Содержание:
На рисунке 2 изображены колебания маятника и показан график функции, описывающей смещение маятника от положения равновесия в зависимости от времени. Изучение процесса колебания маятника, а также многих других процессов в физике (механические, электромагнитные колебания, волны и т. д.) приводит к необходимости рассматривать тригонометрические функции действительного аргумента.
Для изучения тригонометрических функций используется понятие единичной окружности.
Единичная окружность в тригонометрии
Единичную окружность называют также координатной окружностью.
Определение единичной окружности
Определение:
Окружность на координатной плоскости единичного радиуса с центром в начале координат (рис. 3) называется единичной окружностью.
Для того чтобы задать координатную окружность, нужно указать:
- начало отсчета — точку
- направление движения точки по окружности (против часовой стрелки — положительное, а по часовой стрелке — отрицательное (рис. 4)).
Точки на окружности будем получать путем поворота точки единичной окружности вокруг начала координат на заданный угол.
Точка (рис. 5) получена поворотом
Таким образом, при повороте точки вокруг начала координат на угол в заданном направлении получается точка единичной окружности.
Пример №1
Построить на единичной окружности точку
Решение:
Точку получаем поворотом против часовой стрелки точки вокруг начала координат на угол (рис. 6).
Пример №2
Построить на единичной окружности точку
Решение:
Точку получаем поворотом по часовой стрелке точки вокруг начала координат на угол (рис. 7).
Пример №3
Построить на единичной окружности точку:
Решение:
а) Так как поворот на соответствует одному полному обороту, то необходимо выполнить поворот точки против часовой стрелки на (полный оборот). Точка совпадет с точкой (рис. 8, а).
б) Так как то необходимо выполнить один полный оборот и еще поворот точки вокруг начала координат против часовой стрелки на угол (рис. 8, б).
в) Так как то необходимо выполнить два полных оборота и еще поворот точки вокруг начала координат против часовой стрелки на угол (рис. 8, в).
Пример №4
Построить на единичной окружности точку
Решение:
Так как то необходимо выполнить три полных оборота и еще поворот точки вокруг начала координат по часовой стрелке на угол (рис. 9).
Радианное измерение углов
По формуле длины окружности получим, что длина единичной окружности равна
На единичной окружности (рис. 10) легко отметить точки соответствующие углам поворота (четверть окружности), (половина окружности), (три четверти окружности), (вся окружность).
Числа – это радианная мера углов, градусная мера которых соответственно равна
Угол в 1 радиан (от лат. radius — луч, радиус) — это центральный угол, опирающийся на дугу, длина которой равна радиусу окружности.
На рисунке 11 отмечена точка единичной окружности, соответствующая углу в 1 радиан. Длина дуги единичной окружности, соответствующей углу в 1 радиан, равна 1.
Так как радиан соответствует то градусная мера угла в 1 радиан равна:
Сокращенное обозначение радиана «рад» чаще всего опускают.
Чтобы выразить радианную меру угла в градусной, число умножить на
Например,
На рисунке 12 показано соответствие между градусной и радианной мерой некоторых углов.
- Заказать решение задач по высшей математике
Пример №5
Построить на единичной окружности точку
Решение:
Точку получаем поворотом против часовой стрелки точки вокруг начала координат на угол (рис. 13).
В зависимости от того, в какую четверть координатной плоскости попадает точка говорят, что в такой же четверти находится угол
Например, углы находятся в первой четверти, углы и находятся во второй четверти, углы находятся в третьей четверти, а угол находится в четвертой четверти (рис. 14).
Углы соответствуют границам четвертей.
Пример №6
Определите, в какой четверти находится угол 3 рад.
Решение:
Так как то данный угол находится во второй четверти.
Примеры заданий и их решения
Пример №7
На единичной окружности отметьте точку, получаемую поворотом точки вокруг начала координат на угол:
Решение.
а) Точку получаем поворотом против часовой стрелки точки вокруг начала координат на угол (рис. 15, а).
б) Точку получаем поворотом по часовой стрелке точки вокруг начала координат на угол (см. рис. 15, а).
в) Точку получаем поворотом по часовой стрелке точки вокруг начала координат на угол 90° (рис. 15, б).
г) Точку получаем поворотом против часовой стрелки точки вокруг начала координат на угол (см. рис. 15, б).
Пример №8
Покажите, что точки:
— единичной окружности совпадают.
