Как найти координаты симметричных точек параболы

Функция вида y=ax^2+bx+c , где aneq 0 называется квадратичной функцией

График квадратичной функции – парабола

парабола, построение параболы, график парабола

Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА 

y=x^2, то есть a=1, b=0, c=0

Для построения заполняем таблицу, подставляя значения x в формулу:

parabola2

Отмечаем  точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х ( в данном случае шаг 1 ), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:

классическая парабола, парабола, построение параболы

Нетрудно заметить, что если мы возьмем случай a=-1, b=0, c=0, то есть y=-x^2, то мы получим параболу, симметричную y=x^2 относительно оси (ох). Убедиться  в этом несложно, заполнив аналогичную таблицу:

парабола, построение параболы

II СЛУЧАЙ,  «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать a=2, a=-3, a=0.5? Как изменится поведение параболы? При |a|>1 парабола  y=ax^2 изменит форму, она “похудеет” по сравнению с параболой y=x^2 (не верите – заполните соответствующую таблицу – и убедитесь сами):

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы y=x^2 (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях x  ордината  y  каждой точки умножилась на 4.  Это произойдет со всеми ключевыми точками исходной  таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при |a|<1 парабола y=ax^2  «станет шире»  параболы y=x^2:

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант, ветви вниз

Давайте подитожим:

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ  «С»

 Теперь давайте введем в игру c (то есть рассматриваем случай, когда cneq 0), будем рассматривать параболы вида y=ax^2+c. Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы y=ax^2 вдоль оси (oy) вверх или вниз в зависимости от знака c:

парабола, построение параболы, сдвиг параболы, ветви параболы, коэффициенты параболы, дискриминант

IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси (oy) и будет, наконец, “гулять” по всей координатной плоскости? Когда b перестанет быть равным 0.

Здесь для построения параболы y=ax^2+bx+c нам понадобится формула для вычисления вершины: x_o=frac{-b}{2a},   y_o=y(x_o).

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу y=ax^2, что уже нам по силам. Если  имеем дело со случаем a=1, то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с a=2, например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы y=x^2-4x-2:

x_o=frac{4}{2}=2,  y_o=(2)^2-4cdot 2 -2=-6. Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы y=x^2,  ведь a=1 в нашем случае.

парабола, построение параболы, ветви параболы, дискриминант

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку (0;c).  Действительно, подставив в формулу y=ax^2+bx+c x=0, получим, что y=c. То есть ордината точки пересечения параболы  с осью (оу), это c.   В нашем примере (выше), парабола пересекает ось ординат в точке -2, так как c=-2.

2) осью симметрии параболы является прямая x=frac{-b}{2a}, поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая y к 0, мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение ax^2+bx+c=0. В зависимости от дискриминанта, будем получать одну (D=0,  x=-frac{b}{2a}), две (D>0, x_{1,2}=frac{-bpmsqrt{b^2-4ac}}{2a}) или нИсколько (D<0) точек пересечения с осью (ох). В предыдущем примере у нас  корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения  с осью (ох) у нас будут (так как D>0), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана  в виде y=ax^2+bx+c

1) определяем направление ветвей ( а>0 – вверх, a<0 – вниз)

2) находим координаты вершины (x_o;y_o) параболы по формуле x_o=frac{-b}{2a},   y_o=y(x_o).

3) находим точку пересечения параболы с осью (оу) по свободному члену c, строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение c велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу y=ax^2. Если |a|>1, то парабола y=ax^2 становится у’же по сравнению с y=x^2, если |a|<1, то парабола расширяется по сравнению с y=x^2

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение ax^2+bx+c=0

Пример 1

алгоритм построения параболы, парабола

Пример  2

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

Замечание 1. Если же парабола изначально нам задана в виде y=a(x-m)^2+n, где m, n – некоторые числа (например, y=(x-5)^2-1), то построить ее будет еще легче, потому что нам уже заданы координаты вершины (m, n). Почему?

