Как найти координаты точек конца отрезка

План урока:

Взаимосвязь координат векторов и его начала и конца

Определение координат середины отрезка

Вычисление длины вектора и отрезка

Простейшие задачи с использованием координатного метода

Использование признака коллинеарности векторов

Деление отрезка в заданном отношении

Введение прямоугольной системы координат

Взаимосвязь координат векторов и его начала и конца

На координатной плоскости любые две точки можно соединить друг с другом. В результате получается отрезок. Если же дополнительно указано, какая из этих точек – начало отрезка, а какая – конец, то в итоге мы уже имеем вектор. Попробуем определить, есть ли связь между координатами вектора и координатами (можно использовать сокращение коор-ты) его граничных точек.

Пусть в прямоугольной системе координат отмечены точки А (хАА) и В(хBB).Тогда можно задать вектор АВ. Также построим ещё два вспомогательных вектора ОА и ОВ, начинающиеся в точке О – начале коор-т:

1 zadachi v koordinatah

Вектора ОВ и ОА – это радиус-векторы (так как их начало находится в начале координат), поэтому их коор-ты ОВ и ОА совпадают с коор-тами их концов (В и А соответственно):

2 zadachi v koordinatah

Итак, зная коор-ты граничных точек вектора, можно найти и координаты данного вектора:

3 zadachi v koordinatah

Например, если вектор начинается в точке А (2; 1), а заканчивается в точке В (6; 3), то коор-ты вектора АВ можно определить так:

4 zadachi v koordinatah

Задание. Начало вектора находится в точке М, а конец – в точке К. Определите его коор-ты, если:

а) М(2; 7) и К(6; 8);

б) М(5; 1) и К(2; 10);

в) М(0; 8) и К(9; -5).

Решение. Из коор-т К мы просто вычитаем соответствующие коор-ты М, и в итоге определяем коор-ты вектора:

5 zadachi v koordinatah

Задание. От точки H (8; 15) отложили вектор m{5; – 6}. Каковы координаты конца этого вектора?

Решение. Обозначим интересующие нас коор-ты как (хк; ук). Для вектора, начинающегося в точке (8; 15) и заканчивающегося в точке (хк; ук), коор-ты можно вычислить так:

x = xk – 8

y = yk – 15

Однако нам даны координаты вектора, то есть величины х и у, поэтому мы можем записать:

5 = xk – 8

-6 = yk – 15

Оба равенства представляет собой уравнения, которые можно решить:

5 = xk – 8

xk = 5 + 8 = 13

-6 = yk – 15

yk = -6 + 15 = 9

В итоге получили, что конец вектора находится в точке (13; 9).

Ответ:(13; 9).

Определение координат середины отрезка

Пусть построен вектор АВ, причем известны коор-ты его начала А (хА; уА) и его конца B (хB; уB). Обозначим буквой С середину отрезка АВ и попытаемся вычислить коор-ты С, которые мы обозначим как (хC; уC):

6 zadachi v koordinatah

Рассмотрим вектора АС и СВ. Они имеют одинаковую длину, потому что С разбивает АВ пополам. Также АС и СВ коллинеарны, так как они лежат на одной прямой АВ. При этом они и сонаправлены, а значит, эти вектора равны:

7 zadachi v koordinatah

Нам удалось выразить коор-ты С через координаты А и В. В итоге можно сформулировать правило:

8 zadachi v koordinatah

Например, пусть необходимо найти координаты середины отрезка HK, при этом известны коор-ты его концов: Н(5; – 2) и К(3; 4). Сначала найдем полусумму коор-т х и получим эту же коор-ту у середины:

9 zadachi v koordinatah

Итак, точка середины отрезка имеет коор-ты (4; 1). Для наглядности построим отрезок ОК и продемонстрируем, что его середина действительно находится в точке (4; 1):

10 zadachi v koordinatah

Вычисление длины вектора и отрезка

Пусть есть произвольный вектор с коор-тами {x; у}. Отложим его от точки начала координат, после чего из его конца опустим перпендикуляры ОВ и ОС на координатные оси:

11 zadachi v koordinatah

Для простоты рассмотрим случай, когда х и у – положительные числа, то есть точка А находится в первой четверти. Тогда длина ОВ будет равна х:

OB = x

Так как ОСАВ – прямоугольник, то стороны ОС и АВ одинаковы, причем ОС имеет длину, равную коор-те у:

AB = OC = y

Теперь изучим ∆ОВА. Он прямоугольный, и ОА в нем – гипотенуза, поэтому можно записать теорему Пифагора:

OA2 = OB2 + AB2

Теперь заменим отрезки ОВ и АВ на х и у:

OA2 = x2 + y2

Осталось извлечь квадратный корень:

12 zadachi v koordinatah

Мы вывели формулу для вычисления длины вектора по его координатам. Можно рассмотреть и остальные случаи, когда точка А лежит в другой четверти координатной плоскости или на координатных осях, однако во всех случаях будет получаться одинаковая формула.

