Как найти координаты центра окружности онлайн

PLANETCALC, Нахождение центра и радиуса окружности по общему уравнению окружности

Нахождение центра и радиуса окружности по общему уравнению окружности

Коэффициенты a, b, c, d, e уравнения

Введите коэффициенты a, b, c, d, e в указанном порядке ax² + by² + cx + dy + e = 0

Точность вычисления

Знаков после запятой: 2

Уравнение после выделения полного квадрата

Уравнение НЕ является общим уравнением окружности

Приведение общего уравнения окружности к стандартному виду

Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде
(x-a)^2+(y-b)^2=R^2
Из этого уравнения достаточно легко найти центр окружности – это будет точка с координатами (a,b), и радиус окружности – это будет квадратный корень из правой части уравнения.

Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:
x^2+y^2+cx+dy+e=0
Это – уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

Способ решения такого рода задач следующий:

  1. Перегруппируем слагаемые уравнения
    (x^2+cx) + (y^2+dy)+e=0

  2. Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут – Метод выделения полного квадрата), то есть заменим выражение вида ax^2+bx+c на выражение вида a(x-h)^2+k. С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.

Для x^2+cx:
h_x=-frac{c}{2}\k_x=-frac{c^2}{4}

Для y^2+dy:
h_y=-frac{d}{2}\k_y=-frac{d^2}{4}

Тогда
(x^2+cx) + (y^2+dy)+e=0 \ to (x-h_x)^2+k_x + (y-h_y)^2+k_y + e=0 \ to (x-h_x)^2 + (y-h_y)^2=-e - k_x - k_y

Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число – значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

Для решения обратной задачи – нахождения общего уравнения окружности по координатам центра и радиусу – можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • центр:x^2+y^2=1

  • центр:x^2-6x+8y+y^2=0

  • центр:(x-2)^2+(y-3)^2=16

  • центр:x^2+(y+3)^2=16

  • центр:(x-4)^2+(y+2)^2=25

  • Показать больше

Описание

Пошаговое вычисление центра окружности по заданному уравнению

circle-function-center-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Practice, practice, practice

    Math can be an intimidating subject. Each new topic we learn has symbols and problems we have never seen. The unknowing…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Нахождение центра и радиуса окружности по общему уравнению окружности

    Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором

    Нахождение центра и радиуса окружности по общему уравнению окружности

    Уравнение НЕ является общим уравнением окружности

    Приведение общего уравнения окружности к стандартному виду

    Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде

    Из этого уравнения достаточно легко найти центр окружности – это будет точка с координатами (a,b), и радиус окружности – это будет квадратный корень из правой части уравнения.

    Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:

    Это – уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

    Способ решения такого рода задач следующий:

    Перегруппируем слагаемые уравнения

  • Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут – Метод выделения полного квадрата), то есть заменим выражение вида на выражение вида . С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.
  • Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число – значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

    Для решения обратной задачи – нахождения общего уравнения окружности по координатам центра и радиусу – можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

    Уравнение окружности по трем точкам

    Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

    Уравнение окружности

    r 2 = (x — h) 2 + (y — k) 2

    • h,k — координаты центра Окружности
    • x,y — координаты точки окружности
    • r — радиус

    Пример

    Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

    Решение :

    Подставляем координаты точек в формулу

    1. (2 — h) 2 + (2 — k) 2 = r 2
    2. (2 — h) 2 + (4 — k) 2 = r 2
    3. (5 — h) 2 + (5 — k) 2 = r 2

    Шаг :2

    Найдем значение k упрощая 1 и 2 уравнения

    • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
    • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
    • 8 — 4k = 20 — 8k
    • k= 3

    Шаг :3

    Найдем значение h упрощая уравнения 2 и 3

    • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
    • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
    • 8 — 4k — 4h = 50 — 10h — 10k
    • 6k + 6h = 42

    Подставив значение k=3 в уравнение

    Получаем координаты точки центра (h,k) = ( 4,3 )

    Шаг :4

    Подставим значения h,k в формулу

    • r 2 = (x — h) 2 + (y — k) 2
    • r 2 = (2 — 4) 2 + (2 — 3) 2
    • r 2 = (-2) 2 + (-1) 2
    • r 2 = 5
    • r = 2.24

    Шаг :5

    Подставим значения h, k в уравнение окружности

    (x — h) 2 + (y — k) 2

    Уравнение окружности = (x — 4) 2 + (y — 3) 2

    Уравнение окружности

    Для расчета уравнения, надо знать определение окружности. Итак, окружность – это множество точек в пространстве, равноудаленных от одной точки, называемой центром. Отрезок, соединяющий две точки окружности и проходящий через точку центра, называется диаметром. Отрезок, соединяющий две точки окружности – хорда. Отрезок, соединяющий центр и любую точку окружности – радиус. Радиус равен половине диаметра.