Возьмем квадратный трехчлен ax^2+bx+c и выделим в нем полный квадрат: ax^2+bx+c=a(x^2+frac{b}{a}x+frac{c}{a})=a((x^2+2frac{b}{2a}x+frac{b^2}{4a^2})-frac{b^2}{4a^2}+frac{c}{a})=a(x+frac{b}{2a})^2-frac{b^2}{4a}+c. Посмотрите, вот мы и получили, что m=frac{-b}{2a}, n=-frac{b^2}{4a}+c=y(frac{-b}{2a}). Мы с вами ранее называли   вершину параболы (x_o; y_o), то есть теперь x_o=m, y_o=n.

Например,  y=-frac{1}{3}{(x+2)}^2+6. Отмечаем на плоскости вершину параболы (-2; 6), понимаем, что ветви направлены вниз, парабола расширена (относительно y=x^2). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

парабола с ветвями вниз

Замечание 2. Если парабола задана в виде, подобном этому y=x(x-4) (то есть y представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае  – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют
функцией в математике.

Если вы прочно закрепите общие знания о функции (способы задания, понятие графика)
дальнейшее изучение других
видов функций будет даваться значительно легче.

Что называют квадратичной функцией

Запомните!
!

Квадратичная функция — это функция вида

y = ax2 + bx + c,

где a,
b и с — заданные числа.

Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень,
в которой стоит «x» — это «2»,
то перед нами квадратичная функция.

Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты «a»,
«b» и «с».

Квадратичная функция Коэффициенты
y = 2x2 − 7x + 9

  • a = 2
  • b = −7
  • с = 9
y = 3x2 − 1

  • a = 3
  • b = 0
  • с = −1
y = −3x2 + 2x

  • a = −3
  • b = 2
  • с = 0

Как построить график квадратичной функции

Запомните!
!

График квадратичной функции называют параболой.

Парабола выглядит следующим образом.

парабола - график квадратичной функции

Также парабола может быть перевернутой.

перевернутая парабола

Существует четкий алгоритм действий при построении графика квадратичной функции.
Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.

Чтобы было проще понять этот алгоритм, сразу разберем его на примере.

Построим график квадратичной функции «y = x2 −7x + 10».

  1. Направление ветвей параболы

    Запомните!
    !

    Если «a > 0», то ветви направлены вверх.
    парабола маленькая

    Если «a < 0», то ветви направлены вниз.
    перевернутая парабола маленькая

    В нашей функции «a = 1», это означает, что ветви параболы направлены вверх.
    перевернутая парабола мальнькая

  2. Координаты вершины параболы

    Запомните!
    !

    Чтобы найти «x0»
    (координата вершины по оси «Ox»)
    нужно использовать формулу:

    Найдем «x0» для нашей функции «y = x2 −7x + 10».

    Теперь нам нужно найти «y0»
    (координату вершины по оси «Oy»).
    Для этого нужно подставить найденное значение «x0» в исходную функцию.
    Вспомнить, как найти значение функции можно в уроке
    «Как решать задачи на функцию» в подразделе
    «Как получить значение функции».

    y0(3,5) =
    (3,5)2 − 7 ·3,5 + 10 = 12,25 − 24,5 + 10 =

    −12,25 + 10 = −2,25

    Выпишем полученные координаты вершины параболы.

    (·) A (3,5; −2,25) — вершина параболы.

    Отметим вершину параболы на системе координат.
    Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график
    относительно оси «Oy».

    вершина параболы

  3. Нули функции

    Для начала давайте разберемся, что называют нулями функции.

    Запомните!
    !

    Нули функции — это точки пересечения графика функции с осью «Ox»
    (осью абсцисс).

    Наглядно нули функции на графике выглядят так:

    нули функции

    Свое название нули функции получили из-за того, что у этих точек координата
    по оси «Oy» равна нулю.

    Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.

    Запомните!
    !

    Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо
    «y = 0».

    Подставим в заданную функцию «y = x2 −7x + 10»
    вместо «y = 0» и решим полученное
    квадратное уравнение
    относительно
    «x» .

