Как найти координаты вектора в базисе
Решение:
Записываем матрицу перехода А:
и находим ее определитель
<>0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:
Обратная матрица А -1
Находим координаты вектора х относительно нового базиса.
Пример №1 . Даны векторы a<1;2;1>, b<2;-2;1>, c <1;-2;0>и d <0;3;1>. Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 – β*2 – γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b – 3/2c
Пример №2 . Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:
Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х”1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х”2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х”3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х”1, x”2, x”3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х”1 = – x’1 + 3x’2 – 2x’3,
х’2 = 6x1 + 7x2 + x3, х”2 = – 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х”3 = 3x’1 – 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:
Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 – 1*1) – 6*(3*8 – 1*5) + 9*(3*1 – 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .
A -1 = -1/182 |
|
Матрицу Х ищем по формуле:
X = A -1 ·B = -1/182 |
|
* | = |
|
Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)
Решение. Пункты (а-д) решаются через онлайн калькулятор.
Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид
Решим полученную систему уравнений.
Выражение координат вектора-образа через координаты вектора-прообраза
Теорема 5.3. Если р — линейный оператор, действующий из линейного пространства X в линейное пространство Y, который в паре базисов е = (ei, б2,. еп) в X и q = ( По условию линейный оператор р в паре базисов ей q имеет матрицу Aqe. Поэтому ре = qAqe. Произвольный вектор х € X может быть представлен в виде х = е[х]е, где [х]е — координатный столбец этого вектора. Поэтому
Тем самым мы пришли к соотношению х’ = Пример 5.1. Пусть линейный оператор, действующий из линейного пространства X в линейное пространство У, в паре базисов е = (ei, в2, ез, е4) в X и q = (щ, q^, дз) в У задан матрицей
Найти столбец координат в базисе q образа вектора х, имеющего в базисе е столбец координат (1,1,1,1) т ,и столбец координат в базисе е прообраза вектора у, имеющего в базисе q столбец координат (3, 2,1) т .
Решение. Столбец координат образа вектора х в базисе q находим непосредственно по формуле (5.5):
Для отыскания прообраза вектора у воспользуемся той же формулой (5.5). Если [х]е = (xi, .Т2, .хз, х^) т — столбец координат искомого вектора, то
Мы имеем систему линейных уравнений относительно неизвестных Xi, Х2, Х3, х4. Решив эту систему, находим все прообразы вектора у.
Здесь х4 — свободное неизвестное, которое может принимать любые значения. ?
Матрица линейного оператора примеры
Построение матрицы по заданной формуле отображения.
Пусть отображение задано с помощью формулы:
то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор , найдём его образ, это будет вектор . Для этого в формуле, задающей образ вектора, полагаем , ,…, . Аналогично находим образы для ,…, . Из координат образа вектора составляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.
Пример 1. Пусть оператор задан с помощью формулы:
.
Прежде всего, докажем, что это отображение – действительно линейный оператор.
Отобразим сумму векторов:
Теперь каждую координату получившегося вектора можем преобразовать:
.
Аналогично для умножения на константу:
Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).
Поэтому матрица линейного оператора будет иметь вид:
.
Аналогичным способом решается задача и для 3 и большего количества переменных.
Пример 2. .
Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).
Матрица линейного оператора:
.
2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.
Если задана система из n векторов, образующих базис, и какая-нибудь произвольная система n векторов (возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.
Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.
Пусть – матрица оператора в базисе . По условию, для всех индексов . Данные n равенств можно записать в виде одного матричного равенства: , при этом столбцы матрицы – это векторы , а столбцы матрицы – векторы . Тогда матрица может быть найдена в виде .
Пример. Найти матрицу линейного оператора, отображающего базис
в систему векторов .
Здесь , , , и получаем:
.
Проверка осуществляется умножением получившейся матрицы на каждый вектор: .
Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.
2.3. Прочие способы нахождения матрицы оператора.
Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.
Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида и . Построим матрицу одного из этих операторов, . Для этого найдём образы всех трёх базисных векторов линейного пространства.
.
Аналогично, ,
.
Координаты полученных векторов запишем в виде столбцов матрицы оператора.
Матрица оператора: .
Аналогично можно построить матрицу линейного оператора :
.
Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы , , ,…, .
, , , аналогично получим ,…, .
Матрица этого линейного оператора:
Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10219 – | 7588 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Матрица линейного оператора
Определение 1. Если задан закон, который каждому вектору x?? ставит в соот ветствие вектор y . то говорят, что в линейном пространстве ? задан оператор A , при этом пишут:
Определение 2. Оператор A называется линейным, если для любых x 1 ?? и x 2 ?? и произвольного числа ? выполняются условия:
Рассмотрим теперь в евклидовом пространстве E n базис e 1 ,e 2 . e n и пусть в этом пространстве определён линейный оператор A : y = A x .
