Как найти координаты функции не выполняя построения

Голосование за лучший ответ

Никита Колпаков

Гуру

(2544)


5 лет назад

Поясню на примере. Дупоустим даны 2 линейные функции: y=2х+1 и y=х+4
Что бы без построения найти точки их пересечения, надо приравнять эти графики:
2х+1=х+4
x=3
В этой точке значение у=7. Значит, точка с координатами (3,7) будет являтся общей точкой для графиков у=2х+1 и у=х+4 (или иначе говоря точкой пересечения этих двух графиков).

Анечка Щербакова

Знаток

(300)


5 лет назад

Смотрите: у них есть точка пересечения, значит они пересекаются.
Вам даны 2 функции. Они одинаковы (точнее их результаты). Убираете из функций “y” (игрек), пишите одну функцию (любую, из двух), затем = (равно), и другую функцию, тоже без игрека. Получилось уравнение, в левую часть неизвестные с числами, в другую числа (надеюсь такие уравнения вы можете решать)). Вышел ответ (чему равен икс). Теперь находим игрек. Пишем любую функцию из двух (с игреком), но вместо икса подставляем число, которое вышло в уравнение. И выходит новое уравнение, только надо найти игрек. Решаем уравнение. Первый ответ (где икс находили) записываем (это одна координата), а второй ответ другая координата.
Пример:

y=3х+2 и y=4+х

Выйдет уравнение:

3х+2=4+х

3х-х=4-2

2х=2

х=1

Это одна координата, берем любую функцию из двух, и подставляем х.

y=4+1

y=5

Выходит: (1;5) (х; y)
Это их точки пересечения)

Хорошист Хренов

Ученик

(103)


2 года назад

Аналитическим путём. т. е. с помощью вычислений.
К сожалению, ваш вопрос неконкретный. Какую точку вы хотите найти:
точку пересечения графика функции с осями координат или же точку пересечения графика функции с графиком другой функции?
1) Если речь идёт о нахождении точки пересечения графика, допустим, линейной функции с осями координат, поступаем так:
у=2х+5 – линейная функция
у=0 – ось Ох
х=0 – ось Оу
Находим точки пересечения:
с осью Ох 2х+5=0
2х=-5
х=-2,5
(-2,5;0)-точка пересечения с Ох
с осью Оу у=2*0+5
у=5
(0;5)-точка пересечения с Оу
2) Если речь идёт о пересечении 2-х функций, например, линейных, то надо приравнять их друг другу и найти сначала х, а затем и у:
у=2х+5 и у=-3х
2х+5=-3х
2х+3х=-5
5х=-5
х=-1
у (-1)=-3(-1)=3
(-1;3)- точка пересечения графиков функций

Как найти точки пересечения графиков функций — алгоритмы и примеры правила и методики

Существует определенный класс задач по дисциплине «Алгебра и начало анализа», в которых нужно найти точки пересечения графиков функций без их построения. Решать такие задания довольно просто, когда известна определенная методика нахождения координат по оси абсцисс и ординат. Однако для этого необходимо научиться правильно находить корни уравнений различных типов.

Общие сведения

Функция — некоторое выражение, описывающее зависимость между двумя величинами. Следует отметить, что последних может быть несколько. Параметр, который не зависит от других элементов, называется аргументом, а зависимое тождество — значением функции.

Точка пересечения графиков означает, что у системы уравнений существует общее решение. Следует отметить, что для их нахождения можно воспользоваться графическим и аналитическим методом. Первый подразумевает построение графического представления выражения с переменной.

Чтобы найти пересечение графиков функций аналитическим способом, необходимо решить уравнение, корни которого являются искомыми точками. Для их нахождения специалисты рекомендуют получить базовые понятия о равенствах с переменными, а также о методах их решения.

Классификация уравнений

Уравнение — тождество, содержащее неизвестные величины (переменные), которые следует найти при помощи определенного алгоритма. Последний зависит от типа выражений. Тождества классифицируются на несколько типов:

  • Линейные.
  • Квадратные.
  • Кубические.
  • Биквадратные.

    Линейными являются уравнения, содержащие единичную степень, т. е. 2t=4. Квадратные — тождества, у которых переменная возведена в квадрат. Они имеют следующий вид: Pt^2+St+U=0, где Р и S — коэффициенты при неизвестных, а U — свободный член.