Решение:
а) Поскольку то, для того чтобы получить точку нужно выполнить один полный оборот и еще поворот точки вокруг начала координат против часовой стрелки на угол (рис. 16, а).
Пример №9
На единичной окружности отметьте точку, получаемую поворотом точки вокруг начала координат на угол:
Решение:
а) Так как то выполним один полный оборот и еще поворот точки вокруг начала координат против часовой стрелки на угол (рис. 17, а).
б) Так как то выполним три полных оборота и еще поворот точки вокруг начала координат по часовой стрелке на угол (рис. 17, б).
Пример №10
Запишите все углы для которых точка совпадает с точкой:
Решение:
а) Отметим на единичной окружности точку Так как, например, и т. п., то точки единичной окружности совпадают с точкой единичной окружности. Очевидно, что существует бесконечно много углов для которых точки единичной окружности совпадают. Эти углы могут быть получены в результате поворота точки на целое число полных оборотов по или против часовой стрелки (рис. 18), таким образом,
Пример №11
На единичной окружности отметьте точку, получаемую поворотом точки вокруг начала координат на угол:
Решение:
а) Так как то выполним поворот точки вокруг начала координат на угол (рис. 19, а).
б) Поскольку то точка совпадает с точкой (рис. 19, б).
- Определение синуса и косинуса произвольного угла
- Определение тангенса и котангенса произвольного угла
- Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
- Функция y=sin x и её свойства и график
- Раскрытие неопределенностей
- Дробно-рациональные уравнения
- Дробно-рациональные неравенства
- Прогрессии в математике – арифметическая, геометрическая
Теория: 06 Вычисление координат точки на единичной окружности
На единичной окружности отмечена точка (displaystyle A <small ,>) как показано на рисунке. Угол (displaystyle BOA ) равен (displaystyle color<alpha> <small .>) Найдите абсциссу точки (displaystyle A <small .>)
Абсцисса точки (displaystyle A) равна Перетащите сюда правильный ответ .
Так как отрезок (displaystyle AB) перпендикулярен оси (displaystyle rm OX<small,>) то абсцисса точки (displaystyle A) равна длине отрезка (displaystyle OB<small.>)
Найдем длину отрезка (displaystyle OB<small.>)
Рассмотрим прямоугольный треугольник (displaystyle AOB<small,>) катетом которого является отрезок (displaystyle OB<small.>)
Гипотенуза (displaystyle OA) треугольника (displaystyle AOB) является радиусом единичной окружности.
Значит, (displaystyle OA=1<small.>)
Тогда, поскольку (displaystyle OB) – катет, прилежащий к углу (displaystyle color<alpha><small,>) то
Таким образом, получаем:
абсцисса точки (displaystyle A) (displaystyle = OB=cos(color<alpha>)<small.>)
Единичная окружность
О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Единичная окружность в тригонометрии
Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.
Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.
Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.
Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.
Поясним, как единичная окружность связана с тригонометрией.
В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.
Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.
Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.
Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:
- Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
- Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
- В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
- В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.
Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:
Радиан — одна из мер для определения величины угла.
Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.
Число радиан для полной окружности — 360 градусов.
Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.
Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.
Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:
- 2π радиан = 360°
- 1 радиан = (360/2π) градусов
- 1 радиан = (180/π) градусов
- 360° = 2π радиан
- 1° = (2π/360) радиан
- 1° = (π/180) радиан
Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.
Уравнение единичной окружности
При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Как найти координаты единичной окружности
Единичная окружность
О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Единичная окружность в тригонометрии
Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.
Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.
Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.
Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.
Поясним, как единичная окружность связана с тригонометрией.
В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.
Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.
Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.
Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:
- Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
- Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
- В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
- В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.
Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:
Радиан — одна из мер для определения величины угла.
Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.
Число радиан для полной окружности — 360 градусов.
Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.
Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.
Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:
- 2π радиан = 360°
- 1 радиан = (360/2π) градусов
- 1 радиан = (180/π) градусов
- 360° = 2π радиан
- 1° = (2π/360) радиан
- 1° = (π/180) радиан
Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.
Уравнение единичной окружности
При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Единичная окружность: определение, связь с тригонометрией
Единичная окружность — это окружность с радиусом, равным единице, и центром в начале прямоугольной декартовой системы координат.
Уравнения для задания единичной окружности: x 2 + y 2 = 1
Понятие единичной окружности непосредственно связано с тригонометрией. Угол поворота можно рассматривать, как движение по окружности. При этом величина угла поворота не зависит от радиуса окружности, что делает использование единичной окружности при математических описаниях очень удобным.