    0 = x2 −7x + 10
    x2 −7x + 10 = 0

    x1;2 =

    7 ±
    49 − 4 · 1 · 10
    2 · 1

    x1;2 =

    x1;2 =

    x1 =

    x2 =

    x1 =

    x2 =

    x1 = 5

    x2 = 2

    Мы получили два корня в уравнении, значит, у нас две точки пересечения
    с осью «Ox».
    Назовем эти точки и выпишем их координаты.

    • (·) B (5; 0)
    • (·) C (2; 0)

    Отметим полученные точки («нули функции») на системе координат.

    отмечаем нули функции на системе координат

  4. Дополнительные точки для построения графика

    Возьмем четыре произвольные числовые значения для «x».
    Целесообразно брать целые числовые значения на оси «Ox»,
    которые наиболее близки к оси
    симметрии. Числа запишем в таблицу в порядке возрастания.

    x 1 3 4 6
    y

    Для каждого выбранного значения «x»
    рассчитаем «y».

    • y(1) = 12 − 7 · 1 + 10 = 1 − 7 + 10 =
      4
    • y(3) = 32 − 7 · 3 + 10 = 9 − 21 + 10 =
      −2

    • y(4) = 42 − 7 · 4 + 10 = 16 − 28 + 10 =
      −2
    • y(6) = 62 − 7 · 6 + 10 = 36 − 42 + 10 =
      4

    Запишем полученные результаты в таблицу.

    x 1 3 4 6
    y 4 −2 −2 4

    Отметим полученные точки графика на системе координат (зеленые точки).

    дополнительные точки для построения

    Теперь мы готовы построить график.
    На забудьте после построения подписать график функции.

    график параболы

Краткий пример построения параболы

Рассмотрим другой пример построения графика квадратичной функции.
Только теперь запишем алгоритм построения коротко без подробностей.

Пусть требуется построить график функции
«y = −3x2 − 6x − 4».

  1. Направление ветвей параболы
  2. «a = −3» — ветви параболы направлены вниз.
    перевернутая парабола маленькая

  3. Координаты вершины параболы

    x0 =
    x0 = =

    = −1

    y0(−1) = (−3) · (−1)2 − 6 · (−1) − 4 =
    −3 · 1 + 6 − 4 = −1

    (·) A (−1; −1)

    — вершина параболы.

    вершина параболы -3x^2 - 6x - 4

  4. Нули функции

    Точки пересечения с осью «Ox» (y = 0).

    0 = −3x2 − 6x − 4

    −3x2 − 6x − 4 = 0 |·(−1)

    3x2 + 6x + 4 = 0

    x1;2 =

    −6 ±
    62 − 4 · 3 · 4
    2 · 1

    x1;2 =

    x1;2 =


    Ответ: нет действительных корней.

    Так как корней нет, значит, график функции не пересекает ось
    «Ox».

  5. Вспомогательные точки для: «x = −3»;
    «x = −2»;
    «x = 0»;
    «x = 1». Подставим в исходную функцию
    «y = −3x2 − 6x − 4».

    • y(−3) = −3 · (−3)2 − 6 · (−3) − 4
      = −3 · 9 + 18 − 4 = −27 + 14 = −13
    • y(−2) = −3 · (−2)2 − 6 · (−2) − 4
      = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4

    • y(0) = −3 · 02 − 6 · 0 − 4
      = −4
    • y(1) = −3 · 12 − 6 · 1 − 4
      = −3 −6 − 4 = −13
    x −3 −2 0 1
    y −13 −4 −4 −13

Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые
не выходят за масштаб нашей системы координат, то есть точки
«(−2; −4)» и «(0; −4)».
Построим и подпишем график функции.

график функции -3x^2 - 6x - 4


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

Как  найти вершину параболы

Содержание:

  • Нахождение вершины параболы: способы, примеры, советы
    • Первый способ
    • Второй способ
    • Третий способ
  • Построение параболы
  • Советы
  • Видео

Нахождение вершины параболы: способы, примеры, советы

График функции y = ax2+ bx + c, где a — первый коэффициент, b – второй коэффициент, c – свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0.