Разложим векторы x и y по базису e 1 ,e 2 . e n :
В силу линейности оператора A можно написать
Заметим, что каждый вектор , следовательно, его также можно разложить по базису e 1 ,e 2 . e n , т.е.
В силу единственности разложения по данному базису мы можем при равнять коэффициенты при базисных векторах в правых частях формул (1) и (2); тогда получим:
Получили, что линейному оператору A в данном базисе соответствует квадратная матрица
которая называется матрицей линейного оператора A , i -й столбец которой состоит из координат вектора Ae i (i = 1,2. n ) относительно данного базиса. Отметим, что матрица A оператора A зависит от выбора базиса e 1 ,e 2 . e n .
Итак, мы показали, что всякому линейному оператору A в евклидовом пространстве E n соответствует матрица A ; можно доказать и обратное утверждение: всякую квадратную матрицу A можно рассматривать как матрицу некоторого линейного оператора A в данном базисе e 1 ,e 2 . e n .
Представляют интерес невырожденные линейные операторы, т.е. такие операторы, матрицы которых имеют обратную A -1 , т.е. также являются невырожденными. В этом случае каждому вектору y (образу), определённому соотношением, отвечает единственный вектор x (прообраз) и при этом имеет место матричное равенство: X = A -1 ? Y .
Примеры линейных операторов
1. В пространстве 2-мерных векторов линейным оператором является правило
связывающее вектор-прообраз с вектором-образом
2. В пространстве бесконечно дифференцируемых функций линейным оператором является операция дифференцирования, ставящая в соответствие каждому элементу этого простран ства его производную функцию.
3. В пространстве многочленов P n (t) линейным оператором является операция умножения многочлена на независимую переменную t .
Пример: Известны образы базисных векторов E 3 под действием оператора A :
Найти матрицу этого оператора в исходном базисе.
Решение: По определению y = A x, значит в матричном виде можно записать, что A = X -1 Y . Для нашего примера получаем
Действия над операторами
Сложение линейных операторов. Пусть x?E n , A и B – два линейных оператора в этом пространстве.
Определение 1. Суммой линейных операторов A и B в E n называется оператор C, определяемый равенством Cx = A x + Bx , где x – любой вектор из E n .
Сумма линейных операторов является линейным оператором, причём его матрица C = A + B, где A и B – матрицы линейных операторов A и B .
Умножение линейного оператора на число. Пусть x?E n , линейный оператор A определён в E n , ? – некоторое число.
Определение 2. Произведением линейного оператора A на число ? называется оператор ?A , определяемый равенством .
?A является линейным оператором, а матрица этого линейного оператора получается из матрицы A умножением её на число ? , т.е. она равна ? ? A.
Умножение линейных операторов. Пусть x? E n , y ? E n , z ? E n и кроме того в E n определены линейные операторы A и B таким образом, что y = Bx, z = A y .
Определение 3. Произведением A ? B линейных операторов A и B называется оператор C, определяемый соотношением Cx = A (Bx) .
Таким образом, перемножение линейных операторов состоит в последовательном их применении по отношению к вектору x .
Рассмотрим матрицы – столбцы:
и обозначим через A, B и C – соответственно матрицы линейных операторов A, B и C. Тогда Z = A ? (B ? X) = (A ? B) ? X = C ? X , таким образом, C = A ? B, т.е. матрица произведения линей ных операторов также является линейным оператором.
a) (A ? B)(x + y) = A (B(x + y)) = A (Bx + By) = A (Bx) + A (By) = = (A ? B) ? x + (A ? B) ? y
б) (A ? B)(? x) = A (B(? x)) = A (?Bx) =?A (Bx) =? (A ? B)x
Свойства умножения линейных операторов вытекают из свойств умножения матриц.
Определение 4. Линейные операторы A и В называются равными, если . Равенство операторов обозначается как A = B .
Определение 5. Оператор E называется единичным (или тождественным) оператором, если каждому элементу x линейного пространства он ставит в соответствие тот же самый элемент, то есть
1. Понятие линейного оператора
Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида , сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.
Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения
Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.
Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы и соответственно. Пусть задано отображение
где A – m×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:
Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов и в R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.
Пусть x − произвольный элемент в R. Тогда
является разложением x в по базису .
Применим оператор A к базисным векторам :
где aij − координаты полученного вектора в базисе .
Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем
Сделаем следующее обозначение:
Тогда равенство (5) примет следующий вид:
Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе имеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.
Построим матрицу A с элементами aij:
Тогда выражение (6) можно записать в матричном виде:
Матрица A называется матрицей линейного оператора в заданных базисах и .
