Как найти координаты лучей

На рисунке изображён луч OE, который разбит на деления, как линейка.

Координатный луч

Координатный луч

Точка O — начало луча, и этой точке соответствует число 0.
Эта точка — начало отсчёта.

Точке E соответствует число 1, а длина отрезка OE принята за единицу длины и называется единичным отрезком.

Единичный отрезок может содержать разное число клеток.
Каждая следующая точка отстоит от предыдущей на расстояние, равное единице длины.

Луч OE с началом отсчёта в точке O , на котором указаны единичный отрезок и направление, называют координатным лучом.

Число, соответствующее точке координатного луча, называется координатой этой точки.

Пример. Точке A соответствует число 3.

Точка А на координатном луче

Точка А на координатном луче

Значит, координата точки A равна 3. Записывается так A (3). Читается: точка A с координатой 3.
Для любого числа можно указать соответствующую ему точку, т. к. луч можно продолжить бесконечно.

Пример #1. Можно ли назвать изображённый луч координатным лучом?

Луч АВ

Луч АВ


Пример #2. Можно ли назвать изображённый луч координатным лучом?

Луч МР

Луч МР


Пример #3. Определи координату точки C.


Пример #4. Запиши число, стоящее у конца стрелки на рисунке.

Координаты точки

Координаты точки


Пример #5. Какую температуру показывает термометр, изображённый на рисунке? Какую температуру покажет этот термометр, если столбик опустится на 3 деления?

Определение температуры по термометру

Определение температуры по термометру


Пример #6. Запиши наибольшее число единичных отрезков, соответствующих одному делению координатного луча, чтобы можно было отметить числа: 20, 30, 40, 50, 80, 90.

Скольким делениям соответствует число 50?


Пример #7. Определи координату точки B, изображённой на рисунке. Если координата точки O(0), а координата точки C(60).

Определение цены одного деления

Определение цены одного деления


Пример #8. Определи координаты точек C и B:

Работа с координатным лучом

Работа с координатным лучом


Пример #9. Запиши координаты точек A, B и C.

Координаты трёх точек на координатном луче

Координаты трёх точек на координатном луче


Пример #10. Запиши точку, которой соответствует начало координатного луча на данном рисунке.

Начало координатного луча

Начало координатного луча

Если известно, что координата точки H(35), координата точки L(45) и координата точки N(55).


Пример #11. Составь числовое выражение для координаты точки B и найди его значение:

Составь числовое выражение для координаты точки B

Составь числовое выражение для координаты точки B


Пример #12. Изобрази координатный луч, считая, что единичный отрезок равен 2 клеткам тетради. Отметь на нём точку A (2). Скольким клеткам тетради соответствует отмеченная точка?


Пример #13. На рисунке изображена шкала. Какое число соответствует точке D?

Шкала

Шкала




На рисунке изображён луч (OE), который разбит на деления, как линейка.

koord.luc16.png

Точка (O) — начало луча, и этой точке соответствует число (0).

Эта точка — начало отсчёта.

Точке (E) соответствует число (1), а длина отрезка (OE) принята за единицу длины и называется единичным отрезком.

Единичный отрезок может содержать разное число клеток.

Каждая следующая точка отстоит от предыдущей на расстояние, равное единице длины.

Луч (OE) с началом отсчёта в точке (O),  на котором указаны единичный отрезок и направление, называют координатным лучом.

Число, соответствующее точке координатного луча, называется координатой этой точки.

Пример:

точке (A) соответствует число (3).

koord.luc17.png

Значит, координата точки (A) равна (3).

Записывается так (A)((3)).

Читается: точка (A) с координатой (3).

Для любого числа можно указать соответствующую ему точку, т. к. луч можно продолжить бесконечно.

Математика

5 класс

Урок № 79

Координатный луч

Перечень рассматриваемых вопросов:

– координатный луч;

– единичный отрезок;

– соотношение единичного отрезка со знаменателем дроби;

– координата точки.

Тезаурус

Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.

Отрезок – часть прямой, ограниченная с двух сторон точками.

Луч – это часть прямой линии, расположенная по одну сторону от любой точки, лежащей на этой прямой.

Обязательная литература

  1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Зададим прямую, на которой указано направление. Отметим на ней точку О. Примем её за начало отсчета.

Отложим на прямой вправо от точки О единичные отрезки.

Единичный отрезок – это расстояние от О до точки, выбранной для измерения.

Обозначим конец первого отрезка числом 1, второго – числом 2 и т. д.

Сформулируем определение.

Прямую с заданными на ней началом отсчёта, единичным отрезком и направлением отсчёта называют координатной осью или координатным лучом.

С помощью координатной прямой натуральные числа изображаются точками.

Точке О на координатной прямой соответствует число 0. Обозначают: О (0).

