Как найти координаты критических точек

Содержание:

  1. Критические точки и экстремумы функции
  2. Теорема Ферма (Необходимое условие существовании экстремумов)
  3. Достаточное условие существования экстремума
  4. Задача пример №117
  5. Задача пример №118
  6. Задача пример №119
  7. Задача пример №120
  8. Задача пример №121

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

1. Для значений Критические точки и экстремумы функции равных Критические точки и экстремумы функцииКритические точки и экстремумы функции угловой коэффициент касательной к графику равен 0. Т.e. Критические точки и экстремумы функции. Эти точки являются критическими точками функции.

2. В точках Критические точки и экстремумы функции функция не имеет производной. Эти тоже критические точки функции.

Критические точки и экстремумы функции

3. Для рассматриваемой нами функции критические точки Критические точки и экстремумы функцииКритические точки и экстремумы функции делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Критические точки и экстремумы функции– критические точки, которые не изменяют возрастание и убывание (или наоборот).

По графику видно, что в точках внутреннего экстремума Критические точки и экстремумы функции производная функции равна нулю, а в точке Критические точки и экстремумы функции производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Критические точки и экстремумы функции

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Критические точки и экстремумы функции производная функции Критические точки и экстремумы функции равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т.е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Достаточное условие существования экстремума

Пусть функция Критические точки и экстремумы функции непрерывна на промежутке Критические точки и экстремумы функции и Критические точки и экстремумы функции. Если Критические точки и экстремумы функции является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

1 ) Критические точки и экстремумы функции слева от точки Критические точки и экстремумы функции положительна, а справа – отрицательна, то точка Критические точки и экстремумы функции является точкой максимума.

2) Критические точки и экстремумы функции слева от Критические точки и экстремумы функции отрицательна, а справа – положительна, то точка Критические точки и экстремумы функции является точкой минимума

3) Критические точки и экстремумы функции с каждой стороны от точки Критические точки и экстремумы функции имеет одинаковые знаки, то точка Критические точки и экстремумы функции не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Критические точки и экстремумы функции на отрезке Критические точки и экстремумы функции записываются как Критические точки и экстремумы функции и Критические точки и экстремумы функции.

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Критические точки и экстремумы функции

Задача пример №117

Для функции Критические точки и экстремумы функции определите максимумы и минимумы и схематично изобразите график.

Решение:

Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки функции: Критические точки и экстремумы функции

3. Точки Критические точки и экстремумы функции и Критические точки и экстремумы функции разбивают область определения функции на три промежутка.

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки:

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание и убывание Критические точки и экстремумы функции

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции. (-1;3) – максимум

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции (1;-1) – минимум

4. Используя полученные для функции Критические точки и экстремумы функции данные и найдя координаты нескольких дополнительных точек, построим график функции.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Задача пример №118

Найдите наибольшее и наименьшее значение функции Критические точки и экстремумы функции на отрезке [-1;2].

Решение:

Сначала найдем критические точки. Так как Критические точки и экстремумы функции, то критические точки можно найти из уравнения Критические точки и экстремумы функции. Критическая точка Критические точки и экстремумы функции не принадлежит данному отрезку [-1; 2], и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Критические точки и экстремумы функции и на концах отрезка.

Критические точки и экстремумы функции

Из этих значений наименьшее – 4, наибольшее 12. Таким образом: Критические точки и экстремумы функции

Задача пример №119

Найдите экстремумы функции Критические точки и экстремумы функции.

Решение:

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки: Критические точки и экстремумы функции, Критические точки и экстремумы функции

3. Интервалы, на которые критические точки делят область определения функции: Критические точки и экстремумы функции

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки.

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Для промежутка (0; 1,5) возьмем Критические точки и экстремумы функции

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции

Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание-убывание Критические точки и экстремумы функции

Используя полученную для функции Критические точки и экстремумы функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Критические точки и экстремумы функции и Критические точки и экстремумы функции касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Критические точки и экстремумы функции Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

• Точка Критические точки и экстремумы функции критическая точка функции Критические точки и экстремумы функции, но не является экстремумом.