    Кубическое — уравнение вида Ot^3+Pt^2+St+U=0, где O, Р и S — коэффициенты при переменных, а U — константа. Последний вид — равенства, в которых при переменной присутствует четвертая степень (Nt^4+Ot^3+Pt^2+St+U=0).

    Равносильные тождества

    При выполнении математических операций каждое выражение может быть заменено на эквивалентное, т. е. равносильное. Иными словами, равносильными называются уравнения, различные по составляющим их элементам, но имеющие одинаковые корни. Следует отметить, что ими являются также выражения, не имеющие решений. Математики выделяют три свойства: симметричность, транзитивность и разложение на множители.

    Формулировка первого: когда I уравнение равносильно II, то значит, и II равносильно I. Суть транзитивности состоит в том, что если I равносильно II, а II — III, то значит I эквивалентно III. Второе свойство имеет такую формулировку: произведение двух элементов, содержащих переменные, равное нулевому значению, эквивалентно двум выражениям, которые можно приравнять к 0. Математическая запись утверждения имеет такой вид: R(t)*S(t)=0 .

    Математические преобразования

    Для решения уравнения необходимо выполнить некоторые математические преобразования. Они должны выполняться грамотно, поскольку любая ошибка приводит к образованию ложных корней. Допустимыми операциями являются следующие:

  • Правильное раскрытие скобок с учетом алгебраической операции и знаков.
  • Упрощение выражения (приведение подобных величин).
  • Перенос элементов в любые части равенства с противоположным знаком.
  • Возможность прибавлять или вычитать эквивалентные величины.
  • Деление и умножение на любые эквивалентные значения, не превращающие тождества в пустое множество.

    Специалисты рекомендуют избегать операций, при которых сокращаются неизвестные величины. Следствием этого могут стать ложные корни. Кроме того, делитель не должен иметь значения, при которых его значение равно 0. Последнее условие следует всегда проверять, а при решении ни один корень уравнения не должен соответствовать значению переменной при нахождении окончательных корней.

    Иными словами, в выражении (t+2)^2=0 для упрощения можно разделить обе части на (t+2) при условии, что t не равно -2, т. к. [(t+2)^2]/(t+2)=0/(t+2).

    Однако при решении (t+2)=0 получается, что t=-2, а это недопустимо. Следовательно, вышеописанный метод не всегда подходит.

    Разложение на множители

    Для решения уравнений при выполнении математических преобразований могут потребоваться специальные формулы разложения на множители. Их еще называют тождествами сокращенного умножения. К ним относятся следующие:

  • Квадрат суммы и разности: (p+r)^2=p^2+2pr+r^2 и (p-r)^2=p^2-2pr+r^2 соответственно.
  • Разность квадратов: p^2-r^2=(p-r)(p+r).

    В некоторых случаях можно воспользоваться сразу двумя соотношениями, т. е. выделить квадрат суммы, а затем из первого — разность квадратов. Выделение первого осуществляется группировкой посредством скобок в выражении, а затем введение положительного и отрицательного элементов, т. е. s^2+4s-5=s^2+4s+4-4-5=(s^2+4s+4)-4-5=(s+2)^2 -9. Для получения всех элементов формулы «p+r)^2=p^2+2pr+r^2» нужно прибавить, а затем отнять 4. При этом значение равенства не изменится, поскольку 4-4=0.

    Следует отметить, что математические преобразования выражения (s+2)^2 -9 не заканчиваются, поскольку его можно представить в виде разности квадратов, т. е. (s+2-9)(s+2+9)=(s-7)(s+11). Кроме того, формулы сокращенного умножения рекомендуется применять при понижении степени.

    Методики нахождения точек

    Чтобы узнать, пересекаются ли графики функций, нужно приравнять соответствующие тождества, а затем решать уравнение. Однако при такой операции могут получиться различные равенства с неизвестными. В этом случае требуется обратить внимание на нижеописанные методики решения для каждого вида.

    Первой и второй степени

    Уравнение первой степени, или линейное, решается очень просто. Для этого необходимо перенести переменные величины в одну, а известные — в другую сторону. Методика решения имеет следующий вид:

  • Раскрыть скобки и привести подобные коэффициенты.
  • Выполнить перенос известных в одну, а неизвестных — в другую часть равенства.
  • Произвести необходимые математические преобразования.
  • Найти корень.

    Сложнее решается квадратное уравнение. Существует несколько способов нахождения его корней:

  • Разложить на множители.
  • Выделить полный квадрат.
  • Найти дискриминант.
  • По теореме Виета.