Число, которое соответствует данной точке на координатной оси, называют координатой данной точки.

Например, точка А имеет координату 5.

Обозначают А (5).

Таким образом, на координатной прямой можно найти точку, соответствующую натуральному числу. Также с помощью натуральных чисел и числа ноль можно указать положение любой точки на прямой.

А теперь рассмотрим, как отметить на координатном луче дробь.

Чтобы удобно было изображать дробные числа, нужно правильно выбрать длину единичного отрезка.

Удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Например, если требуется изобразить на координатном луче дроби со знаменателем 7, единичный отрезок лучше взять длиной в 7 клеточек. В этом случае изображение дробей на координатном луче будет несложным.

можно изобразить одним единичным отрезком и ещё двумя клеточками.

Если требуется отметить на координатном луче дроби с разными знаменателями, желательно, чтобы число клеточек в единичном отрезке делилось на все знаменатели. Например, для изображения на координатном луче дробей со знаменателями 6, 4 и 12 удобно взять единичный отрезок длиной в двенадцать клеточек. Чтобы отметить на координатном луче нужную дробь, единичный отрезок разбиваем на столько частей, каков знаменатель, и берём таких частей столько, каков числитель.

Возьмём единичный отрезок, разделим на шесть частей и возьмём одну из них.

Тренировочные задания

№ 1. Подберите правильные названия к числам. Разместите нужные подписи под изображениями.

Варианты ответов: смешанное число; правильная дробь; неправильная дробь.

Чтобы правильно выполнить задание, необходимо вспомнить, какую дробь называют правильной, а какую неправильной. А также, что называют смешанным числом.

Правильный ответ:

Варианты ответа: 9; 6; 4; 3; 2

Мы знаем, что удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Знаменатель равен 9, значит, единичный отрезок следует выбирать в 9 клеток.

Правильный ответ: 9.

Содержание:

  • § 1  Координатный луч
  • § 2  Определение координат точки

§ 1  Координатный луч

В этом уроке Вы научитесь строить координатный луч, а также определять координаты точек, расположенных на нем.

Чтобы построить координатный луч, нам сначала потребуется, конечно же, сам луч.

Обозначим его OX, точка O – начало луча.

Забегая вперед, скажем, что точку O называют началом отсчета координатного луча.

Луч можно изображать в любом направлении, однако во многих случаях луч проводят горизонтально и вправо от его начала.

Итак, начертим луч ОХ горизонтально слева направо и обозначим его направление стрелкой. Отметим на луче точку Е.

Над началом луча (точкой О) напишем 0, над точкой Е – цифру 1.

Отрезок ОЕ называют единичным.

Далее на луче отложим отрезок ЕА, равный единичному отрезку, и над точкой А напишем цифру 2.

Так, шаг за шагом, откладывая единичные отрезки, получим бесконечную шкалу.

Числа 0, 1, 2 называют координатами точек О, Е и А. Пишут точка О и в скобках указывают ее координату ноль – О(о), точка Е и в скобках ее координата один – Е(1), точка А и в скобках ее координата два – А(2).

Таким образом, для построения координатного луча необходимо:

1. начертить луч ОХ горизонтально слева направо и обозначить его направление стрелкой, над точкой O написать число 0;

2. нужно задать так называемый единичный отрезок. Для этого на луче нужно отметить какую-нибудь точку, отличную от точки O (на этом месте принято ставить не точку, а штрих), и над штрихом записать число 1;

3. на луче от конца единичного отрезка нужно отложить еще один отрезок, равный единичному и тоже поставить штрих, далее от конца уже этого отрезка нужно отложить еще один единичный отрезок, также отметить штрихом и так далее;

4. чтобы координатный луч принял законченный вид, осталось записать над штрихами слева направо числа из натурального ряда чисел: 2, 3, 4, и так далее.

§ 2  Определение координат точки

Давайте выполним задание:

На координатном луче нужно отметить следующие точки: точку М с координатой 1, точку Р с координатой 3 и точку А с координатой 7.

Построим координатный луч с началом в точке О. Единичный отрезок этого луча выберем 1 см, то есть 2 клетки (через 2 клетки от нуля поставим штрих и число 1, дальше еще через две клетки – штрих и число 2; затем 3; 4; 5; 6; 7 и так далее).

Точка М будет расположена правее нуля на две клетки, точка Р будет расположена правее нуля на 6 клеток, так как 3 умножить на 2, будет 6, и точка А – правее нуля на 14 клеток, так как 7 умножить на 2, получится 14.

Следующее задание:

Найдите и запишите координаты точек А; В; и С отмеченных на данном координатном луче

Решение:

Данный координатный луч имеет единичный отрезок, равный одной клетке, значит координата точки А равна 4, координата точки В равна 8, координата точки С равна 12.