2. Сложение линейных операторов
Пусть A и B два линейных оператора действующих из R в S и пусть A и B – mxn − матрицы соответствующие этим операторам.
Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством
где x∈R означает, что x принадлежит пространстве R.
Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.
Применим оператор C к базисному вектору ej, тогда:
Cej= Aej+ Bej= | n | (aij+bij) ej |
∑ | ||
j= 1 |
Следовательно оператору C отвечает матрица ,где i=1,2. m, j=1,2. n, т.е.
3. Умножение линейных операторов
Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.
Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:
Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.
Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.
4. Умножение линейного оператора на число
Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.
Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:
Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.
5. Нулевой оператор
Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:
6. Противоположный оператор
Противоположным оператору A называется оператор −A удовлетворяющий равенству:
7. Ядро линейного оператора
Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.
Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.
8. Образ линейного оператора
Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.
Образ линейного оператора обозначается символом im A.
9. Ранг линейного оператора
Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).
[spoiler title=”источники:”]
http://studref.com/504581/matematika_himiya_fizik/vyrazhenie_koordinat_vektora_obraza_koordinaty_vektora_proobraza
http://planshet-info.ru/kompjutery/matrica-linejnogo-operatora-primery
[/spoiler]
Линейный
оператор ,
действующий из пространства
в пространство ,
ставит в соответствие каждому вектору
определенный вектор
из .
При этом вектор
называется образом
вектора
,
а вектор
– прообразом
вектора
при отображении .
Пусть
и
– некоторые базисы линейных пространств
и
соответственно. Тогда ,
и координаты вектора – образа
связаны с координатами вектора – прообраза
соотношением
,
(7.2.1)
в
котором
– матрица линейного оператора
в паре базисов
и .
В
случае, когда пространства
и
совпадают, базисы
и
также совпадают, и формула (7.2.1) принимает
вид
.
(7.2.2)
Образом
(областью
значений)
линейного
оператора
называется
множество всех элементов
вида .
Образ линейного оператора является
подпространством пространства
и обозначается .
Размерность образа называется рангом
оператора
и обозначается .
Ядром
линейного оператора
называется
множество всех векторов пространства
,
которые переводятся оператором
в нулевой вектор пространства .
Ядро линейного оператора является
подпространством пространства
и обозначается .
Размерность ядра называется дефектом
оператора
и обозначается .
Сумма
ранга и дефекта оператора
равна размерности пространства
.
Ранг
линейного оператора равен рангу матрицы
этого оператора.
Базис
системы векторов – столбцов матрицы
линейного оператора
образует систему координатных столбцов
базиса образа .
Базис подпространства решений однородной
системы линейных алгебраических
уравнений с матрицей оператора
образует базис ядра .
Пример
1.
Из пространства
с базисом
в пространство
с базисом
действует линейный оператор ,
имеющий в данной паре базисов матрицу
.
Найдите столбец координат в базисе
образа вектора
и столбец координат в базисе
прообраза вектора .
Решение.
Столбец координат образа вектора
в базисе находим
непосредственно по формуле (7.2.1):
.
Для
определения прообраза вектора
по той же формуле (7.2.1) имеем
,
или,
что то же самое,
Отсюда
находим все прообразы
вектора ,
где
– свободная переменная, принимающая
произвольные значения.
Пример
2.
В пространстве с
базисом линейный
оператор
переводит векторы ,
в
векторы ,
соответственно. Найдите матрицу оператора
в
базисе .
Решение.
Пусть –
матрица оператора в
базисе .
Тогда из условий ,
по формуле (7.2.2) имеем ,
или,
в подробной записи,
Отсюда
получаем
Следовательно,
.
Пример
3.
Найдите базис ядра и базис образа
линейного оператора пространства ,
если этот оператор задан матрицей .
Решение.
При помощи элементарных преобразований
над строками матрицы
приведём её к ступенчатому виду:
.
Отсюда
следует, что .
Базис составляют,
например, векторы
и .
Дефект
оператора найдём по формуле
,
т.е.
фундаментальная система решений
однородной системы линейных алгебраических
уравнений с матрицей
будет состоять из одного вектора. Общее
решение однородной системы можно
записать в виде .
Полагая
получаем базисный вектор .
7.2.1.
Линейный оператор переводит
вектор
в вектор.
Найдите образ вектора
и прообраз вектора ,
если
,
,
;
,
,
;
,
,
.
7.2.2.
Линейный оператор в
паре базисов и
имеет матрицу .
Найдите прообраз вектора ,
если
,
;
б)
,
;
в)
,
.
7.2.3.