    Первый способ применяется довольно часто, поскольку с его помощью можно понижать степень при неизвестной величине. Второй подразумевает выделение квадрата по одной из формул сокращенного умножения. Чтобы воспользоваться одним из двух методов, необходимо знать соответствующие тождества (правила разложения на множители).

    Однако не всегда можно быстро решить квадратное уравнение при помощи первых двух методов. Еще один вариант — нахождение корней через дискриминант (Д), т. е. дополнительный параметр, позволяющий сразу находить решения. Он находится по следующей формуле: Д=(-S)^2 -4PU.

    Следует отметить, что при Д>0 переменная принимает два значения, которые превращают равенство в истину. Если Д=0, то корень только один. Когда Д

    Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта “Образование”.

    Решение на Задание 1074 из ГДЗ по Алгебре за 7 класс: Макарычев Ю.Н.

    Условие

    Решение 1

    Решение 2

    Поиск в решебнике

    Популярные решебники

    Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

    Издатель: А.Г. Мордкович, 2013г.

    Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

    ГДЗ учебник по алгебрее 7 класс Макарычев. Номер №372

    Не выполняя построения, найдите координаты точки пересечения графиков линейных функций:
    а ) y = 4 x + 9 и y = 6 x − 5 ;
    б ) y = 16 x − 7 и y = 21 x + 8 ;
    в ) y = 10 x − 7 и y = 5 ;
    г ) y = 0,1 x и y = 14 .

    ГДЗ учебник по алгебрее 7 класс Макарычев. Номер №372

    Решение а

    4 x + 9 = 6 x − 5
    4 x − 6 x = − 5 − 9
    − 2 x = − 14
    x = 7
    y = 4 x + 9 = 4 * 7 + 9 = 28 + 9 = 37
    ( 7 ; 37 ) − точка пересечения графиков линейных функций.

    Решение б

    16 x − 7 = 21 x + 8
    16 x − 21 x = 8 + 7
    − 5 x = 15
    x = − 3
    y = 16 x − 7 = 16 * (− 3 ) − 7 = − 48 − 7 = − 55
    (− 3 ;− 55 ) − точка пересечения графиков линейных функций.

    Решение в

    10 x − 7 = 5
    10 x = 5 + 7
    10 x = 12
    x = 1,2
    y = 5
    ( 1,2 ; 5 ) − точка пересечения графиков линейных функций.

    Решение г

    0,1 x = 14
    x = 140
    y = 14
    ( 140 ; 14 ) − точка пересечения графиков линейных функций.

    [spoiler title=”источники:”]

    http://vipgdz.com/7-klass/algebra/makarychev-yu-n/zadanie-1074

    http://reshalka.com/uchebniki/7-klass/algebra/makarychev/400

    [/spoiler]

  • Как определить точку пересечения функций без построения графика?

    На этой странице находится вопрос Как определить точку пересечения функций без построения графика?. Здесь же – ответы на него,
    и похожие вопросы в категории Алгебра, которые можно найти с помощью
    простой в использовании поисковой системы. Уровень сложности вопроса
    соответствует уровню подготовки учащихся 5 – 9 классов. В комментариях,
    оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С
    ними можно обсудить тему вопроса в режиме on-line. Если ни один из
    предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой
    строке, расположенной вверху, и нажмите кнопку.

    Не выполняя построения, найдите координаты точек пересечения с осями координат графика функции:
    а) y = −2,4x + 9,6;
    б) y = −0,7x − 28;
    в) y = 1,2x + 6;
    г) y = −5x + 2.

    reshalka.com

    ГДЗ учебник по алгебрее 7 класс Макарычев. 16. Линейная функция и ее график. Номер №322

    Решение а

    y = −2,4x + 9,6
    с осью абсцисс:
    2,4x + 9,6 = 0
    2,4x = −9,6

    x =
    4
    (4;0)
    с осью ординат:

    y = −
    2,4 * 0 + 9,6

    y =
    9,6
    (0;9,6)

    Решение б

    y = −0,7x − 28
    с осью абсцисс:
    0,7x − 28 = 0
    0,7x = 28

    x = −
    40
    (−40;0)
    с осью ординат:

    y = −
    0,7 * 028

    y = −
    28
    (0;−28)