13 zadachi v koordinatah

Задание. Определите длину вектора с коор-тами:

14 zadachi v koordinatah

Решение. Во всех случаях просто возводим каждую коор-ту в квадрат, потом складываем полученные числа и извлекаем из полученной суммы квадратный корень:

15 zadachi v koordinatah

Теперь предположим, что имеется две точки с коор-тами (х1; у1) и (х2; у2). Требуется найти длину отрезка, их соединяющего, то есть расстояние между этими двумя точками. Если принять одну из этих точек, например первую, за начало вектора, а вторую за его конец, то задача сведется к вычислению длины этого вектора. Его коор-ты можно будет высчитать так:

x = x2 – x1

y = y2 – y1

Тогда расстояние между точками (обозначим его как d) будет вычисляться по формуле:

16 zadachi v koordinatah

Задание. Определите длину отрезка MP, если известны коор-ты его концов:

17 zadachi v koordinatah

Простейшие задачи с использованием координатного метода

Выведенные нами формулы являются базовыми для расчетов, связанных с коор-тами. До этого мы решали лишь простейшие задачи на использование этих формул, однако в более сложных задачах надо использовать сразу несколько более сложных формул.

Задание. Известны коор-ты трех вершин параллелограмма АВСD: А(4; 1), В(1; 1), С(3; 5). Определите коор-ты четвертой вершины D.

Решение.

18 zadachi v koordinatah

Сначала найдем коор-ты вектора ВС. Мы можем это сделать, так как нам известны коор-ты его начальной и конечной точки:

xBC = xC – xB = 3 – 1 = 2

yBC = yC – yB = 5 – 1 = 4

Так как в параллелограмме противоположные стороны имеют одинаковую длину и при этом параллельны, то вектора ВС и АD равны, то есть имеют одинаковые коор-ты:

19 zadachi v koordinatah

Итак, D имеет коор-ты (6; 5).

Ответ (6; 5).

Задание. В – середина отрезка АС. Известны коор-ты точек: А(2; 4) и В(0; 18). Найдите коор-ты С.

Решение.

20 zadachi v koordinatah

Для начала будем работать только с коор-той х. Так как В – середина АС, то их абсциссы (напомним, так называют координату х точек) связаны соотношением:

21 zadachi v koordinatah

Задание. Отрезок MN имеет длину 13. Даны координаты концов отрезка: M(4; 6) и N (х; 1). Найдите величину переменной х.

22 zadachi v koordinatah

Нам по условию известно это расстояние для точек M и N, а также известны 3 и 4 коор-т точек. Поэтому надо просто подставить все известные данные в формулу, получить уравнение и решить его:

23 zadachi v koordinatah

Далее извлекаем корень из обеих частей, но при этом появляется два различных корня (так обычно и бывает при решении квадратных уравнений):

24 zadachi v koordinatah

Ответ: – 8 или 16.

Задание. Расстояние от точки S(2x; – 2) до точки T (6; 4х) составляет 14. Определите величину х.

Решение. Задача во многом аналогично предыдущей, надо подставить в формулу расстояния между точками данные из условия и решить получившееся уравнение:

25 zadachi v koordinatah

Решаем это квадратное уравнение через дискриминант:

26 zadachi v koordinatah

Ответ: (– 2,6) или 3.

Задание. Найдите коор-ты точки M на рисунке, если точка А имеет коор-ты (4; 2).

27 zadachi v koordinatah

Решение. По рисунку видно, что середина отрезка находится в точке О(0; 0). Коор-ты середины отрезка (то есть точки О) и его граничных точек связаны формулами:

28 zadachi v koordinatah

Использование признака коллинеарности векторов

На прошлом уроке мы выяснили, что если вектора коллинеарны, то их коор-ты пропорциональны. Это позволяет определить, лежит ли та или иная точка на указанной прямой.

Задание. Даны точки А(1; 2), В(4; 7) и С (10; 17). Определите, лежит ли точка В на прямой АС.

Решение. Если А, В и С принадлежат одной прямой, то любые два вектора, проведенные через эти точки, окажутся коллинеарными друг другу. Если же они НЕ лежат на одной прямой, то наоборот, любые два таких вектора окажутся неколлинеарными. То есть надо составить два вектора, например, АВ и ВС, и проверить их коллинеарность.