Выясните, существует ли линейный оператор
двумерного пространства, переводящий
векторы ,
соответственно в векторы ,
,
и найдите матрицу этого оператора в
базисе ,
:
а)
б)
в)
7.2.4.
Выясните, существует ли линейный оператор
трехмерного пространства, переводящий
векторы ,
,
соответственно в векторы ,
,
,
и найдите матрицу этого оператора в том
же базисе, в котором даны координаты
всех векторов:
а)
б)
7.2.5.
Для указанных линейных операторов
пространства
найдите дефект и ранг, а также постройте
базисы ядра и образа. Каждый оператор
описывается своим действием на
произвольный вектор :
а)
б)
в)
7.2.6.
Найдите образ и ядро оператора
дифференцирования в пространстве .
7.2.7.
В пространстве
рассмотрите разностный
оператор
где
– фиксированное
число, отличное от нуля. Найдите его
образ и ядро.
7.2.8.
Найдите образ и ядро оператора
проектирования (см. задачу 7.1.2) на
параллельно
и оператора отражения (см. задачу 7.1.3) в
параллельно .
7.2.9.
Найдите базис ядра и базис образа
линейного
оператора из ,
заданного в некотором базисе матрицей
:
а)
;
б)
;
в)
.
7.2.10.
Найдите размерность линейного пространства
всех линейных операторов, действующих
в
– мерном линейном пространстве
и постройте базис пространства .
Соседние файлы в папке Задачник-2
- #
- #
- #
- #
- #
- #
Содержание:
- Линейные преобразования. Собственные векторы и собственные числа линейного оператора
- Собственные векторы и собственные числа линейного оператора: определение, свойства
- Нахождение собственных чисел и собственных векторов
- Базис пространства из собственных векторов линейного оператора
- Линейная модель обмена (модель международной торговли)
Линейные преобразования. Собственные векторы и собственные числа линейного оператора
Линейные преобразования (линейные операторы). Матрица линейного преобразования
Пусть задано -мерный пространство . Если каждому вектору поставлено в соответствие единственный вектор
этого же пространства, говорится, что в векторном пространстве задано преобразование , или оператор .
Вектор – результат линейного преобразования – называют образом вектора , а выходной вектор – прообразом вектора .
Преобразование называется линейным преобразованием, или линейным оператором, если для произвольных векторов и произвольного действительного скаляра выполняются условия:
То есть линейный оператор преобразует пространство в то самое пространство. Это записывается следующим образом:
Примерами простейших линейных преобразований являются:
тождественное преобразование: , когда каждый -мерный вектор пространства превращается в самого себя, то есть остается без изменения;
нулевой оператор , когда каждый -мерный вектор пространства превращается в ноль-вектор этого же пространства, то есть
Линейное преобразование , с помощью которого осуществляется восстановление вектора по его образу , называется обратным к линейным преобразованием. В отличие от матрицы оператор записывают каллиграфическим шрифтом.
Рассмотрим задачу об отыскании координат образа вектора .
Пусть в пространстве выбрано базис (не обязательно ортонормированный) и есть координатами вектора в этом базисе. Обозначим через координаты вектора в выбранном базисе. по условию , тогда согласно линейностью оператора получим :
Но образы тоже являются векторами с , поэтому иx можно разложить по тому же базисом. Пусть
где коэффициенты разложения вектора по базису
С учетом (5.5) соотношение (5.4) принимает вид:
Группируя члены правой части относительно векторов базиса, имеем:
С другой стороны, если являются координатами вектора в базисе то его можно представить следующим образом:
Сопоставляем (5.8) из (5.7) и получаем координаты вектора :
Следовательно, при линейном преобразовании:
координаты образа вектора являются линейными комбинациями координат прообраза, коэффициенты при которых составляют матрицу -го порядка (обозначим ее через ):
Матрица , которая в произведении (слева) с вектором с определяет координаты его образа при линейном преобразовании , Называется матрицей линейного преобразования в базисе и пишут:
Каждый – -й – столбец матрицы составляют коэффициенты разложения вектора по базису каждая – -я – строка определяет коэффициенты разложения координат вектора по координатам вектора .
Обратите внимание, что – нераздельный символ (обозначение вектораобраза), а – произведение матрицы с вектором (прообразом).
Каждому линейном оператору -мерного пространства отвечает матрица -го порядка в данном базисе. И наоборот, каждой матрицы -го порядка отвечает линейный оператор -мерного пространства с определенным базисом.
Например, с помощью оператора линейных преобразований можно описать поворот произвольного вектора с пространства вокруг начала координат на угол против часовой стрелки. Формулы поворота осей координат (формулы перехода от исходных координат и к новым и , и наоборот ) определяют алгебраическую форму изображения линейного оператора поворота осей:
где оператор перехода от исходных (новых) координат к новым (исходных);
векторы, началом которых является точка , а концами –
точки и , соответственно.