    Решение в

    y = 1,2x + 6
    с осью абсцисс:
    1,2x + 6 = 0
    1,2x = −6

    x = −
    5
    (−5;0)
    с осью ординат:

    y =
    1,2 * 0 + 6

    y =
    6
    (0;6)

    Решение г

    y = −5x + 2
    с осью абсцисс:
    5x + 2 = 0
    5x = −2

    x =
    0,4
    (0,4;0)
    с осью ординат:

    y = −
    5 * 0 + 2

    y =
    2
    (0;2)

    Точки пересечения графиков функций

    В алгебре и начале анализа можно встретить множество задач на поиск точек пересечения графиков функций с помощью их построения или другими методами. Благодаря определенному алгоритму действий, найти ответ достаточно просто. В большинстве случаев решение заключается в определении корней различного вида уравнений.

    График функции (y = f(x)) является множеством точек ((x; y)), координаты которых связаны соотношением (y = f(x).)

    Равенство (y = f(x)) называют уравнением данного графика. Таким образом, график функции представляет собой множество точек (x; y), где x — является аргументом, а y — определяется как значение функции, соответствующее данному аргументу.

    Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

    В том случае, когда графики пересекаются в какой-то точке, можно сделать вывод о существовании общего решения системы уравнений. Определить координаты точки можно с помощью графического или аналитического метода. В первом случае требуется построить график уравнения с переменной. Аналитический метод поиска координат точек, в которых графики функций пересекаются, подразумевает решение уравнения, а найденные корни и являются искомыми точками.

    Как найти координаты, примеры решения

    Существует несколько способов решения подобных задач:

    1. Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
    2. Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
    3. Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.

    В качестве примера можно рассмотреть две линейные функции:

    (f(x) = k_1 x+m_1)

    (g(x) = k_2 x + m_2)

    Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения (x_1) и (x_2) и найти (f(x_1)) и ((x_2)). Далее действия необходимо повторить с функцией (g(x)). Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.

    Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда (k_1 neq k_2). В противном случае (k_1=k_2), а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При( k_1 neq k_2) и (m_1=m_2) точка пересечения будет соответствовать (M(0;m)). Данная закономерность упрощает решение многих подобных задач.

    Задача № 1

    Имеются функции: (f(x) = 2x-5)

    (g(x)=x+3)

    Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.

    Решение

    В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:

    (k_1 = 2)

    (k_2 = 1)

    Заметим, что:

    (k_1 neq k_2)

    По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:

    (f(x)=g(x))

    (2x-5 = x+3)

    Необходимо перенести члены с x в левую часть, а остальные – в правую:

    (2x – x = 3+5)

    (x = 8)

    В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в (f(x)), либо в (g(x)):

    (f(8) = 2cdot 8 – 5 = 16 – 5 = 11)

    Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.

    Ответ: M (8;11)

    Задача № 2

    Записаны две функции: (f(x)=2x-1)

    (g(x) = 2x-4.)

    Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.

    Решение

    Угловые коэффициенты:

    (k_1 = k_2 = 2)

    Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.

    Ответ: графики функций параллельны, точки пересечения отсутствуют.

    Задача № 3

    Требуется определить координаты точки, в которой пересекаются графики следующих функций: (f(x)=x^2-2x+1)

    (g(x)=x^2+1)

    Решение

    В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:

    (x^2-2x+1=x^2+1)

    Далее необходимо разнести в разные стороны уравнения члены с x и без него:

    (x^2-2x-x^2=1-1)

    (-2x=0)

    (x=0)

    Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить (x = 0) в какое-либо из двух начальных уравнений. К примеру:

    (f(0)=0^2-2cdot 0 + 1 = 1)

    M (0;1) является точкой, в которой пересекаются графики функций.

    Ответ: M (0;1)

    Приравнивание функций друг к другу и нахождение корней

    Выяснить, имеют ли точки пересечения графики функций, можно путем сравнения соответствующих тождеств и решения уравнения. Однако при этом допускается получение различных равенств с неизвестными. Тогда целесообразно воспользоваться специальными методиками.

    Когда уравнение относится к первой степени или является линейным, решение получить достаточно просто. Метод заключается в переносе переменных величин в одну часть уравнения, а известных – в другую. Алгоритм действий:

    • раскрытие скобок, приведение подобных коэффициентов;
    • перенос членов с неизвестными в одну сторону, а с известными – в другую;
    • математические преобразования;
    • определение корня.