Определим коор-ты АВ:

29 zadachi v koordinatah

Напомним, что для проверки векторов на коллинеарность надо поделить их коор-ты друг на друга. Если получится одно и то же число, то вектора коллинеарны:

30 zadachi v koordinatah

В обоих случаях получилось одинаковое число, значит, вектора коллинеарны.

Ответ: Да, точка B лежит на прямой AC.

Задание. Проверьте, лежат ли точки А(3; 7), В (8; 12) и С(6; 4) на одной прямой.

Решение. Снова вычисляем коор-ты векторов АВ и ВС:

31 zadachi v koordinatah

Получились разные числа, следовательно, вектора АВ и ВС не коллинеарны, а потому точки А, В и С никак не могут лежать на одной прямой.

Ответ: Нет, точки A,B,C не лежат на одной прямой.

Задание. Проверьте, параллельны ли друг другу отрезки АВ и CD, если известны коор-ты: А(1; 1), В(5; 5), С(4; 2), D(6; 4).

Решение. Если отрезки параллельны, то и вектора АВ и CD должны быть коллинеарными. Проверим это также, как мы это делали в двух предыдущих задачах:

32 zadachi v koordinatah

Итак, вектора коллинеарны. Означает ли это, что отрезки АВ и CD параллельны? Ещё нет. На самом деле возможно два случая:

1) АВ и CD действительно параллельны;

2) АВ и СD лежат на одной прямой, и тогда их параллельными считать нельзя.

33 zadachi v koordinatah

Как же проверить, какой из двух случаев относится к этой задаче? Надо рассмотреть ещё один ВС. Если реализуется второй случай, то он окажется коллинеарен вектору АВ. В первом же случае он будет ему не коллинеарен.

34 zadachi v koordinatah

Получили различные числа, значит, АВ и ВС не коллинеарны. Теперь мы можем точно утверждать, что АВ и СD параллельны.

Ответ: Да, отрезки AB и CD параллельны.

Деление отрезка в заданном отношении

Мы уже научились находить коор-ты середины отрезка. Можно сказать, что середина – это точка, которая разбивает отрезок в отношении 1:1, то есть на равные отрезки. А что делать в более сложном случае, если нужно найти точку, разбивающую отрезок в другом отношении, например, в отношении 2:1? Выведем для такого случая формулу.

Пусть точка С разбивает отрезок АВ в некотором отношении так, что отрезок АС в больше отрезка СВ:

35 zadachi v koordinatah

(Примечание. Если отрезок АС меньше СВ, то число k будет меньше единицы.)

Как и обычно, для обозначения коор-т точек используем индексы, совпадающие с обозначением точек: А(xА; уА), В(xВ; уВ) и С(xС; уС).

36 zadachi v koordinatah

Нам также потребуются вектора АС{xАС; уАС} и СВ{xСВ; уСВ}. Так как эти вектора сонаправлены, и АС в k раз длиннее, то

37 zadachi v koordinatah

Абсолютно аналогичные образования приведут к такому же выражению для коор-ты у:

38 zadachi v koordinatah

Рассмотрим на примерах использование этой формулы.

Задание. На отрезке РM отложена точка K так, что она разбивает РM на отрезки РK и KM в отношении РK:KM = 2:1. Даны коор-ты точек: Р(6; 3) и К (18; 12). Вычислите коор-ты K.

Решение.

39 zadachi v koordinatah

Отношение РК:КМ = 2:1 означает, что отрезок РК в 2 раза длиннее, чем КМ. Это означает, что в формуле

40 zadachi v koordinatah

Задание. Точки B (5; – 16) и H(29; 24) соединены отрезком. Точка M на отрезке ВН отмечена так, что ВМ:МН = 3:5. Определите коор-ты точки М.

Решение. Из отношения ВМ:МН = 3:5 вытекает, что ВМ длиннее МН в

3/5 = 0,6 раз

то есть фактически ВМ короче МН. То есть при использовании формулы

51 zadachi v koordinatah

Рассмотрим ещё несколько более усложненных задач с использованием коор-т.

Задание. Точка K лежит на оси Ох, при этом она равноудалена от точек Е(2; 2) и F(6; 10). Найдите коор-ты К.