По соотношению (5.12) матрица линейного преобразования} , Описывающий поворот произвольного вектора из пространства вокруг начала координат на угол против часовой стрелки, имеет вид:
а матрица обратного линейного преобразования , то есть такого, что описывает поворот произвольного вектора из пространства вокруг начала координат на угол по часовой стрелке, имеет вид:
Теорема 5.1 (о связи между матрицами оператора в различных базисах).
Матрицы и линейного оператора в разных базисах и связаны между собой соотношением:
где матрица перехода от исходного к новому базису.
Доказательство. Пусть линейный оператор превращает вектор пространства в вектор того самого пространства. Тогда в матричной форме связь между вектором и его образом в исходном базисе можно записать как , а в новом – как . Поскольку является матрицей перехода от исходного базиса к новому, то в соответствии с (4.18) имеем:
Умножим равенство (5.14) слева на матрицу и получим . Отсюда по определению линейного оператора имеем: . С учетом (5.15):
Сравнив соотношение и , получаем
Две квадратные матрицы и называются подобными, если существует такая невырожденная матрица , матрицы и связанные соотношениями:
Соответствующие линейные операторы называются преобразованиями сходства.
Подобные матрицы описывают то же линейное преобразование, но в разных базисах, а матрица является матрицей перехода от одного базиса к другому.
Подобные матрицы имеют те же ранги, суммы элементов главной диагонали и определители.
В базисе и задана матрица линейного оператора :
Определим матрицу , которая отвечает том же оператору в базисе векторов и есть матрица подобна матрице .
Предоставим расписание векторов нового базиса по векторам исходного базиса: . Соответственно, матрица перехода от исходного к новому базису имеет вид:
Ее определитель , то есть матрица невырожденная и имеет обратную:
По теореме 5.1 определяем матрицу оператора в новом базисе:
Обратите внимание, что в новом базисе матрица оператора оказалась диагональной.
Собственные векторы и собственные числа линейного оператора: определение, свойства
Рассмотрим -мерных линейный пространство с определенным базисом и матрицу , некоторого линейного оператора пространства.
Ненулевой вектор называют собственным, или характеристическим вектором линейного оператора (или матрицы ), если существует такое действительное число , имеет место равенство:
Скаляр называется собственным, или характеристическим, числом матрицы , или ее собственным значением, соответствует собственному вектору :
Согласно определениями собственного числа и собственного вектора имеем:
1) Если , то каждый ненулевой вектор из является собственным вектором матрицы , при этом , ведь по свойству единичной матрицы имеем ;
2) любой ненулевой -мерный вектор является собственным вектором нулевой матрицы , при этом , так как .
Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы
Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы
Запишем матричное уравнение (5.17) в развернутом виде:
Таким образом, задача сводится к решению однородной системы линейных уравнений с неизвестными. Нас интересуют (по определению собственного вектора) только ненулевые векторы, то есть нетривиальные решения системы, поэтому определитель системы (5.18) должен быть равен нулю:
Раскрытие определителя в соотношении (5.19) дает многочлен степени относительно , который называется характеристическим многочленом матрицы , а соотношение (5.19), которое можно представить в виде , определяет уравнение для нахождения собственных чисел, которое называют характеристическим уравнением матрицы .
По основной теореме алгебры уравнения любой матрицы имеет корней, если каждый из них считать столько раз, какова его кратность. Характеристическое уравнение матрицы может иметь только действительные, но и комплексные корни, то есть числа вида где действительные числа, мнимая единица.
Множество всех собственных чисел матрицы называют спектром матрицы. Если в спектре матрицы то же собственное число повторяется раз, то говорят, что кратность этого собственного числа равна .
Теорема 5.2 (о единственности собственного чucлa, что соответствует собственному вектору). Если – собственный вектор матрицы , то существует единственный скаляр , который удовлетворяет условие .
Доказательство. Предположим, что кроме собственного числа существует еще один
скаляр , такой, что . Тогда должно выполняться равенство . Поскольку по определению собственный вектор является ненулевым, то есть , получим .
Согласно теореме 5.2 говорят, что собственный вектор из матрицы принадлежит собственному числу .
Теорема 5.3 (о множестве собственных векторов, принадлежащих собственному числу). Если матрица имеет собственный вектор, принадлежащий собственному числу , то таких векторов бесконечно много.
Доказательство базируется на определении собственного вектора и свойствах ассоциативности и коммутативности операции умножения матрицы на скаляр.