    Квадратные уравнения решают с помощью одного из способов:

    • разложение на множители;
    • выделение полного квадрата;
    • поиск дискриминанта;
    • теорема Виета.

    В первом случае представляется возможным понизить степень при неизвестной величине. Второй метод заключается в выделении квадрата по одной из формул сокращенного умножения. Каждая из этих методик реализуема при наличии знаний соответствующих тождеств, в том числе правил разложения на множители.

    Третий способ состоит в поиске корней через дискриминант (Д), который является дополнительным параметром, позволяющим сразу решить задачу. Дискриминант определяется с помощью формулы:

    ((-S)^2-4PU)

    В том случае, когда Д>0, переменная может иметь пару значений, которые превращают равенство в справедливое тождество. Если Д=0, то корень является единственным. Когда Д<0, искомое тождество с неизвестными не имеет решений.

    Квадратные уравнения решают таким образом:

    • выполнение необходимых алгебраических преобразований, в том числе раскрытие скобок и приведение подобных слагаемых;
    • выбор наиболее оптимального способа решения и его реализация;
    • проверка корней с помощью их подстановки в начальное выражение.

    Примечание

    Распространенной ошибкой является пренебрежение проверкой результатов решения. Некорректные действия могут привести к образованию ложных корней.

    Существует несколько методик решения тождеств кубического и биквадратного типов:

    • понижение степени, то есть разложение на множители;
    • замена переменной.

    Первый вариант решения подразумевает выполнение преобразований для последующего применения одной из формул сокращенного умножения. Такой способ применяют нечасто. Второй способ состоит в том, что при решении необходимо ввести переменную с более низкой степенью, которая упрощает выражение. Порядок действий при этом следующий:

    • выполнение математических преобразований;
    • выражение переменной через другую;
    • решение квадратного или линейного уравнения;
    • подстановка промежуточных корней, которые получилось найти на третьем шаге, во второй;
    • вычисление искомых корней;
    • проверка;
    • исключение ложных решений;
    • запись ответа.

    Путем составления системы уравнений

    Данный метод определения точек пересечения графиков функций предполагает запись системы уравнения. К примеру:

    К примеру

    Источник: static-interneturok.cdnvideo.ru

    Решение системы уравнений представляет собой пару чисел (х, у), являющуюся одновременно решением для первого и второго уравнения системы. Решить систему уравнений – значит, отыскать все ее решения, либо установить их отсутствие.

    Порядок действий при решении системы уравнений можно рассмотреть на примере:

    Порядок действий при решении системы уравнений можно рассмотреть на примере

    Источник: static-interneturok.cdnvideo.ru 

    Решение будет иметь следующий вид:

    Решение будет иметь следующий вид

    Источник: static-interneturok.cdnvideo.ru

    Данные уравнения являются линейными, поэтому график каждого из них представляет собой прямую. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и является решением системы уравнений.

    Прямые пересекаются в точке

    Источник: static-interneturok.cdnvideo.ru

    Решение системы представляет сбой единственную пару чисел:

    Решение системы представляет сбой единственную пару чисел:

    Источник: static-interneturok.cdnvideo.ru 

    Если подставить данные числа в любое из уравнений, то получится справедливое равенство. Таким образом, имеется единственное решение линейной системы. Можно записать отчет: (-1;0).

    В процессе решения линейной системы можно столкнуться с разными ситуациями:

    • система обладает единственным решением, прямые пересекаются;
    • решения системы отсутствуют. прямые параллельны;
    • система обладает бесчисленным множеством решений, прямые совпадают.

    При рассмотрении частного случая системы p(x; y) и q(x; y) являются линейными выражениями от x и y.

    В задачах нередко требуется решить нелинейную систему уравнений. К примеру, необходимо решить следующую систему:

    К примеру, необходимо решить следующую систему

    Источник: static-interneturok.cdnvideo.ru

    Решение имеет следующий вид:

    Решение имеет следующий вид

    Источник: static-interneturok.cdnvideo.ru

    График первого уравнения будет иметь вид прямой, а второго – являться окружностью. Можно построить первый график по точкам:

    Можно построить первый график по точкам

    Источник: static-interneturok.cdnvideo.ru

    Центр окружности в точке О(0; 0), радиус равен 1.

    Графики пересекаются в точке А(0; 1) и в точке В(-1; 0).

    Ответ: (0; 1); (-1; 0).

