Как найти координаты проекции точки на плоскость

Проекция точки на плоскость онлайн

С помощю этого онлайн калькулятора можно найти проекцию точки на заданную плоскость. Дается подробное решение с пояснениями. Для построения проекции точки на данную плоскость введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку “Решить”.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Проекция точки на плоскость − теория, примеры и решения

Для нахождения проекции точки M0 на плоскость α, необходимо:

  • построить прямую L, проходящую через точку M0 и ортогональной плоскости α.
  • найти пересечение данной плоскости α с прямой L(Рис.1).

Общее уравнение плоскости имеет вид:

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональной плоскости (1) имеет следующий вид:

Для нахождения точку пересечения прямой L с плоскостью α, проще всего рассматривать параметрическое уравнение прямой. Составим ее

Выразим переменные x, y, z через рараметр t.

Подставим значения x,y,z из выражения (4) в (1) и решим относительно t.

Подставляя значение параметра t в выражения (4), находим проекцию M1 точки M0 на плоскость (1).

Пример 1.Найти проекцию M1 точки M0(4, -3, 2) на плоскость

Решение.

Нормальный вектор плоскости имеет вид:

т.е. A=5, B=1, C=−8.

Координаты точки M0: x0=4, y0=−3, z0=2.

Подставляя координаты точки M0 и нормального вектора плоскости в (5), получим:

Из выражений (7) находим:

Ответ:

Проекцией точки M0(4, -3, 2) на плоскость (6) является точка:

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее – ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

A*x + B*y + C*z + D = 0.

Первые три коэффициента – это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Далее в статье будем использовать записанное уравнение. Оно требуется, чтобы найти проекцию точки на плоскость.

Понятие о проекции точки и ее вычисление

Проекции точек на плоскости

Предположим, что задана некоторая точка P(x1; y1; z1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x2; y2; z2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

(x; y; z) = (x1; y1; z1) + λ*(A; B; C).

Где λ – действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Проекции в черчении

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

d = |PQ¯| = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Расстояние точки и плоскости

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

2*x – y + z + 4 = 0.

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90o. Имеем:

(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

x = 2*λ;

y = -2 – λ;

z = λ + 3;

2*x – y + z + 4 = 0.

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

2*(2*λ) – (-2 – λ) + λ + 3 + 4 = 0 =>

6*λ + 9 = 0 =>

λ = 9/6 = 3/2 = 1,5.

Подставим найденный параметр в уравнение прямой и найдем координаты проекции исходной точки на плоскость:

(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 – 0 )2 + (-3,5 + 2 )2 + (4,5 – 3 )2) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.

Проекция точки на плоскость

  • Определите
    координаты проекции точки М1(-1,-2.5) на
    плоскость

x-2y+2z-4=0

Нормальный
вектор плоскости x-2y+2z-4=0

 имеет
координаты (1.-2.2), следовательно,
вектор является направляющим вектором
прямой a. Теперь мы можем написать
параметрические
уравнения прямой в пространстве, так
как знаем координаты точки прямой
М1(-1,-2.5)  и координаты ее направляющего
вектора (1.-):

X=1t-1

Y=-2t-2

Z=2t+5

Осталось
определить координаты точки пересечения
прямой и плоскости.
Для этого в уравнение плоскости подставим :
.

Теперь
по параметрическим уравнениям вычислим
значения переменныхxy и z при :
.

Таким
образом, проекция точки М1 на
плоскость АВС имеет
координаты .

Проекция
прямой на плоскость

Эллипс

 Эллипсом
называется множество точек плоскости,
сумма расстояний которых до двух данных
точек, называемых фокусами и есть
величина постоянная (ее обозначают
через 2*а ). Причем эта постоянная больше
расстояния между фокусами.

Для
вывода уравнения эллипса выберем систему
координат так,
чтобы фокусыF1 и F2 
лежали на оси ,
а начало координат совпадало с серединой
отрезкаF1F2.
Тогда фокусы будут иметь следующие
координаты: и.

Пусть 
произвольная точка эллипса. Тогда,
согласно определению эллипса,,
т. е.

(11.5)

Это,
по сути, и есть уравнение эллипса.

Преобразуем
уравнение  (11.5)  к более простому
виду следующим образом:

,

,

,

,

.

Так
как a>с,
то .
Положим

     (11.6)

Тогда
последнее уравнение примет вид  или

       
(11.7)

Эксцентрисите́т —
числовая характеристика конического
сечения,
показывающая степень его отклонения
от окружности.
Обычно обозначается “
или “”.

Форма
эллипса (мера его “сжатия”)
характеризуется его эксцентриситетом.

 (так
как ,
то)

Прямые: иперпендикулярные
главной оси и проходящие на расстоянииот
центра, называютсядиректрисами эллипса.

Параметрические уравнения эллипса

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Проекция точки на плоскость онлайн

Координаты проекции точки

В данном материале  мы рассмотрим решение задачи нахождения координат  проекции точки на какую либо плоскость  в пространстве.

Теории практически не будет и думаю для тех кто интересуется могут понять это все из ниже разобранного примера

Найти проекцию точки M(1,-3,2) на плоскость 2x+5y-3z-19=0

Проекция точки М на данную поверхность – есть точка пересечения с данной плоскостью прямой, проходящей через точку М перпендикулярно к данной плоскости.