    Рассчитывая уравнение окружности, получаем следующие данные:
    • координаты точки центра;
    • длину радиуса.

    И наоборот, зная длину радиуса и координаты точки центра, можно определить координаты любой точки и начертить окружность.

    Для чего необходимо рассчитывать уравнение окружности? Зная длину радиуса, который рассчитывается, исходя из данных уравнения, можно определить длину любой окружности и площадь круга по следующим формулам:
    • l=2πr, где l – длина окружности, π=3,14
    • S=πr2

    Следует помнить, круг – это множество точек на плоскости координат, расположенных внутри окружности. Оптимальный способ рассчитать уравнение окружности – воспользоваться онлайн калькулятором. Это ускорит процесс и позволит быстро решить задачи по соответствующим формулам.

    [spoiler title=”источники:”]

    http://wpcalc.com/uravnenie-okruzhnosti-po-trem-tochkam/

    http://allcalc.ru/node/847

    [/spoiler]

    Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

    Уравнение окружности

    r2 = (x — h)2 + (y — k)2

    где,

    • h,k — координаты центра Окружности
    • x,y — координаты точки окружности
    • r — радиус

    Пример

    Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

    Решение :

    Шаг:1

    Подставляем координаты точек в формулу

    1. (2 — h)2 + (2 — k)2 = r2
    2. (2 — h)2 + (4 — k)2 = r2
    3. (5 — h)2 + (5 — k)2 = r2

    Шаг :2

    Найдем значение  k упрощая 1 и 2 уравнения

    • (2 — h)2 + (2 — k)2 = (2 — h)2 + (4 — k)2
    • 4 — 4h + h2+ 4 — 4k + k2 = 4 — 4h + h2+16 — 8k + k2
    • 8 — 4k = 20 — 8k
    • k=3

    Шаг :3

    Найдем значение h упрощая уравнения 2 и 3

    • (2 — h)2 + (2 — k)2 = (5 — h)2 + (5 — k)2
    • 4 — 4h + h2+ 4 — 4k + k2 = 25 — 10h + h2+ 25 — 10k + k2
    • 8 — 4k — 4h = 50 — 10h — 10k
    • 6k + 6h = 42

    Подставив значение k=3 в уравнение

    • 6h = 24
    • h=4

    Получаем координаты точки центра (h,k) = (4,3)

    Шаг :4

    Подставим значения h,k в формулу

    • r2 = (x — h)2 + (y — k)2
    • r2 = (2 — 4)2 + (2 — 3)2
    • r2 = (-2)2 + (-1)2
    • r2 = 5
    • r = 2.24

    Шаг :5

    Подставим значения h, k в уравнение окружности

    (x — h)2 + (y — k)2

    Уравнение окружности = (x — 4)2 + (y — 3)2

    Ответ :

    • Координаты точки центра окружности c(h,k) = c(4,3)
    • Радиус окружности r = 2.24
    • Уравнение окружности = (x — 4)2 + (y — 3)2 = (2.24)2



    людей нашли эту статью полезной. А Вы?

    Skip to content

    Как найти радиус и центр окружности

    Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.

    Окружность радиуса R с центром в начале координат представляется уравнением:

    уравнение окружности
    Окружность радиуса R с центром в точке C(a;b) представляется уравнением:

    уравнение окружности
    окружность на плоскости
    Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия).
    Это уравнение можно записать в виде:

    Если уравнение помножить на любое число A, то получим

    Примечание
    Окружность относится к линии второго порядка, так как представляется уравнением второй степени.

    Необходимые условия для этого:
    1. Отсутствие в уравнение второй степени члена с произведением xy;
    2. Коэффициенты при x2 и y2 были равны в уравнение вида:

    3. Если выполняется неравенство


    Как найти радиус и центр окружности

    Уравнение Ax2+Bx+Ay2+Cy+D=0  если оно удовлетворяет примечаниям  (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:

    формулы радиус и центр окружности,


    Пример 1
    Уравнение  5x2-10x+5y2+20y-20=0
    Здесь
    A=5, B=-10, C=20, D=-20
    Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство


    Решая, получаем что центр есть (1;-2), а радиус R=3

    Анимационный график окружности


    Пример 2
    Уравнение второй степени x2+4xy+y2=1 не является окружностью, так как в нём есть член 4xy.


    Пример 3
    Уравнение второй степени 4x2+9y2=36 не представляет окружность, так как в нём коэффициенты при x2 и y2 не равны.

    7925


    Добавить комментарий