    Можно решить систему графическим способом:

    Можно решить систему графическим способом

    Источник: static-interneturok.cdnvideo.ru

    В первую очередь необходимо построить график первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 2. График второго уравнения является параболой, которая смещена относительно начала координат на 2 вверх, то есть ее вершина – точка (0; 2).

    График второго уравнения является параболой

    Источник: static-interneturok.cdnvideo.ru

    Графики обладают одной общей точкой А(0; 2). Данная точка является решением системы. Если подставить два числа в уравнение, можно проверить корректность ответа и записать его. Ответ: (0; 2).

    В качестве еще одного примера можно решить следующую систему:

    В качестве еще одного примера можно решить следующую систему

    Источник: static-interneturok.cdnvideo.ru

    Первым шагом является построение графика первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 1.

    Первым шагом является построение графика первого уравнения

    Источник: static-interneturok.cdnvideo.ru

    Далее необходимо построить график функции:

    Далее необходимо построить график функции

    Источник: static-interneturok.cdnvideo.ru

    График будет являться ломанной:

    График будет являться ломанной

    Источник: static-interneturok.cdnvideo.ru

    Далее следует сместить ее на 1 вниз по оси oy. В результате получится график функции:

    В результате получится график функции

    Источник: static-interneturok.cdnvideo.ru

    При помещении обоих графиков в одну систему координат получится следующая ситуация:

    При помещении обоих графиков в одну систему координат получится следующая ситуация

    Источник: static-interneturok.cdnvideo.ru

    Таким образом, получились три точки пересечения: А(1; 0), т. В(-1; 0), т. С(0; -1)

    Нахождение через графическое построений функций

    Любой определенный график задают с помощью соответствующей функции. Найти точки, в которых пересекаются графики, можно путем решения уравнения, имеющего вид:

    (f1(x)=f2(x))

    Решение данного уравнения будет являться искомой точкой.

    Решение данного уравнения будет являться искомой точкой

    Источник: st03.kakprosto.ru

    Построить график можно с помощью бумаги и ручки. В процессе необходимо обратить внимание на то, что количество точек пересечения пары графиков определяется видом функции. Линейные функции обладают лишь одной точкой пересечения, линейная и квадратная – двумя, квадратные – двумя, либо четырьмя.

    В общем случае двух линейных функций можно предположить, что:

    (y1=k1x+b1)

    (y2=k2x+b2)

    Для поиска точки пересечения графиков необходимо решить уравнение:

    (y1=y2 или k1x+b1=k2x+b2)

    После преобразований получится, что:

    (k1x-k2x=b2-b1.)

    Далее нужно выразить x:

    (x=(b2-b1)/(k1-k2).)

    При известной координате точки по оси абсцисс следует определить координату по оси ординат. Таким образом, можно найти координаты точки пересечения графиков:

    (((b2-b1)/(k1-k2); k1(b2-b1)/(k1-k2)+b2))

    График функции y = f (х) представляет собой множество точек плоскости, координаты (х, у) которых соответствуют выражению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика определяют несколько значений довода х и для них рассчитывают соответствующие значения функции y=f(x). Для больше точного и наглядного построения графика следует обнаружить его точки пересечения с осями координат.

    С целью определить точку пересечения графика функции с осью y, нужно определить значение функции при х=0, то есть обнаружить f(0). В качестве примера можно рассмотреть график линейной функции, изображенной на рисунке:

    В качестве примера можно рассмотреть график линейной функции

    Источник: st03.kakprosto.ru

    В данном случае при х=0 ((y=a*0+b)) функция равна b. Таким образом, график пересекает ось ординат (ось Y) в точке (0,b). Когда пересекается ось абсцисс (ось Х) функция равна 0, то есть (y=f(x)=0). Для того чтобы определить х, следует решить уравнение (f(x)=0). В случае линейной функции получаем уравнение (ax+b=0), откуда и находим (x=-b/a). В результате можно сделать вывод, что ось Х пересекается в точке ((-b/a,0).)

    При наличии квадратичной зависимости y от х, уравнение (f(x)=0) обладает двумя корнями. Таким образом, ось абсцисс пересекается два раза. В случае периодической зависимости y от х, например, (y=sin(x)), график функции обладает бесконечным количеством точек пересечения с осью Х. Проверить корректность расчета координат точек, в которых пересекаются графики функций, можно с помощью подстановки найденных значений х в выражение f(x). Значение выражения при любом из вычисленных х должно быть равно 0.

    Добавить комментарий