Как найти координаты физика 9 класс

Определение координаты движущегося тела


Определение координаты движущегося тела

Как определить координаты движущегося тела? Для этого необходимо знать такие понятия, как механическое движение, пройденный путь, скорость, перемещение.

Механическое движение

При механическом движении происходит изменение положения тела в пространстве относительно других тел за промежуток времени. Оно бывает равномерным и неравномерным.

Равномерное движение

При равномерном движении тело за равные промежутки времени проходит одинаковые расстояния (т.е. движется с постоянной скоростью).

Путь, пройденный при равномерном движении равен: Sx=Vxt=x-xо

Следовательно, при равномерном движении координата тела изменяется по следующей зависимости:

Рис. 1. Формула координаты тела при прямолинейном равномерном движении

Где:

  • – начальная координата тела;
  • X – координата в момент времени t;
  • Vx – проекция скорости на ось X.

Неравномерное движение

Неравномерное движение – движение, при котором тело за равные промежутки времени проходит неодинаковые расстояния (движется с непостоянной скоростью), то есть движется с ускорением.

Если тело движется неравномерно, то скорость тела в разные моменты отличается не только по величине, но и (или) по направлению. Средняя скорость тела при неравномерном движении определяется по формуле: V (ср)= S (весь)/t (весь)

Ускорение – величина, показывающая, как изменяется скорость за 1 секунду.

Рис. 2. Формула ускорения

Следовательно, скорость в любой момент времени можно найти следующим образом:

V=Vо+at

Если скорость с течением времени увеличивается, то a больше 0, если скорость с течением времени уменьшается, то a меньше 0.

Как найти путь при равноускоренном движении?

Рис. 3. Прямолинейное равноускоренное движение

Пройденный путь численно равен площади под графиком. То есть Sx=(Vox+Vx)t/2

Скорость в любой момент времени равна Vx=Vox+axt, следовательно Sx=Voxt+axt2/2

Так как перемещение тела равно разности конечной и начальной координат (Sx=X-Xo), то координата в любой момент времени вычисляется по формуле X=Xo+Sx, или

X=Xo+Voxt+axt2/2

Движение тела по вертикали

Если тело движется по вертикали, а не по горизонтали, то такое движение всегда является равноускоренным. Когда тело падает вниз, то падает оно всегда с одинаковым ускорением – ускорением свободного падения. Оно всегда одинаковое: g=9,8 м/кв.с.

При движении по вертикали формула скорости приобретает вид: Vy=Voy+gt,
где Vy и Voy – проекции начальной и конечной скоростей на ось OY.

Координату же можно рассчитать по формуле: Y=Yo+Voyt+gt2/2

Движение тела по окружности

При движении по окружности численное значение скорости может и не изменяться, но поскольку обязательно изменяется направление, то движение по окружности – это всегда равноускоренное движение.

Заключение

Что мы узнали?

Тема «Определение координаты движущего тела», которую изучают в 9 классе, поможет ученикам систематизировать информацию о том, что движение может быть равномерным и неравномерным. Так же для того чтобы знать пройденный путь, нужно выбрать тело отсчета и использовать прибор для отсчета времени.

Оценка доклада

А какая ваша оценка?

На
прошлом уроке мы с вами говорили о пути и перемещении тела. Давайте вспомним,
что путь — это скалярная величина, равная длине траектории, которую
описывает тело за некоторый промежуток времени.

А
перемещением называется направленный отрезок прямой, соединяющий
начальное и конечное положения тела.

Так
как перемещение — это векторная величина, то есть имеет модуль и направление,
то складывать и вычитать перемещения необходимо по правилам сложения и
вычитания векторов. Однако при решении большинства задач, используется понятие
не вектора, а проекции вектора на ось координат.


А что такое проекция вектора и каковы её свойства?

На
это вопрос мы с вами и попытаемся сегодня ответить. Начнём с простого — с
понятия проекция точки на ось. Проекция точки — это основание
перпендикуляра, опущенного из данной точки на ось.

На
представленном рисунке точка А1 — это проекция точки А
на ось Ox,
а точка B1
проекция точки B
на
ось Oy.

Теперь
разберёмся с проекцией вектора на ось. Согласно определению, проекция
вектора на ось — это длина отрезка между проекциями начала и конца вектора на
эту ось, взятая со знаком «плюс» или «минус».

Знак
«плюс» берут, если угол между вектором и осью острый, а «минус» — если угол
тупой.

Обозначать
проекцию вектора будем той же буквой, что и вектор, но с индексом внизу
(например, ax
— это проекция вектора a
на ось Ox).


А если вектор перпендикулярен оси?