Через координаты точек на единичной окружности дается определение основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Обосновываются их свойства и выводятся основные формулы тригонометрии.
С использованием уравнения единичной окружности и определения синуса и косинуса может быть записано основное тригонометрическое тождество: sin 2 x + cos 2 x = 1 .
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Числовая и единичная окружность
В средней школе мы уже познакомились с координатной, или числовой прямой. Так называют абстрактную прямую, на которой выбрана точка отсчета, определен единичный отрезок, а также задано направление, в котором следует откладывать положительные числа. С помощью координатной прямой удается наглядно представлять сложение и вычитание как положительных, так и отрицательных чисел, решать задачи, связанные с перемещением по прямой, и делать многое другое.
Однако порою приходится рассматривать задачи, связанные с движением по окружности, а также складывать и вычитать углы. Здесь математикам помогает другая абстракция – числовая окружность. Пусть два гонщика (Вася и Петя) едут по круговой трассе, чья протяженность составляет 1 км. За минуту Вася проехал 1250 м, а Петя преодолел только 500 м. Попытаемся показать их положение графически.
Построим на координатной плоскости окружность с центром в начале координат длиной 1 км. Будем считать, старт находится в крайней правой точке трассы, на пересечении оси Ох и окружности. Также условимся, что гонщики едут против часовой стрелки. Тогда получим такую картинку:
Петя проедет ровно половину окружности и окажется в крайней левой точке трассы. Вася же за минуту успел сделать полный круг (1 км) и проехать ещё 250 м, а потому оказался в верхней точке.
Теперь предположим, что Петя стоит на месте, а Вася проехал ещё 250 м (четверть круга). В результате оба пилота оказались в одной точке, но проехали они разное расстояние! Получается, что по положению гонщика невозможно однозначно определить, сколько именно метров он проехал.
Заметим, что очень удобно характеризовать положение точки на числовой окружности с помощью угла. Достаточно соединить точку отрезком с началом координат. Полученный отрезок образует с прямой Ох некоторый угол α:
В тригонометрии предпочитают использовать особую числовую прямую, радиус которой равен единице. По ряду причин, которые станут ясны чуть позже, с ней очень удобно работать. Такую фигуру называют единичной окружностью.
Выглядит единичная окружность так:
Откладывание углов на единичной окружности
Положение каждой точки на единичной окружности можно указать с помощью угла. Пусть надо найти точку, соответствующую углу 60°. Для этого просто строим угол следующим образом:
Углы, которые откладывают на единичной окружности, называют углами поворота. В данном случае можно утверждать, что точке А соответствует угол поворота, равный 60°.
Отложить можно и угол, больший 90° и даже 180°. Выглядеть они будут примерно так:
Углы можно складывать друг с другом и вычитать. Предположим, нам надо построить угол, равный сумме углов 120° и 110°. Для этого сначала совершить поворот на 120°, а потом от полученного отрезка отложить ещё один угол в 110°:
Ясно, что возможно построить любой угол в диапазоне от 0° до 360°. А можно ли отложить угол, который будет больше 360°? В обычной планиметрии мы не работаем с такими углами, однако в тригонометрии они существуют. Действительно, мы же можем, например, сложить углы 250° и 140°. В итоге получится 250 + 140 = 390°:
В результате мы совершили полный оборот (360°) и вдобавок повернули отрезок ещё на 30°. Получается, что углам в 390° и 30° соответствует одна и та же точка.
Углы можно и вычитать друг из друга. Для этого вычитаемый угол надо отложить в противоположном направлении – не против часовой, а по часовой стрелке. Например, вычитая из 150° угол в 70°, придем в точку, соответствующую 150 – 70 = 80°:
Из арифметики мы помним, что вычитание можно заменить прибавлением противоположного (то есть отрицательного) числа:
Получается, что отложив угол 70° по часовой стрелке, мы прибавили к 150° отрицательный угол (– 70°). То есть на единичной окружности можно откладывать отрицательные углы! Для их получения поворот надо осуществлять по часовой стрелке. Например, угол – 60° будет выглядеть так:
Итак, мы можем откладывать и положительные, и отрицательные углы, а также углы, большие 360°. Вообще в тригонометрии угол может быть равен любому действительному числу. На единичной окружности можно отложить углы величиной 1000°, 1000000° и (– 999999999°) и любые другие, самые большие и самые малые углы. В этом смысле единичная окружность схожа с координатной прямой. Разница лишь в том, что на прямой разным числам всегда соответствуют разные точки, а на окружности разным углам могут соответствовать одни и те же точки.