Действительно, пусть собственный вектор матрицы , тогда . Привлечем к рассмотрению вектор , коллинеарный вектору , то есть , где , и покажем, что в также является собственным вектором матрицы :
Поскольку равенство (5.19) выполняется для произвольного , то существует множество собственных векторов, принадлежащих данному собственному числу.
Теорема 5.4 (критерий существования собственного вектора , соответствующего собственному числу ). Вектор тогда и только тогда является собственным вектором матрицы , соответствующим собственному числу , когда его координаты образуют ненулевое решение однородной квадратной системы линейных алгебраических уравнений
или
Доказательство сводится к тождественных преобразований матричных уравнений.
Необходимость уже доказано переходом от соотношения , к однородной системе линейных уравнений , представленной в развернутом виде (5 18).
Достаточность. На основании свойств действий над матрицами с учетом условия , осуществит переход от однородной системы уравнений в матричной форме с соотношением :
Теорема 5.5 (пpo линейную независимость собственных векторов). Собственные векторы, принадлежащие различным собственным числам, является линейно независимыми.
Доказательство проведем методом от противного. Пусть два произвольные собственные векторы, принадлежащие соответственно собственным числам и . Необходимо показать, что линейная комбинация этих собственных векторов ноль-вектор только тогда, когда , то есть
Предположим обратное. Пусть (5.23) выполняется при условии, что одно из чисел не является нулем, например,
Умножим левую и правую части (5.23) на собственное число . Тогда
Левую и правую части равенства (5.23) умножим на матрицу слева, и, учитывая свойства операций над матрицами, получим:
Сравним (5.25) и (5.24). Получаем:
По условию теоремы . По определению вектор является ненулевым, поэтому равенство (5.26) возможно только при , то есть предположение о линейной зависимости векторов и ошибочно.
Если есть более двух собственных векторов, принадлежащих попарно различным собственным числам, доведение аналогичное (с использованием метода математической индукции).
Заметим, что собственные векторы, принадлежащих различным собственным числам, можно использовать как базисные векторы пространства .
Теорема 5.6 (пpo сумму и произведение собственных чисел). Если собственные числа матрицы , то:
1) сумма собственных чисел равна сумме элементов главной диагонали матрицы :
2) произведение собственных чисел равна определителю матрицы :
Доказательство основывается на формулах Виета, которые описывают соотношение между корнями и коэффициентами многочлена -гo степени в случае, когда его старший коэффициент равен единице.
Рассмотрим простейший случай . Запишем характеристическое уравнение в развернутом виде:
С (5.29) по теореме Виета (для квадратного уравнения) имеем:
Сумму всех диагональных элементов матрицы называют следом (от нем. spur – след) этой матрицы и обозначают .
Для квадратной матрицы произвольного порядка теорему 5.6 в символьном виде можно записать так:
при этом собственное число берем столько раз, какова его кратность как корня характеристического уравнения (5.29).
Нахождение собственных чисел и собственных векторов
Рассмотрим алгоритм нахождения собственных чисел матрицы и собственных векторов, которые им принадлежат.
Согласно соотношениями (5.18) и (5.19) имеем такой порядок отыскания собственных чисел и собственных векторов матрицы.
1. Составляем по исходной матрицей характеристическое уравнение (5.18) и решаем его, то есть находим спектр собственных чисел.
2. Подставляем поочередно каждое собственное число в систему (5.18) и находим все ее нетривиальные решения, что и дает множество собственных векторов, принадлежащих соответствующему собственному числу.
Замечания. Множество всех собственных векторов, принадлежащих определенному собственному числу, можно представить как линейную комбинацию фундаментальных решений однородной системы уравнений согласно (4.19), гл. 4.
Найдем собственные числа и собственные векторы матрицы
Характерным уравнением этой матрицы является квадратное уравнение:
Решив его, получим собственные числа и
Теперь описываем множества и всех собственных векторов, принадлежащих найденным собственным числам.
Для этого в матрицу вместо подставим поочередно значения собственных чисел, запишем соответствующую систему однородных линейных уравнений (5.18) и решим ее:
Предоставляя параметру произвольных значений, для данного собственного числа получим совокупность коллинеарных между собой собственных векторов.
Теорема 5.7 (про собственные числа и собственные векторы симметричной матрицы).
Симметричная матрица имеет только действительные собственные числа. Собственные векторы, принадлежащие разным собственным числам, ортогональны и линейно независимы.
Теорема приводим без доказательства.
Проиллюстрируем прав выводов данной теоремы на примере.
Пусть имеем симметричную матрицу
Найдем собственные числа и собственные векторы этой матрицы и докажем ортогональность собственных векторов, соответствующих различным собственным числам.