Уравнение прямой, проходящей через точку M(1,-3,2) перпедикулярно к плоскости 2x+5y-3z-19=0 имеет вид

или в виде системы

{x-1}=2t

i{y+3}=5t

{z-2}=-3t

Добавив сюда исходное уравнение плоскости получим полноценную систему линейных уравнений которая легко решается

{x-1}=2t

i{y+3}=5t

{z-2}=-3t

2x+5y-3z-19=0

В данном примере проекция точки имеет координаты (3,2,-1)

Удачных расчетов!!

Проецирование точки

Подробности
Категория: Основы начертательной геометрии

 

 ПРОЕЦИРОВАНИЕ ТОЧКИ НА ДВЕ ПЛОСКОСТИ ПРОЕКЦИЙ

Образование отрезка прямой линии АА1   можно представить как результат перемещения точки А в какой-либо плоскости Н (рис. 84, а), а образование плоскости — как перемещение отрезка прямой линии АВ (рис. 84, б).

Рис. 84.

Точка — основной геометрический элемент линии и поверхности, поэтому изучение прямоугольного проецирования предмета начинается с построения прямоугольных проекций точки.

В пространство двугранного угла, образованного двумя перпендикулярными плоскостями — фронтальной (вертикальной) плоскостью проекций V и горизонтальной плоскостью проекций Н, поместим точку А (рис. 85, а).

Линия пересечения плоскостей проекций    — прямая, которая называется осью проекций и обозначается буквой    х.

Плоскость V здесь изображена в виде прямоугольника, а плоскость Н — в виде параллелограмма. Наклонную сторону этого параллелограмма обычно проводят под углом 45° к его горизонтальной стороне. Длина наклонной стороны берется равной 0,5 ее действительной длины.

Из точки А опускают перпендикуляры на плоскости V и Н. Точки а’и а пересечения перпендикуляров с плоскостями проекций V и Н являются прямоугольными проекциями точки А. Фигура Аааха’ в пространстве — прямоугольник. Сторона аах этого прямоугольника на наглядном изображении уменьшается в 2 раза.

Рис. 85.

Совместим плоскости Н с плоскостью V ,вращая V вокруг линии пересечения плоскостей х. В результате получается комплексный чертеж точки А (рис. 85, б)

Для упрощения комплексного чертежа границы плоскостей проекций V и Н не указывают (рис. 85, в).

Перпендикуляры, проведенные из точки А к плоскостям проекций, называются проецирующими линиями, а основания этих проецирующих линий — точки а и а’ — называются проекциями точки А: а’ — фронтальная проекция точки А, а — горизонтальная проекция точки А.

Линия а’ а называется вертикальной линией проекционной связи.

Расположение проекции точки на комплексном чертеже зависит от положения этой точки в пространстве.

Рис. 86.

Если точка А лежит на горизонтальной плоскости проекций Н (рис. 86, а), то ее горизонтальная проекция а совпадает с заданной точкой, а фронтальная проекция а’ располагается на оси При расположении точки В на фронтальной плоскости проекций V ее фронтальная проекция совпадает с этой точкой , а горизонтальная проекция лежит на оси х. Горизонтальная и фронтальная проекции заданной точки С, лежащей на оси х, совпадают с этой точкой. Комплексный чертеж точек А, В и С показан на рис. 86, б.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ТРИ ПЛОСКОСТИ ПРОЕКЦИЙ

В тех случаях, когда по двум проекциям нельзя представить себе форму предмета, его проецируют на три плоскости проекций. В этом случае вводится профильная плоскость проекций W, перпендикулярная плоскостям V и Н. Наглядное изображение системы из трех плоскостей проекций дано на рис. 87, а.

Ребра трехгранного угла (пересечение плоскостей проекций) называются осями проекций и обозначаются x, у и z. Пересечение осей проекций называется началом осей проекций и обозначается буквой О. Опустим из точки А перпендикуляр на плоскость проекций W и, отметив основание перпендикуляра буквой а”, получим профильную проекцию точки А.

Для получения комплексного чертежа точки А плоскости    Н и W совмещают с плоскостью V, вращая их вокруг осей Ох и Oz. Комплексный чертеж точки А показан на рис. 87, б и в.

Рис. 87.

Отрезки проецирующих линий от точки А до плоскостей проекций называются координатами точки А и обозначаются: хА,    уА и   zA.

Например, координата zA точки А, равная отрезку а’ах (рис. 88, а и б), есть расстояние от точки А до горизонтальной плоскости проекций Н. Координата у точки А, равная отрезку аах, есть расстояние от точки А до фронтальной плоскости проекций V. Координата хА, равная отрезку аау — расстояние от точки А до профильной плоскости проекций W.

Таким образом, расстояние между проекцией точки и осью проекции определяют координаты точки и являются ключом к чтению ее комплексного чертежа. По двум проекциям точки можно определить все три координаты точки.

Если заданы координаты точки А (например, хА=20 мм,    уА=22мм и zA= 25 мм), то можно построить три проекции этой точки.

Для этого от начала координат О по направлению оси Oz откладывают вверх координату zA и вниз координату уА.Из концов отложенных отрезков — точек az и ау (рис. 88, а) — проводят прямые, параллельные оси Ох, и на них откладывают отрезки, равные координате хА. Полученные точки а’ и а — фронтальная и горизонтальная проекции точки    А.

По двум проекциям а’ и а точки А построить ее профильную проекцию можно тремя способами:

1)    из начала координат О проводят вспомогательную дугу радиусом Оау, равным координате    (рис. 87, б и в), из полученной точки ау1 проводят прямую, параллельную оси Oz, и откладывают отрезок, равный zA;

2)    из точки ау проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, а), получают точку ау1 и т. д.;

3)    из начала координат О проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, б), получают точку ау1 и т. д.

Рис. 88.

Добавить комментарий