Подведем итог, луч ОХ с началом отсчета в точке О, на котором указаны единичный отрезок и направление, называют координатным лучом. Координатный луч представляет собой не что иное, как бесконечную шкалу.

Число, которое соответствует точке координатного луча, называется координатой этой точки.

Например: А и в скобках 3.

Читают: точка А с координатой 3.

Следует заметить, что очень часто координатный луч изображают лучом с началом в точке O, и откладывают от его начала единственный единичный отрезок, над концами которого записывают числа 0 и 1. В этом случае подразумевается, что мы при необходимости можем легко продолжить построение шкалы, последовательно откладывая единичные отрезки на луче.

Таким образом, в этом уроке Вы научились строить координатный луч, а также определять координаты точек, расположенных на координатном луче.

Список использованной литературы:

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И. и др. 31-е изд., стер. – М: 2013.
  2. Дидактические материалы по математике 5 класс. Автор – Попов М.А. – 2013.
  3. Вычисляем без ошибок. Работы с самопроверкой по математике 5-6 классы. Автор – Минаева С.С. – 2014.
  4. Дидактические материалы по математике 5 класс. Авторы: Дорофеев Г.В., Кузнецова Л.В. – 2010.
  5. Контрольные и самостоятельные работы по математике 5 класс. Авторы – Попов М.А. – 2012.
  6. Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / И. И. Зубарева, А. Г. Мордкович. — 9-е изд., стер. — М.: Мнемозина, 2009.



Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.

Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.

Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).

Шкалы и координаты

Рисунок 1. Измерительная линейка.

Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.

Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).

Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.

Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.

Чтобы узнать цену деления шкалы, нужно:
1. взять любые два значения на шкале (лучше брать соседние, обозначенные числами),
2. найти разность между ними,
3. посчитать количество делений шкалы, которые находятся между выбранными нами значениями,
4. результат деления числа, полученного в пункте 2, на число, полученной в пункте 3, и будет ценой деления данной шкалы.

Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.

Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.

Шкалы и координаты

Рисунок 2 Цена деления шкалы

Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?

Конечно же разную! Хоть столбик этих двух термометров и находится на высоте двух делений над значением 20, цена этих делений разная. Левый термометр показывает температуру 22°C (читается как двадцать два градуса Цельсия), а правый — 24°C.

Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:

  • левый термометр – 10:10=1°C;
  • правый термометр – 20:10=2°C.

Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.

Координатный луч, единичный отрезок, координаты точки

Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.

Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.

Координатный луч

Рис. 3. Луч с началом в точке O

Отметим на этом луче отрезок произвольной длины OP. Справа от него отметим равный ему отрезок PR, и продолжим отмечать далее подобным образом отрезки, равные отрезку OP, до тех пор, пока не закончится нарисованный нами луч. В итоге у нас получится следующее.

Координатный луч

Рис. 4. Луч с равными отрезками

Поставим возле начала луча (точки O) число 0 (нуль). Возле второго конца отрезка OP (возле точки P) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).

Отрезок OR у нас состоит из двух отрезков: OP и PR, то есть OR=OP+PR. А так как по условиям нашего построения PR=OP, то мы можем записать, что OR=OP+OP, или OR=1+1=2.

Поставим возле точки R найденное нами значение длины отрезка OR, то есть, число 2.

Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.

Координатный луч

Рис. 5. Луч с отрезками и цифрами

Покажу еще раз на примере точки S:

OS=OR+RS,

так как RS=OP (по условиям построения данных отрезков),

тогда OS=OR+OP;

подставив известные нам значения длины отрезков OR и OP, получим:

OS=2+1, или OS=3.

Значит, точке S на нашем лучу соответствует число 3.

Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.

Координатный луч

Рис. 6. Координатный луч

Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.

Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.

Равные отрезки, на которые мы разбили луч, – это деления шкалы.

Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.

Другими словами, единичный отрезок можно назвать ценой деления.

Определение

Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.

Координатный луч — это не что иное, как бесконечная шкала.

Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.

Единичный отрезок, координатный луч

Рис. 7. Разные варианты единичного отрезка

Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).

Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.

Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.

На числовом луче можно отобразить какое угодно число n, принадлежащее натуральному ряду. Для этого на нем отмечают точку (к примеру, A) на расстоянии n единичных отрезков от точки отсчета O. При этом число n называют координатой точки A и записывают в виде A(n), что читается как «точка A с координатой n» .

Запомните

Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.

Для примера отметим на координатном луче точки A, B, C и определим их координаты.

Координатный луч, координата точки

Рис. 8. Координаты точек

Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A(5), B(8), C(13).

В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.

Координатный луч

Рис. 9. Большие числа на координатном луче.

Добавить комментарий