1. Составим характеристическое уравнение матрицы
2. Найдем корни полученного кубического уравнения относительно . С элементарной алгебры известно, если многочлен со старшим коэффициентом, равным единице, имеет целые корни, то их следует искать среди делителей свободного члена. Перебирая делители числа 36, убеждаемся, что является корнем уравнения (5.30).
Нахождение других двух корней сводится к решению квадратного уравнения:
3. Опишем множества и собственных векторов, принадлежащих найденным собственным числам.
Для этого в матрицу вместо подставляем поочередно значения собственных чисел, записываем соответствующую систему однородных линейных уравнений (5.17) и решаем ее методом Жордана-Гаусса:
Аналогично находим собственные векторы и
Система векторов и является линейно независимой, поскольку
Убеждаемся, что векторы и – попарно ортогональны.
Для этого определим их скалярные произведения:
Поскольку скалярные произведения векторов равны нулю, то векторы попарно ортогональны.
Если в выражениях (5.31-5.33) положить , то получим систему векторов:
которая использовалась как базис пространства в примере после теоремы и . В таком базисе, то есть базисе из собственных векторов, матрица оператора оказалась диагональной, ее ненулевыми элементами являются собственные числа матрицы .
Теорема 5.8 (о преобразовании матрицы к диагональному виду). Матрица линейного оператора в базисе имеет диагональный вид тогда и только тогда, когда все векторы базиса являются собственными векторами матрицы .
Теорему наводим без доказательств
Заметим, что при нахождении собственных чисел для заданной матрицы самой задачей является решение алгебраического уравнения -й степени, что во многих случаях сделать невозможно без использования приближенных методов. Изучение приближенных методов выходит за пределы программы. Поэтому предлагаем воспользоваться известными программами MatLab, MathCad, Maple и др.
Следующий пример был решен в пакете MatLab, в котором конечный результат вычислений предоставляется без промежуточных выкладок.
Найдем собственные числа и соответствующие им собственные векторы матрицы
Характерным уравнением для нахождения собственных чисел является уравнение
корнями которого будут числа а соответствующие им собственные векторы имеют вид:
Собственные числа и собственные векторы матриц имеют широкий спектр использования, в частности, в аналитической геометрии (Раздел 2), в задачах различных отраслей естественных наук и эконометрики.
Базис пространства из собственных векторов линейного оператора
По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Возникает вопрос, при каких условиях существует базис линейного пространства , построенный из собственных векторов матрицы.
Лема. Если является собственным числом матрицы , то множество собственных векторов матрицы содержит линейно независимых векторов, где – ранг матрицы .
Доказательство. Согласно теореме 5.4 множество собственных векторов совпадает с множеством всех решений однородной системы линейных уравнений:
где – собственный вектор матрицы , что соответствует собственному числу . По теореме 4.4 такая система имеет фундаментальную систему решений, количество векторов которой равна , то есть содержит – линейно независимых векторов.
Теорема 5.9 (о существовании базиса из собственных векторов матрицы). Пусть числа образуют множество всех различных собственных чисел матрицы . Если сумма рангов матриц равна , то в пространстве существует базис из собственных векторов матрицы .
Доказательство. Согласно лемме каждое множество собственных векторов, соответствующих уравнению , содержит независимые векторы в количестве . По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Тогда для матрицы общее количество линейно независимых собственных векторов составляет:
Поскольку собственные векторы матрицы в совокупности составляют систему линейно независимых векторов, то они образуют базис пространства .
Теорема 5.10 (о существовании базиса из собственных векторов симметричной матрицы). Если матрица линейного оператора симметрична, то в пространстве существует базис, образованный из собственных векторов матрицы .
Теорему принимаем без доказательств.
Построим ортонормированный базис пространства , состоящий из собственных векторов матрицы
линейного преобразования , и найдем матрицу заданного преобразования в этом базисе.
Согласно теореме 5.9 такой базис существует, поскольку матрица является симметричной матрицей. Составим характеристическое уравнение матрицы :
и решим его: (собственное значение кратности ) и
Для каждого из двух различных собственных чисел матрицы определим фундаментальную систему решений однородной системы уравнений: . При в результате элементарных преобразований основной матрицы системы получаем:
По последним шагом элементарных преобразований матрицы записываем общее решение системы:
Определяем фундаментальную систему решений однородной системы уравнений
Собственные векторы и являются ортогональными, поскольку их скалярное произведение равно нулю:
При в результате элементарных преобразований основной матрицы системы получаем:
По последнем шагом элементарных преобразований матрицы записываем общее решение системы:
Возлагаем и получаем фундаментальный решение однородной системы уравнений
Поскольку и , то все три вектора попарно ортогональны. Объединив полученные фундаментальные системы решений, иметь систему собственных векторов матрицы . Они образуют ортогональный базис пространства . После нормирования векторы приобретают вид:
Это и есть ортогональный базис пространства , состоящий из собственных векторов матрицы .