Тогда
проекция этого вектора равна нулю.

Проекцию
вектора можно выразить через его модуль и угол между вектором и осью. Итак,
пусть у нас есть вектор a
направленный под некоторым острым углом к координатной оси Ox. Укажем проекцию этого вектора на
ось.

У
нас с вами получился прямоугольный треугольник, гипотенуза которого равна длине
вектора a,
а катет AB1
— это проекция вектора a
на
ось Ox.

Тогда,
на основании определения косинуса острого угла, мы можем записать, что проекция
вектора на ось равна модулю вектора, умноженному на косинус угла между вектором
и осью
:

Это
правило справедливо при любых значениях угла φ. Например,
для углов, больше 90о, косинус угла φ отрицательный. Тогда по
формуле получается, что проекция вектора на ось также отрицательна, как и
должно быть по определению проекции.


А можно ли найти модуль и направление вектора по его проекциям на координатные
оси?

Чтобы
ответить на этот вопрос рассмотрим вектор, лежащий в плоскости xOy.
Вектор, лежащий в заданной плоскости, определяется двумя проекциями на оси
координат.

Обратим
внимание на важное свойство проекций: проекция суммы векторов на ось равна
сумме их проекций на эту ось.

Но
вернёмся к нашему прошлому уроку. На нём мы с вами говорили о том, что
положение тела, которое совершило некоторое перемещение, можно найти
графически. Для этого достаточно отложить вектор перемещения от начального
положения этого тела. Однако в большинстве случаев необходимо уметь вычислять
положение тела, то есть уметь определять его координаты. Давайте на примере
решения задачи посмотрим, как можно определить координату движущегося тела,
зная координату его начального положения и вектор перемещения.

Итак,
два поезда идут по параллельным путям в противоположных направлениях и
встречаются в шестидесяти километрах к востоку от железнодорожного вокзала.
Продолжив движение через некоторое время t первый поезд удалился от места
встречи на 50 километров в восточном направлении, а второй — на 80 километров в
западном. Определите координаты каждого поезда относительно вокзала и
расстояние между ними через промежуток времени t.

Введение

Представьте: вы изо всей силы бросили мяч. Как определить, где он будет находиться через две секунды? Можно подождать две секунды и просто посмотреть, где он. Но, даже не глядя, вы приблизительно можете предсказать, где будет мяч: бросок был сильнее обычного, направлен под большим углом к горизонту, значит, полетит высоко, но недалеко… Используя законы физики, можно будет точно определить положение нашего мяча.

Определить положение движущегося тела в любой момент времени – это и есть основная задача кинематики.

Система отсчета

Начнем с того, что у нас есть тело: как определить его положение, как объяснить кому-то, где оно находится? Об автомобиле мы скажем: он на дороге за 150 метров перед светофором или на 100 метров за перекрестком (см. рис. 1).

Определение местоположения машины

Рис. 1. Определение местоположения машины

Или на трассе за 30 км к югу от Москвы. О телефоне на столе скажем: он сантиметров на 30 правее клавиатуры или рядом с дальним углом стола (см. рис. 2).

Положение телефона на столе

Рис. 2. Положение телефона на столе

Заметьте: мы не сможем определить положение автомобиля, не упомянув другие объекты, не привязавшись к ним: светофор, город, клавиатуру. Мы определяем положение, или координаты, всегда относительно чего-то.

Координаты – это набор данных, по которому определяется положение того или иного объекта, его адрес.


Примеры упорядоченных и неупорядоченных имен

Координата тела – это его адрес, по которому мы его можем найти. Он упорядоченный. Например, зная ряд и место, мы точно определяем, где находится наше место в зале кинотеатра (см. рис. 3).

Зал кинотеатра

Рис. 3. Зал кинотеатра

Буквой и цифрой, например e2, точно задается положение фигуры на шахматной доске (см. рис. 4).

Положение фигуры на доске

Рис. 4. Положение фигуры на доске

Зная адрес дома, например улица Солнечная 14, мы будем искать его на этой улице, на четной стороне, между домами 12 и 16 (см. рис. 5).

Поиск дома

Рис. 5. Поиск дома

Названия улиц не упорядочены, мы не будем искать Солнечную улицу по алфавиту между улицами Розовой и Тургенева. Также не упорядочены номера телефонов, номерные знаки автомобилей (см. рис. 6).

Неупорядоченные имена

Рис. 6. Неупорядоченные имена

Эти номера, идущие подряд, – это лишь совпадение, не означающее соседства.

Мы можем задать положение тела в разных системах координат, как нам удобно. Для того же автомобиля, можно задать точные географические координаты (широту и долготу) (см. рис. 7).