• Функция Критические точки и экстремумы функции на промежутке [0; 1,5] возрастает.

• Функция Критические точки и экстремумы функциина промежутке Критические точки и экстремумы функции убывает.

Критические точки и экстремумы функции

Задача пример №120

Найдите экстремумы функции Критические точки и экстремумы функции

Решение:

1. Производная Критические точки и экстремумы функции

2. Критические точки: для этого надо решить уравнение Критические точки и экстремумы функции или найти точки, в которых производная не существует. В точке Критические точки и экстремумы функции функция не имеет конечной производной. Однако точка Критические точки и экстремумы функции принадлежит области определения. Значит, точка Критические точки и экстремумы функции является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Критические точки и экстремумы функции и Критические точки и экстремумы функции

Определим знак Критические точки и экстремумы функции, выбрав пробные точки для каждого промежутка:

Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции

Возрастание-убывание Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции убывает.

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

Критические точки и экстремумы функции

Задача пример №121

По графику функции производной Критические точки и экстремумы функции схематично изобразите график самой функции.

Критические точки и экстремумы функции

Решение:

Производная Критические точки и экстремумы функции в точке Критические точки и экстремумы функции равна нулю, а при Критические точки и экстремумы функции отрицательна, значит, на интервале Критические точки и экстремумы функции функция убывающая. При Критические точки и экстремумы функции производная положительна, а это говорит о том, что функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает. Точкой перехода от возрастания к убыванию функции является точка Критические точки и экстремумы функции. Соответствующий график представлен на рисунке.

Критические точки и экстремумы функции

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Объемы подобных фигур
  • Нахождение промежутков возрастания и убывания функции
  • Построение графиков функции с помощью производной
  • Задачи на экстремумы. Оптимизации

Лекции:

  • Экстремумы функции двух переменных. Производная по направлению
  • Доказательство неравенств
  • Системы уравнений
  • Максимальные и минимальные значения функции
  • Действия с корнями
  • Отрицательное биномиальное распределение
  • Длина дуги кривой
  • Вычислить несобственный интеграл
  • Градиент функции: пример решения
  • Интеграл натурального логарифма

Критические точки – это точки в которых производная функции равна нулю или не существует. Если производная равна 0 то функция в этой точке принимает локальный минимум или максимум. На графике в таких точках функция имеет горизонтальную асимптоту, то есть касательная параллельна оси Ох.

критические точки

Такие точки называют стационарными. Если видите на графике непрерывной функции «горб» или «яму» помните, что максимум или минимум достигается в критической точке. Рассмотрим для примера следующее задание.

Пример 1. Найти критические точки функции y=2x^3-3x^2+5 .
Решение. Алгоритм нахождения критических точек следующий:

Итак функция имеет две критические точки.

Далее, если нужно провести исследование функции то определяем знак производной слева и справа от критической точки. Если производная при переходе через критическую точку меняет знак с «-» на «+», то функция принимает локальный минимум. Если с «+» на «-» должны локальный максимум.

Второй тип критических точек это нули знаменателя дробных и иррациональных функций
критические точки

Функции с логарифмами и тригонометрические, которые не определены в этих точках
критические точки
критические точки
Третий тип критических точек имеют кусочно-непрерывные функции и модули.
Например любая модуль-функция имеет минимум или максимум в точке излома.

Например модуль y = | x -5 | в точке x = 5 имеет минимум (критическую точку).
Производная в ней не существует, а справа и слева принимает значение 1 и -1 соответственно.

Попробуйте определить критические точки функций

1) функция
2) функция
3) функция
4) функция
5)

Если в ответе у Вы получите значение
1) x=4;
2) x=-1;x=1;
3) x=9;
4) x=Pi*k;
5) x=1.
то Вы уже знаете как найти критические точки и сможете справиться с простой контрольной или тестами.

