кинематические уравнения движения являются квадратичной функцией вида
Поэтому графиком зависимости координаты тела от времени является парабола, ветви которой согласно параметрам движения имеют разное направление. Например, если то график имеет вид, изображенный на рисунке 270, а. Если то вершина параболы смещается по оси ординат вверх или вниз, в зависимости от значения
Если то ветви параболы направлены вниз (рис. 270, б) и смещение вершины параболы вверх или вниз по оси ординат также зависит от значения
Если (рис. 271), то вершина параболы смещается в точку, координаты которой определяются соотношениями:
- Сложение скоростей
- Ускорение в физике
- Скорость при равнопеременном движении
- Перемещение, координата и путь при равнопеременном движении
- Проекция вектора на ось
- Путь и перемещение
- Равномерное прямолинейное движение
- Прямолинейное неравномерное движение