Долгота и широта местности

Рис. 7. Долгота и широта местности

Можно выбрать любую точку в городе и считать, сколько километров нужно проехать на юг и сколько на восток, чтобы найти автомобиль (см. рис. 8).

Местоположение относительно точки

Рис. 8. Местоположение относительно точки

Причем если мы выберем разные такие точки, то получим разные координаты, хотя они будут задавать положение одного и того же автомобиля.

Итак, положение тела относительно разных тел в разных системах координат будет разным. А что такое движение? Движение – это изменение положения тела со временем. Поэтому описывать движение мы будем в разных системах отсчета по-разному, и нет смысла рассматривать движение тела без системы отсчета.

Например, как движется стакан с чаем на столе в поезде, если сам поезд едет? Смотря относительно чего. Относительно стола или пассажира, сидящего рядом на сидении, стакан покоится (см. рис. 9).

Движение стакана относительно пассажира

Рис. 9. Движение стакана относительно пассажира

Относительно дерева около железной дороги стакан движется вместе с поездом (см. рис. 10).

Движение стакана вместе с поездом относительно дерева

Рис. 10. Движение стакана вместе с поездом относительно дерева

Относительно земной оси стакан и поезд вместе со всеми точками земной поверхности будут еще и двигаться по окружности (см. рис. 11).

Движение стакана с вращением Земли относительно земной оси

Рис. 11. Движение стакана с вращением Земли относительно земной оси

Поэтому нет смысла говорить о движении вообще, движение рассматривается в привязке к системе отсчета.


Наблюдение и вычисление

Всё, что мы знаем о движении тела, можно разделить на наблюдаемое и вычисляемое. Вспомним пример с мячом, который мы бросили. Наблюдаемое – это его положение в выбранной системе координат, когда мы его только бросаем (см. рис. 12).

Наблюдение

Рис. 12. Наблюдение

Это момент времени, когда мы его бросили; время, которое прошло после броска. Пусть на мяче нет спидометра, который показал бы скорость мяча, но ее модуль, как и направление, тоже можно узнать, используя, например, замедленную съемку.

С помощью наблюдаемых данных мы можем предсказать, например, что мяч через 5 секунд упадет за 20 м от места броска или через 3 секунды попадет в верхушку дерева. Положение мяча в любой момент времени – это в нашем случае вычисляемые данные.

Что определяет каждое новое положение движущегося тела? Его определяет перемещение, потому что перемещение – это вектор, характеризующий изменение положения. Если начало вектора совместить с начальным положением тела, то конец вектора укажет на новое положение переместившегося тела (см. рис. 13).

Вектор перемещения

Рис. 13. Вектор перемещения

Нахождение координаты тела по перемещению

Рассмотрим несколько примеров на определение координаты движущегося тела по его перемещению.

Пусть тело двигалось прямолинейно из точки 1 в точку 2. Построим вектор перемещения и обозначим его  (см. рис. 14).

Перемещение тела

Рис. 14. Перемещение тела

Тело двигалось вдоль одной прямой, значит, нам будет достаточно одной оси координат, направленной вдоль перемещения тела. Допустим, мы наблюдаем за движением со стороны, совместим начало отсчета с наблюдателем.

Перемещение – вектор, удобнее работать с проекциями векторов на оси координат (у нас она одна).  – проекция вектора  (см. рис. 15).

Проекция вектора

Рис. 15. Проекция вектора

Как определить координату начальной точки, точки 1? Опускаем перпендикуляр из точки 1 на ось координат. Этот перпендикуляр пересечет ось и отметит на оси координату точки 1. Так же определяем координату точки 2 (см. рис. 16).

Опускаем перпендикуляры на ось ОХ

Рис. 16. Опускаем перпендикуляры на ось ОХ

Проекция перемещения равна:

При таком направлении оси и перемещения  будет по модулю равна самому перемещению .

Зная начальную координату и перемещение, найти конечную координату тела – дело математики:


Уравнение

Уравнение – это равенство, содержащее неизвестный член. В чем его смысл?

Любая задача заключается в том, что что-то нам известно, а что-то – нет, и неизвестное нужно найти. Например, тело из некоторой точки переместилось на 6 м в направлении оси координат и оказалось в точке с координатой 9 (см. рис. 17).

Начальное положение точки

Рис. 17. Начальное положение точки

Как найти, из какой точки тело начало движение?

У нас есть закономерность: проекция перемещения – это разность конечной и начальной координат:

Смысл уравнения будет в том, что перемещение и конечную координату мы знаем () и можем подставить эти значения, а начальную координату не знаем, она будет неизвестным в этом уравнении:

И уже решая уравнение, мы получим ответ: начальная координата .