По соотношению (5.13) определим матрицу , что соответствует оператору в базисе из собственных векторов. Согласно теореме 5.8 эта матрица будет иметь диагональный вид, а элементами ее главной диагонали будут собственные числа этой матрицы. Заключим с собственными векторами , и матрицу перехода к новому базису и найдем обратную к ней матрицу :
По матричным уравнением (5.13) находим матрицу , что соответствует оператору в базисе из собственных векторов:
Следовательно, мы получили диагональную матрицу третьего порядка, элементами главной диагонали которой есть собственные числа матрицы .
Далее приведен пример применения собственных векторов и собственных чисел в одной из многих задач экономики.
Линейная модель обмена (модель международной торговли)
Практически все страны кроме внутреннего товарообмена осуществляют внешний товарообмен, то есть занимаются внешней торговлей. Торговля считается сбалансированной, или бездефицитной, если для каждой страны прибыль от торговли не меньше объем средств, которые она вкладывает в товарооборот (внутренний и внешний).
Постановка задачи. Несколько стран осуществляют взаимный товарообмен. Известную долю бюджетных средств, тратит каждая страна на закупку товаров у другой страны, учитывая и внутренний товарооборот. Определить, каким должно быть соотношение бюджетов партнеров для того, чтобы обеспечить бездефицитность торговли.
Построение математической модели. Введем обозначения количественных характеристик, описывающих торговлю между странами, и определим связь между этими характеристиками. Пусть – страны, участвующие в международной торговле. Доли средств, которые тратит страна на закупку товаров в стране , учитывая и внутренний товарооборот , обозначим через . Понятно, что
Матрицу , элементами которой являются числа , называют структурной матрицей торговли:
Эта матрица описывает взаимодействие стран в процессе международной торговли. Соотношение (5.34) означает, что сумма элементов каждого столбца матрицы равна
1. Если объем средств, которые тратит каждая страна на торговлю, обозначить через , соответственно, то прибыль страны от внутренней и внешней торговли составит
Чтобы торговля каждой страны была сбалансированной, по определению должно выполняться условие , и , то есть прибыль от торговли не должна быть меньше расходов. Однако соблюдение этого требования в виде неравенства невозможно для всех стран в совокупности. Действительно, добавим левые и правые части указанных неровностей, изменяя от единицы до :
Группируя в левой части слагаемые, содержащие каждое из , получим:
Учитывая соотношение (5.20), получим:
Отсюда следует, что сбалансированная торговля возможна только в случае знака равенства. Это, полагаем, понятно не только на основании аналитических выкладок, но и с экономической точки зрения (и даже просто с точки зрения здравого смысла): все страны в совокупности не могут получить прибыль. Более того, для одной из стран не может выполняться знак строгого неравенства .
Итак, условием сбалансированной торговли является равенства , и , из которых получим:
Введем в рассмотрение вектор (бюджетных) средств и подадим систему (5.39) в матричной форме:
С (5.40) следует, что при условии сбалансированности торговли между странами вектор средств должен быть собственным вектором структурной матрицы торговли , который принадлежит собственному числу . Таким образом, решение задачи сводится к нахождению этого собственного вектора , компоненты которого устанавливают соотношение между бюджетами стран, участвующих в товарообмене.
Рассмотрим товарообмен между тремя странами. Пусть структурная матрица торговли стран , имеет вид:
Найдем вектор средств, компонентами которого являются доли от общего объема торговли, должна вкладывать каждая из стран во внешней товарооборот для того, чтобы торговля была сбалансированной.
Искомый вектор средств является собственным вектором структурной матрицы, принадлежащий собственному значению . Его компоненты образуют ненулевое решение однородной СЛАУ:
Поскольку система является однородной, то расширенная матрица эквивалентна основной матрицы системы. Осуществим элементарные преобразования основной матрицы этой системы уравнений:
Находим общее решение системы, в котором – базисные переменные, – свободная переменная:
Отсюда следует, что для сбалансированности торговли необходимо, чтобы средства, которые вкладывает в внешний товарооборот каждая страна, соотносились как
Лекции:
- Разложение в ряд Фурье четных и нечетных функций
- Функции многих переменных
- Наибольшее и наименьшее значение функции
- Уравнение плоскости
- Экстремум функции трёх переменных
- Как найти вероятность: пример решения
- Свойства определенного интеграла
- Комбинаторика
- Однородные дифференциальные уравнения
- Простейшие задачи аналитической геометрии