Например, y =x2–8 x +15;

находим первый, второй коэффициенты и свободный член;

  • a =1, b =-8, c =15;

подставляем значения a и b в формулу;

  • x0=8/2=4;

вычисляем значения y;

  • y0 = 16–32+15 = -1;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n – корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x2–6x+5

1) Приравниваем к нулю:

  • x2–6x+5=0.

2) Находим дискриминант, используя формулу: D = b 2–4 ac:

  • D =36–20=16.

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 – первый корень;
  • 5 – второй корень.

4) Вычисляем:

  • x0 =(5+1)/2=3

Как найти вершину

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2+8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2)2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

x2 + 8x +16= 6.

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4)2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f'(x) = (4x²+16x-17)’ = 8x+16 =0

Как построить параболу

Построение параболы

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2+11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

X 5,5
Y

2) Заполняем таблицу

Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

X 4 5 5,5 6 7
Y -4 -6 -6,25 -6 -4

Советы

Правильно находите коэффициенты.

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео

Это видео поможет вам научиться находить вершину параболы

График квадратичной функции




График квадратичной функции y=ax²+bx+c, (где a, b, c — числа, причём a≠0) — парабола. При a>0 ветви параболы направлены вверх, при a<0 — вниз.

Как и в частном случае — y=±x²+bx+c — существуют различные способы построения графика функции y=ax²+bx+c. Рассмотрим два из них.

I способ — по точкам.

1) Ищем координаты вершины параболы.

2) Находим точки пересечения графика с осями координат.

3) Для более точного изображения графика подбираем дополнительные точки. Прямая, проходящая через вершину параболы параллельно оси Ox, является осью симметрии параболы. Поэтому в качестве дополнительных точек можно взять несколько точек либо справа, либо слева от вершины (где проще находить y), после чего построить симметричные им точки.

Примеры.

1) Построить график функции y=0,25x²+0,5x-4,75.

Решение:

y=0,25x²+0,5x-4,75 — квадратичная функция. График — парабола ветвями вверх (так как a=0,25>0). Координаты вершины параболы

    [{x_o} = frac{{ - b}}{{2a}} = frac{{ - 0,5}}{{2 cdot 0,25}} = - 1,]

    [{y_o} = 0,25cdot{( - 1)^2} + 0,5cdot( - 1) - 4,75 = - 5.]

Первая точка графика — (-1; -5).

Ищем точки пересечения параболы с осями координат. В точке пересечения с осью Ox y=0, то есть нужно решить уравнение 0,25x²+0,5x-4,75=0. Его дискриминант равен 5, искать корни смысла нет, поскольку положение точек в этом случае можно найти только приближенно.

В точках пересечения с осью Oy x=0, поэтому y(0)=0,25∙0²+0,5∙0-4,75=-4,75.

Вторая точка графика — (0; -4,75).

Прямая x= -1, проходящая через вершину параболы параллельно оси Ox, является осью симметрии параболы.

В качестве дополнительных берем точки справа от оси симметрии (проще вычислять y).

Найдём значение функции при x=1, x=3, x=5 и x=7 (удобнее брать нечётные значения x, поскольку в этом случае получаем целые значения y).

y(1)=0,25∙1²+0,5∙1-4,75=-4, точка (1; -4);

y(3)=0,25∙3²+0,5∙3-4,75=-1, точка (3; -1);

y(5)=0,25∙5²+0,5∙5-4,75=4, точка (5; 4);

y(7)=0,25∙7²+0,5∙7-4,75=11, точка (7; 11).

Найденные точки отмечаем на координатной плоскости. Строим точки, симметричные отмеченным относительно прямой x= -1. Через полученные точки проводим параболу:

grafik-kvadratichnoj-funkcii

График квадратичной функции y=0,25x²+0,5x-4,75

2) Построить график функции y= -2x²+12x-10.

Решение:

y= -2x²+12x-10 — квадратичная функция. График — парабола ветвями вверх (так как a=-2<0).