Перемещение и направление оси не совпадают по направлению

Рассмотрим другой случай: перемещение направлено в сторону, противоположную направлению оси координат.

Координаты начальной и конечной точек определяются так же, как и раньше, – опускаются перпендикуляры на ось (см. рис. 18).

Ось направлена в другую сторону

Рис. 18. Ось направлена в другую сторону

Проекция перемещения (ничего не меняется) равна:

Обратите внимание, что  больше, чем , и проекция перемещения , когда она направлена против оси координат, будет отрицательной.

Конечная координата тела из уравнения для проекции перемещения равна:

Как видим, ничего не меняется: в проекции на ось координат конечное положение равно начальному положению плюс проекция перемещения. В зависимости от того, в какую сторону тело переместилось, проекция перемещения будет положительной или отрицательной в данной системе координат.

Перемещение и ось координат находятся под углом друг к другу

Рассмотрим случай, когда перемещение и ось координат направлены под углом друг к другу. Теперь одной оси координат нам недостаточно, нужна вторая ось (см. рис. 19).

Ось направлена в другую сторону

Рис. 19. Ось направлена в другую сторону

Теперь перемещение будет иметь ненулевую проекцию на каждую ось координат. Эти проекции перемещения будут определяться, как и раньше:

Заметьте, модуль каждой из проекций в этом случае меньше модуля перемещения. Модуль перемещения можем легко найти, используя теорему Пифагора. Видно, что если построить прямоугольный треугольник (см. рис. 20), то его катеты будут равны  и , а гипотенуза равна модулю перемещения  или, как часто записывают, просто .

Треугольник Пифагора

Рис. 20. Треугольник Пифагора

Тогда по теореме Пифагора запишем:

Задача

Автомобиль находится в 4 км к востоку от гаража. Воспользуйтесь одной осью координат, направленной на восток, с началом отсчета в гараже. Укажите координату автомобиля в заданной системе через 3 минуты, если автомобиль этим временем ехал со скоростью 0,5 км/мин на запад.

В задаче ничего не сказано о том, что автомобиль поворачивал или изменял скорость, поэтому считаем движение равномерным прямолинейным.

Изобразим систему координат: начало координат у гаража, ось х направлена на восток (см. рис. 21).

Направление оси Ох

Рис. 21. Направление оси Ох

Автомобиль изначально был в точке  и двигался по условию задачи на запад (см. рис. 22).

Движение автомобиля на запад

Рис. 22. Движение автомобиля на запад

Проекция перемещения, как мы неоднократно писали, равна:

Мы знаем, что автомобиль проезжал по 0,5 км каждую минуту, значит, чтобы найти суммарное перемещение, нужно скорость умножить на количество минут :

На этом физика закончилась, осталось математически выразить искомую координату. Выразим ее из первого уравнения:

Подставим перемещение:

Осталось подставить числа и получить ответ. Не забывайте, что автомобиль двигался на запад против направления оси х, это значит, что проекция скорости отрицательна: .

Задача решена.

Итоги

Главное, чем мы сегодня пользовались для определения координаты, – выражение для проекции перемещения:

И из него мы уже выражали координату:

При этом сама проекция перемещения может быть задана, может вычисляться как , как в было в задаче о равномерном прямолинейном движении, может вычисляться сложнее, что нам еще предстоит изучить, но в любом случае координату движущегося тела (где тело оказалось) можно определить по начальной координате (где тело было) и по проекции перемещения (куда переместилось).

На этом наш урок окончен, до свидания!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В., Гутник Е.М. Физика: 9 класс. Учебник для общеобразовательных учреждений. – 14-е изд. – М.: Дрофа, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «Class-fizika.narod.ru» (Источник)
  2. Интернет-портал «Av-physics.narod.ru» (Источник)
  3. Интернет-портал «Class-fizika.narod.ru» (Источник)

Домашнее задание

  1. Что такое перемещение, путь, траектория?
  2. Как можно определить координаты тела?
  3. Запишите формулу для определения проекции перемещения.
  4. Как будет определяться модуль перемещения, если перемещение имеет проекции на две оси координат?
Подробности
Обновлено 06.03.2019 16:09
Просмотров: 393

В большинстве задач необходимо вычислить положение тела, т. е. определить его координаты.

1. С какими величинами производят вычисления – с векторными или скалярными?

Вычисления производят не с векторами, а со скалярными величинами, т.е. с проекциями векторов на координатные оси и с модулями векторов или их проекций.

2. При каком условии проекция вектора на ось будет положительной, а при каком – отрицательной?