Ещё раз отметим, что один полный оборот равен 360°. Если отложить на окружности произвольную точку А, которой соответствует угол α, а потом добавить к α ещё 360°, то мы попадем в ту же самую точку:
С точки зрения тригонометрии те углы поворота, которые соответствуют одной точке на единичной окружности, равны друг другу. Поэтому можно записать формулу:
Естественно, при вычитании 360° из угла мы тоже совершим полный поворот, только по часовой стрелке, поэтому верна и другая запись:
Угол, не изменится и в том случае, если мы совершим не один, а два полных оборота, то есть добавим к нему 2•360° = 720°. Можно добавлять к углу два, три, четыре полных поворота, но он не изменится от этого. Обозначим буквой n количество оборотов, которые мы добавляем к углу. Естественно, что n – целое число. Справедливой будет формула:
Например, верны следующие равенства:
15° + 3•360° = 15° + 1080° = 1095°
100° + 10•360° = 100° + 3600° = 3700°
1000° = 1000° – 2•360° = 1000° – 720° = 280°
Очевидно, что любой точке на окружности соответствует какой-то угол α из промежутка 0 ≤ α 1 5
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/edinichnaya-okruzhnost
http://b4.cooksy.ru/articles/kak-nayti-koordinaty-edinichnoy-okruzhnosti
[/spoiler]
Сегодня поговорим об единичной окружности 🧑🏫
Можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота?🤔
Ну, конечно, можно! Записывай и запоминай общую формулу для нахождения координат точки:
x=x0+r⋅cos δ
y=y0+r⋅sin δ
x0,y0 — координаты центра окружности;
r — радиус окружности;
δ —угол поворота радиуса вектора.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
Единичная числовая окружность на координатной плоскости
- Понятие тригонометрии
- Числовая окружность
- Градусная и радианная мера угла
- Свойства точки на числовой окружности
- Интервалы и отрезки на числовой окружности
- Примеры
п.1. Понятие тригонометрии
Тригонометрия – это раздел математики, в котором изучаются тригонометрические функции и их использование.
Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., – спроектирован с использованием тригонометрии.
Базовым объектом изучения в тригонометрии является угол.
Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.
п.2. Числовая окружность
Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.
Числовая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0). Точка с координатами (1;0) является началом отсчета, ей соответствует угол, равный 0. Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным; по часовой стрелке – отрицательным. |
Например:
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90°, –120°, –180°. |
п.3. Градусная и радианная мера угла
Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).
В целом, более обоснованной и естественной для измерения углов является радианная мера.
Радианной мерой угла называется отношение длины дуги окружности, заключенной между сторонами угла и центром в вершине угла, к радиусу этой окружности.
От радиуса окружности это отношение не зависит.
Например:
Найдем радианную меру прямого угла ∠AOB=90°. Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr. Длина дуги AB: (l_{AB}=frac{L}{4}=frac{2pi r}{4}=frac{pi r}{2}.) Тогда радианная мера угла: $$ angle AOB=frac{l_{AB}}{r}=frac{pi r}{2cdot r}=frac{pi}{2} $$ |
$$ 1^{circ}=frac{pi}{180}text{рад}, 1 text{рад}=frac{180^{circ}}{pi}approx 57,3^{circ} $$
Таблица соответствия градусных и радианных мер некоторых углов
30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360° |
(frac{pi}{6}) | (frac{pi}{4}) | (frac{pi}{3}) | (frac{pi}{2}) | (frac{2pi}{3}) | (frac{3pi}{4}) | (frac{5pi}{6}) | (pi) | (frac{3pi}{2}) | (2pi) |
п.4. Свойства точки на числовой окружности
Построим числовую окружность. Обозначим O(0;0), A(1;0)
Каждому действительному числу t на числовой окружности соответствует точка Μ(t). При t=0, M(0)=A. При t>0 двигаемся по окружности против часовой стрелки, описывая дугу ⌒ AM=t. Точка M – искомая. При t<0 двигаемся по окружности по часовой стрелке, описывая дугу ⌒ AM=t. Точка M – искомая. |
Например:
Отметим на числовой окружности точки, соответствующие (frac{pi}{6}, frac{pi}{4}, frac{pi}{2}, frac{2pi}{3}, pi), а также (-frac{pi}{6}, -frac{pi}{4}, -frac{pi}{2}, -frac{2pi}{3}, -pi) Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности. |
Каждой точке M(t) на числовой окружности соответствует бесконечное множество действительных чисел t с точностью до полного периода 2π:
$$ M(t) = M(t+2pi k), kinmathbb{Z} $$
Например:
Отметим на числовой окружности точки, соответствующие (frac{pi}{6}, frac{13pi}{6}, frac{25pi}{6}), и (-frac{11pi}{6}). Все четыре точки совпадают, т.к. begin{gather*} Mleft(frac{pi}{6}right)=Mleft(frac{pi}{6}+2pi kright)\ frac{pi}{6}-2pi=-frac{11pi}{6}\ frac{pi}{6}+2pi=frac{13pi}{6}\ frac{pi}{6}+4pi=frac{25pi}{6} end{gather*} |
п.5. Интервалы и отрезки на числовой окружности
Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.