Координаты вершины параболы

    [{x_o} = frac{{ - b}}{{2a}} = frac{{ - 12}}{{2 cdot ( - 2)}} = 3,]

    [{y_o} = - 2 cdot {3^2} + 12 cdot 3 - 10 = 8.]

(3; 8) — вершина, x=3 — ось симметрии параболы.

В точках пересечения графика с осью Ox y=0, то есть решаем уравнение -2x²+12x-10=0. Его корни — x=1 и x=5. Получили точки графика (1; 0) и (5; 0).

В точке пересечения графика с осью Oy x=0:

y= -2∙0²+12∙0-10= -10. Точка графика — (0; -10).

Дополнительную точку возьмём справа от оси симметрии: x=2.

y= -2∙2²+12∙2-10= 6, (2; 6).

Найденные 5 точек отмечаем на координатной плоскости. Находим еще две точки, симметричные относительно прямой x=3 точкам (0; -10) и (2; 6). Через эти семь точек проводим параболу:

postroit-grafik-kvadratichnoj-funkcii

График квадратичной функции y=-2x²+12x-10

3) Построить график функции

    [y = frac{1}{3}{x^2} - x + 2]

Решение:

    [y = frac{1}{3}{x^2} - x + 2]

— квадратичная функции. Её графиком является парабола, ветви которой направлены вверх (так как a=1/3>0). Координаты вершины параболы

    [{x_o} = frac{{ - b}}{{2a}} = frac{{ - ( - 1)}}{{2 cdot frac{1}{3}}} = frac{3}{2} = 1,5,]

    [{y_o} = frac{1}{3} cdot {(frac{3}{2})^2} - frac{3}{2} + 2 = frac{5}{4} = 1,25.]

Первая точка графика — вершина (1,5; 1,25) — найдена.

Чтобы найти точки пересечения графика с осью Ox, надо решить уравнение

    [frac{1}{3}{x^2} - x + 2 = 0]

Его дискриминант — число отрицательное. Значит, уравнение не имеет корней, а график функции не пересекает ось абсцисс.

Чтобы найти точку пересечения графика с осью Oy, находим значение функции при x=0:

    [y(0) = frac{1}{3} cdot {0^2} - 0 + 2 = 2.]

Вторая точка графика — (0; 2).

Прямая x=1,5, проходящая через вершину параболы — её ось симметрии. Найдем пару точек графика слева от оси симметрии.

    [y( - 1) = frac{1}{3} cdot {( - 1)^2} - ( - 1) + 2 = 3frac{1}{3},]

    [y( - 3) = frac{1}{3} cdot {( - 3)^2} - ( - 3) + 2 = 8.]

Таким образом, получили ещё две точки

    [( - 1;3frac{1}{3});( - 3;8).]

На координатной плоскости отмечаем найденные точки, затем — точки, симметричные им относительно оси симметрии, и проводим через них параболу:

kak-postroit-grafik-kvadratichnoj-funkcii

График квадратичной функции y=(1/3) x²-x+2

В алгебре с построением графиков, в том числе, графиков квадратичных функций, приходится иметь дело при решении заданий из самых разных разделов. Вот почему важно вовремя успешно овладеть навыками построения квадратичной параболы.

Другой способ построения графика квадратичной функции рассмотрим в следующий раз.

       

Как найти ось симметрии квадратичной функции

Как найти ось симметрии квадратичной функции — Разница Между

Содержание:

Что такое квадратичная функция

Полиномиальная функция второй степени называется квадратичной функцией. Формально f (x) = ax 2 + bx + c — квадратичная функция, где a, b и c — действительные постоянные и a ≠ 0 для всех значений x. График квадратичной функции является параболой.

Как найти ось симметрии квадратичной функции

Любая квадратичная функция показывает поперечную симметрию поперек оси y или линии, параллельной ей. Ось симметрии квадратичной функции может быть найдена следующим образом:

F (X) = ах 2 + bx + c, где a, b, c, x∈R и a ≠ 0

Написание х терминов в виде полного квадрата у нас есть,

Переставляя члены вышеприведенного уравнения

Это означает, что для каждого возможного значения f (x) есть два соответствующих значения x. Это хорошо видно на диаграмме ниже.