Проекция вектора на ось считается положительной, если вектор сонаправлен с этой осью.
Проекция вектора на ось считается отрицательной, если вектор направлен противоположно оси.

3. Как рассчитать изменение координаты тела за время t?

l = |х – х0| = sx
Проекция вектора перемещения s на ось координат равна изменению координаты тела..

4. По какому уравнению можно определить координату тела, зная координату его начального положения и вектор перемещения?

где
х — конечная координата тела,
хо — начальная координата тела,
sx — проекция вектора перемещения на координатную ось OX.

5. Как рассчитать координату движущегося тела, зная координату его начального положения и вектор перемещения?

Задача.

Два автобуса едут по шоссе навстречу друг другу и встречаются в 1000 м справа от остановки О (смотри чертеж).
Продолжая движение, за некоторое время t первый автобус переместился от места встречи на 600 м (вправо),
а второй — на 500 м (влево).
Определите координаты каждого автобуса относительно остановки и расстояние между ними через время t после их встречи.

Проведём координатную ось ОХ параллельно прямой, вдоль которой движутся автобусы, и направим её вправо.
Начало этой оси (х = 0) — точку О — совместим с остановкой, приняв её за тело отсчёта, т.к. в задаче требуется определить положение автобусов по отношению к остановке.

Спроецировав начала и концы векторов перемещения s1 и s2 на ось ОХ, получим отрезки s1x и s2x, которые являются проекциями указанных векторов.
Проекция вектора на ось считается положительной, если вектор сонаправлен с этой осью, и отрицательной, если вектор направлен противоположно оси.

Значит, в данном случае:

s1x > 0,
s2x < 0.

Из чертежа видно, что координаты х1 и х2 можно найти следующим образом:
x1 = x0 + s1x
х2 = х0 + s2x

Расстояние l между двумя телами равно модулю разности их координат:
l = |х1 – х2|

По уравнениям можно рассчитать искомые координаты х1 и х2.
Но какие числа следует подставить в уравнения вместо символов х0, s1x и s2x?

Согласно условию задачи автобусы встретились на расстоянии 1000 м от остановки, значит, длина отрезка Ох0 равна 1000 м.
Координата x0 находится на положительной полуоси ОХ, т. е. х0 > 0.
Значит, х0 = 1000 м.

Поскольку ось ОХ параллельна векторам перемещений автобусов, длины проекций s1x и s2x равны соответственно длинам векторов s1 и s2 (как противоположные стороны построенных на них прямоугольников).
А это означает, что модуль каждой проекции равен модулю соответствующего ей вектора.

Указанные в задаче расстояния (600 м и 500 м), на которые сместились автобусы за время t, представляют собой модули векторов их перемещений.
Значит, модуль проекции s1x равен 600 м, а модуль проекции s2x равен 500 м.

Поскольку проекция s1x положительна, то можно записать:
s1x = 600 м.
Но проекция s2x отрицательна, поэтому:
s2x = -500 м.

Далее можно легко рассчитать по уравнениям координаты автобусов х1 и х2.

Следующая страница – смотреть

Назад в “Оглавление” – смотреть

Перемещение – это направленный отрезок (вектор), соединяющий начальное положение тела с его последующим положением.

(overrightarrow{S}) – вектор перемещения

S = |(overrightarrow{S})|

S – модуль вектора |(overrightarrow{S})| (длина)

(S_{x}) – проекция вектора (overrightarrow{S}) на ось Х

Движение называется криволинейным, когда тело движется по кривой (ломаной); прямолинейным – когда тело движется по прямой.

Траектория – линия, по которой движется тело.

Путь – длина траектории.

Прямолинейное равномерное движение – это когда тело за равные промежутки времени проходит равные пути. Здесь скорость тела остаётся постоянной векторной величиной. v = const

A picture containing tiled Description automatically generated

(overrightarrow{АВ}) – перемещение

Перемещение – отрезок, соединяющий начальное положение тела с его последующим положением.

Diagram Description automatically generated with medium confidence

(overrightarrow{S}) – перемещение

[S] = м

Вектор – направленный отрезок.

A picture containing text, shoji Description automatically generated

ax – проекция (overrightarrow{a}) на ось х

bx < 0

cx = 0

ax = a(x_{2}) – a(x_{1})

ax > 0

A picture containing schematic Description automatically generated

ax = x2 – x1

ay = y2 – y1

|(overrightarrow{a})| = (sqrt{a^{2}x + a^{2}y})

A picture containing shoji, wire Description automatically generated

x = x0 + Sx – уравнение движения

x0 – начальная координата

х – конечная координата

Sx – проекция перемещения

Добавить комментарий