Например:
п.6. Примеры
Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?
Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: begin{gather*} BE=30^{circ}=frac{pi}{6}.\ EC=60^{circ}=frac{pi}{3}.\ AE=EC+CD=90^{circ}+30^{circ}=120^{circ}=frac{2pi}{3}.\ ED=EC+CD=60^{circ}+90^{circ}=150^{circ}=frac{5pi}{6}. end{gather*}
Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: (-frac{pi}{2}; frac{3pi}{4}; frac{7pi}{6}; frac{7pi}{4}).
Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. begin{gather*} -frac{pi}{2}=-90^{circ}, frac{3pi}{4}=135^{circ}\ frac{7pi}{6}=210^{circ}, frac{7pi}{4}=315^{circ} end{gather*} |
Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: (-frac{11pi}{2}; 5pi; frac{17pi}{6}; frac{27pi}{4}).
Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk – четное количество π), чтобы попасть в промежуток от 0 до 2π. Далее – действуем, как в примере 2. begin{gather*} -frac{11pi}{2}=frac{-12+1}{2}cdotpi=-6pi+frac{pi}{2}rightarrow frac{pi}{2}=90^{circ}\ 5pi=4pi+pirightarrow pi=180^{circ}\ frac{17pi}{6}=frac{18-1}{6}pi=3pi-frac{pi}{6}rightarrow pi-frac{pi}{6}=frac{5pi}{6}\ frac{27pi}{4}=frac{28-1}{4}pi=7pi-frac{pi}{4}rightarrow pi-frac{pi}{4}=frac{3pi}{4} end{gather*} |
Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.
Сравниваем каждое число с границами четвертей: begin{gather*} 0, fracpi2approxfrac{3,14}{2}=1,57, piapprox 3,14\ 3pi 3cdot 3,14\ frac{3pi}{2}approx frac{3cdot 3,14}{2}=4,71, 2piapprox 6,28 end{gather*} |
(fracpi2lt 2lt pi Rightarrow ) угол 2 радиана находится во 2-й четверти
(pilt 4lt frac{3pi}{2} Rightarrow ) угол 4 радиана находится в 3-й четверти
(frac{3pi}{2}lt 5lt 2pi Rightarrow ) угол 5 радиана находится в 4-й четверти
(7gt 2pi), отнимаем полный оборот: (0lt 7-2pilt fracpi2Rightarrow) угол 7 радиан находится в 1-й четверти.
Пример 5. Изобразите на числовой окружности множество точек ((kinmathbb{Z})), запишите количество полученных базовых точек.
Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.
Так как отрезок (displaystyle AB) перпендикулярен оси (displaystyle rm OX{small,}) то абсцисса точки (displaystyle A) равна длине отрезка (displaystyle OB{small.})
Найдем длину отрезка (displaystyle OB{small.})
Рассмотрим прямоугольный треугольник (displaystyle AOB{small,}) катетом которого является отрезок (displaystyle OB{small.}) Гипотенуза (displaystyle OA) треугольника (displaystyle AOB) является радиусом единичной окружности. Значит, (displaystyle OA=1{small.}) Тогда, поскольку (displaystyle OB) – катет, прилежащий к углу (displaystyle color{blue}{alpha}{small,}) то (displaystyle OB=OAcdot frac{OB}{OA}= OAcdotcos(color{blue}{alpha})=1cdotcos(color{blue}{alpha})=cos(color{blue}{alpha}){small.}) |
Таким образом, получаем:
абсцисса точки (displaystyle A) (displaystyle = OB=cos(color{blue}{alpha}){small.})
Ответ: (displaystyle cos(color{blue}{alpha}){small.})