расстояние влево и вправо от значения -b / 2a. Другими словами, значение -b / 2a всегда является средней точкой линии, соединяющей соответствующие значения x (точки) для любого заданного f (x).

Следовательно ,
x = -b / 2a — уравнение оси симметрии для заданной квадратичной функции в виде f (x) = ax 2 + BX + C

Как найти ось симметрии квадратичной функции — Примеры

  • Квадратичная функция определяется как f (x) = 4x 2 + Х + 1. Найдите симметричную ось.

х = -b / 2a = -1 / (2 × 4) = — 1/8

Следовательно, уравнение оси симметрии имеет вид х = -1 / 8

  • Квадратичная функция задается выражением f (x) = (x-2) (2x-5)

Упрощая выражение, мы получаем f (x) = 2x 2 -5x-4x + 10 = 2x 2 -9x + 10

Мы можем сделать вывод, что a = 2 и b = -9. Следовательно, мы можем получить ось симметрии как

Квадратичная функция. Построение параболы

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

  • a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
  • b — второй коэффициент, который отвечает за смещение параболы от центра координат.
  • с — свободный член, который соответствует координате пересечения параболы с осью ординат.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.

D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>

  1. Координаты вершины параболы:
  1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
  2. Нанести эти точки на координатную плоскость и построить график параболы:
    2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>

Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x — 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Симметрии на плоскости и в пространстве

Центральная симметрия с центром в точке C (a,b) описывается уравнениями $frac2=a, x’=-x+2a$ или, что то же самое, $frac2=b, y’=-y+2b$.

Например, если центр симметрии находится в точке C(1,2), то симметричной точке А(2, 3) будет точка А'(0,1), так как $x’=-2+2 times 1=0, y’=-3+2 times 2=1$.

Декартовы уравнения, описывающие осевую симметрию, более сложны, так как осью симметрии может быть любая прямая на плоскости, и чтобы описать ее, потребуется прибегнуть к тригонометрическим функциям. Существуют, однако, три простых случая.

Осевая симметрия относительно оси ОХ

Таким образом, чтобы найти точку, симметричную заданной, достаточно оставить неизменной первую координату и поменять знак у второй. Например, точкой, симметричной точке A(3,-2), будет точка А’(3,2).

Симметрия относительно оси OY

В этом случае для нахождения симметричной точки нужно поменять знак первой координаты и оставить неизменной вторую. Например, точкой, симметричной точке А (-3, 9) относительно оси ОУ, является точка А’(3,9).

Симметрия относительно биссектрисы y=x

Таким образом, достаточно только поменять значения координат местами. То есть точкой, симметричной точк с А(5,1), будет точка А’(1,5).

Симметрии в пространстве

В пространстве также существуют центральная и осевая симметрии (относительно точки или прямой), определяемые примерно так же, как и на плоскости, но с тремя координатами вместо двух. Безусловно, существует еще и третья возможность — симметрия относительно плоскости, так называемая зеркальная симметрия. Строится она следующим образом. Предположим, что Р — плоскость симметрии (симметрия в таком случае обычно обозначается символом ). Чтобы найти преобразование точки А, проводится перпендикуляр к плоскости, проходящий через данную точку. Точкой, симметричной заданной, будет точка А’ находящаяся на этом перпендикуляре и удаленная от плоскости Р на такое же расстояние, что и точка А.

Инвариантные элементы зеркальной симметрии:

  1. все точки на плоскости Р;
  2. прямые, перпендикулярные Р (но не точки этих прямых);
  3. плоскости, перпендикулярные Р (тоже плоскости в целом, но не элементы, их составляющие).

Зеркальная симметрия не только является инволютивным преобразованием, но и имеет следующие свойства:

  1. сохраняет расстояния между точками;
  2. переводит прямые в прямые;
  3. переводит плоскости в плоскости.

источники:

http://skysmart.ru/articles/mathematic/kvadratichnaya-funkciya-parabola

http://matemonline.com/2013/06/symmetries-in-the-plane-and-in-space/

Добавить комментарий