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • критические:точки:y=frac{x^2+x+1}{x}

  • критические:точки:f(x)=x^3

  • критические:точки:f(x)=ln (x-5)

  • критические:точки:f(x)=frac{1}{x^2}

  • критические:точки:y=frac{x}{x^2-6x+8}

  • критические:точки:f(x)=sqrt{x+3}

  • критические:точки:f(x)=cos(2x+5)

  • критические:точки:f(x)=sin(3x)

  • Показать больше

Описание

Пошаговый поиск критических и стационарных точек функций

function-critical-points-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Functions

    A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Экстремумы функции

    Необходимое условие экстремума функции одной переменной

    Достаточное условие экстремума функции одной переменной

    Если в точке x * выполняется условие:

    Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3].
    Решение.

    Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
    Вычисляем значения функции на концах отрезка и в критической точке.
    f(1)=9, f(2)= 5 /2, f(3)=3 8 /81
    Ответ: fmin= 5 /2 при x=2; fmax=9 при x=1

    Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
    Решение.
    Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.

    Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
    Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
    Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

    Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
    Решение. Обозначим x – первое слагаемое. Тогда (49-x) – второе слагаемое.
    Произведение будет максимальным: x·(49-x) → max
    или
    49x – x 2

    Как найти критические точки функции по уравнению

    Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

    Контакты

    Администратор, решение задач
    Роман

    Tel. +380685083397
    [email protected]
    skype, facebook:
    roman.yukhym

    Решение задач
    Андрей

    facebook:
    dniprovets25

    Построение графиков функций

    О чем эта статья:

    11 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Понятие функции

    Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

    Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

    • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
    • Графический способ — наглядно.
    • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
    • Словесный способ.

    Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

    Например, для функции вида область определения выглядит так

    • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

    Область значений — множество у, то есть это значения, которые может принимать функция.

    Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

    Понятие графика функции

    Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

    График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

    Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

    Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

    В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

    Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

    Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

    Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

    Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

    Исследование функции

    Важные точки графика функции y = f(x):

    • стационарные и критические точки;
    • точки экстремума;
    • нули функции;
    • точки разрыва функции.

    Стационарные точки — точки, в которых производная функции f(x) равна нулю.

    Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

    Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

    Нули функции — это значения аргумента, при которых функция равна нулю.

    Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

    Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

    Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

    Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

    Схема построения графика функции:

    1. Найти область определения функции.
    2. Найти область допустимых значений функции.
    3. Проверить не является ли функция четной или нечетной.
    4. Проверить не является ли функция периодической.
    5. Найти нули функции.
    6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
    7. Найти асимптоты графика функции.
    8. Найти производную функции.
    9. Найти критические точки в промежутках возрастания и убывания функции.
    10. На основании проведенного исследования построить график функции.

    У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

    Построение графика функции

    Чтобы понять, как строить графики функций, потренируемся на примерах.

    Задача 1. Построим график функции

    Упростим формулу функции:

    при х ≠ -1.

    График функции — прямая y = x – 1 с выколотой точкой M (-1; -2).

    Задача 2. Построим график функции

    Выделим в формуле функции целую часть:

    График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

    Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

    Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

    Вспомним, как параметры a, b и c определяют положение параболы.

    Ветви вниз, следовательно, a 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

    Ветви вниз, следовательно, a 0.

    Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

    Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

    k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

    k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

    k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

    Задача 5. Построить график функции

    Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

    Нули функции: 3, 2, 6.

    Промежутки знакопостоянства функции определим с помощью метода интервалов.

    Вертикальные асимптоты: x = 0, x = 4.

    Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

    Вот так выглядит график:

    Задача 6. Построить графики функций:

    б)

    г)

    д)

    Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

    а)

    Преобразование в одно действие типа f(x) + a.

    Сдвигаем график вверх на 1:

    б)

    Преобразование в одно действие типа f(x – a).

    Сдвигаем график вправо на 1:

    В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x – a), затем сложение f(x) + a.

    Сдвигаем график вправо на 1:

    Сдвигаем график вверх на 2:

    г)

    Преобразование в одно действие типа

    Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

    д)

    Мы видим три преобразования вида f(ax), f (x + a), -f(x).

    Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

    Сжимаем график в два раза вдоль оси абсцисс:

    Сдвигаем график влево на 1/2 вдоль оси абсцисс:

    Отражаем график симметрично относительно оси абсцисс:

    [spoiler title=”источники:”]

    http://yukhym.com/ru/issledovanie-funktsii/kriticheskie-tochki-na-grafike-funktsii.html

    http://skysmart.ru/articles/mathematic/postroenie-grafikov-funkcij

    [/spoiler]

    Что такое экстремум функции и каково необходимое условие экстремума?

    Экстремумом функции называется максимум и минимум функции.

    Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

    Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

    Каково достаточное условие экстремума функции (максимума или минимума)?

    Первое условие:

    Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум при условии, что функция f(x) здесь непрерывна.

    Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

    Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

    Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна – то минимум.

    О случае f??(а) = 0 можно прочитать в Справочнике по высшей математике М.Я. Выгодского.

    Что такое критическая точка функции и как её найти?

    Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной: нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

    Для примера найдём экстремум параболы.

    Функция                                 y(x) = 3x2 + 2x – 50.

    Производная функции:        y?(x) = 6x + 2

    Решаем уравнение:              y?(x) = 0

    6х + 2 = 0,      6х = -2,           х=-2/6 = -1/3

    В данном случае критическая точка – это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум. Чтобы его найти, подставляем в выражение для функции вместо «х» найдённое число:

    y0 = 3*(-1/3)2 + 2*(-1/3) – 50 = 3*1/9 – 2/3 – 50 = 1/3 – 2/3 – 50 = -1/3 – 50 = -50,333.

    Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

    Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

    Для рассмотренного примера:

    Берём произвольное значение аргумента слева от критической точки: х = -1

    При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак – «минус»).

    Теперь берём произвольное значение аргумента справа от критической точки: х = 1

    При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак – «плюс»).

    Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

    Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка – в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

    Например, найдём наибольшее и наименьшее значения функции

    y(x) = 3sin(x) — 0,5х

    на интервалах:

    а) [-9; 9]

    б) [-6; -3]

    Итак, производная функции —

    y?(x) = 3cos(x) — 0,5

    Решаем уравнение 3cos(x) — 0,5 = 0

    3cos(x) = 0,5

    cos(x) = 0,5/3 = 0,16667

    х = ±arccos(0,16667) + 2πk.

    Находим критические точки на интервале [-9; 9]:

    х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

    х = –arccos(0,16667) — 2π*1 = -7,687

    х = arccos(0,16667) — 2π*1 = -4,88

    х = –arccos(0,16667) + 2π*0 = -1,403

    х = arccos(0,16667) + 2π*0 = 1,403

    х = –arccos(0,16667) + 2π*1 = 4,88

    х = arccos(0,16667) + 2π*1 = 7,687

    х = –arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

    Находим значения функции при критических значениях аргумента:

    y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

    y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

    y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

    y(1,403) = 3cos(1,403) — 0,5 = 2,256

    y(4,88) = 3cos(4,88) — 0,5 = -5,398

    y(7,687) = 3cos(7,687) — 0,5 = -0,885

    Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

    x = -4,88,        у = 5,398,

    а наименьшее – при х = 4,88:

    x = 4,88,          у = -5,398.

    На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

    Находим значение функции на концах интервала:

    y(-6) = 3cos(-6) — 0,5 = 3,838

    y(-3) = 3cos(-3) — 0,5 = 1,077

    На интервале [-6; -3] имеем наибольшее значение функции

    у = 5,398 при x = -4,88

    наименьшее значение —

    у = 1,077 при x = -3

    Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

    Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

    Корни уравнения f  ?  (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна – то книзу.

    Как найти экстремумы функции двух переменных?

    Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

    1) найти критические точки, а для этого — решить систему уравнений

    fх? (x,y) = 0,     fу? (x,y) = 0

    2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

    f(x,y) – f(a,b)

    для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный – то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

    Аналогично определяют экстремумы функции при большем числе аргументов.

    Источники:

    • Выгодский М.Я. Справочник по высшей математике
    • Черненко В.Д. Высшая математика в примерах и задачах. В 3-х томах. Том 1.

    Добавить комментарий