Решение. У любой точки, лежащей на оси Ох, коор-та у будет равна нулю, в том числе и у точки К:

yk = 0

Будем обозначать неизвестную коор-ту К как х:

xk = x

Напомним расстояние между точками можно рассчитать, используя формулу:

42 zadachi v koordinatah

Получили иррациональное уравнение. В данном случае можно просто приравнять подкоренные выражения, однако после получения корней надо проверить, нет ли среди них посторонних:

43 zadachi v koordinatah

Проверяем, не является ли корень посторонним. Для этого просто подставляем его в уравнение:

44 zadachi v koordinatah

Корень действительно подошел, поэтому коор-та х точки К равна 16.

Ответ: (16; 0).

Введение прямоугольной системы координат

Даже если в формулировке задачи коор-ты и вектора прямо не упоминаются, может быть полезным самостоятельно добавить в нее прямоугольную систему координат. Это позволит использовать формулы, используемые в методе коор-т, для решения задачи.

Задание. Докажите, что если в параллелограмме сложить квадраты всех его сторон, то получится то же число, что и при сложении квадратов диагоналей этого параллелограмма.

Решение. Расположим систему коор-т таким образом, одна из сторон параллелограмма находилась на оси Ох, причем одна ее вершина совпадала с началом коор-т, а другая имела положительную коор-ту х:

45 zadachi v koordinatah

Пусть вершина А находится в начале коор-т, и тогда она имеет коор-ты (0; 0). Вершина D лежит на Ох, тогда ее ордината равна нулю, а абсциссу обозначим буквой а. Точка В имеет произвольные коор-ты (b; с), коор-ты же точки С можно рассчитать. Сначала заметим, что вектор коор-ты вектора АВ совпадают с коор-тами точки В, так как он является радиус-вектором:

46 zadachi v koordinatah

Вектора АВ и DC равны, потому что они лежат на параллельных прямых и имеют одинаковую длину:

47 zadachi v koordinatah

Итак, коор-ты С – это (а + b; с).

Теперь мы должны длину каждой стороны параллелограмма и возвести ее в квадрат. Обратите внимание, что если расстояние между точками рассчитывается по формуле

48 zadachi v koordinatah

Равенство доказано.

Задание. В равнобедренном треугольнике длина основания составляет 80 см, а опущенная на нее медиана имеет длину 160 см. Вычислите длины двух других медиан.

Решение. Пусть АВС – рассматриваемый в задаче треугольник, причем АВ – его основание. Расположим систему коор-т так, чтобы ее начало совпадало с точкой, в которой медиана пересекается с основанием:

49 zadachi v koordinatah

В этом случае вершина, из которой опущена медиана, будет иметь коор-ты (0; 160), а две другие вершины будут иметь коор-ты (– 40; 0) и (40; 0).

Нам надо найти длину двух других медиан АM и BN. Они одинаковы по длине, поэтому достаточно найти длину только одной из них, например, АМ. Для этого сначала найдем коор-ты М, которая является серединой ВС:

50 zadachi v koordinatah

Сегодня мы познакомились с важнейшими формулами, используемыми в методе коор-т, и научились решать некоторые простейшие задачи. В будущем мы узнаем о более сложных задачах, в которых будут фигурировать не только отрезки и многоугольники, но и окружности.

Деление отрезка в заданном отношении (векторный и координатный способы).

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Зная координаты точек $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$ и отношение $lambda,$ в котором точка $M$ делит направленный отрезок $overline{M_1M_2},$ найдем координаты точки $M.$

Пусть $O -$ начало координат. Обозначим $overline{OM_1}=r_1,$ $overline{OM_2}=r_2,$ $overline{OM}=r.$ Так как, $$overline{M_1M}=r-r_1, overline{MM_2}=r_2-r,$$ то $r-r_1=lambda(r_2-r),$ откуда (так как $lambdaneq -1$) $$r=frac{r_1+lambda r_2}{1+lambda}.$$ Полученная форма и дает решение задачи в векторной форме. Переходя в этой формуле к координатам, получим $$x=frac{x_1+lambda x_2}{1+lambda}, y=frac{y_1+lambda y_2}{1+lambda}, z=frac{z_1+lambda z_2}{1+lambda}.$$

Примеры.

2.57. Отрезок с концами в точках $A(3, -2)$ и $B(6, 4)$ разделен на три равные части. Найти координаты точек деления.

Решение.

Пусть $C(x_C, y_C)$ и $D(x_D, y_D) -$ точки, которые делят отрезок $AB$ на три равные части. Тогда $$lambda_1=frac{AC}{CB}=frac{1}{2};$$ $$x_C=frac{x_A+lambda_1x_B}{1+lambda_1}=frac{3+frac{1}{2}cdot 6}{1+frac{1}{2}}=4;$$ 

$$y_C=frac{y_A+lambda_1y_B}{1+lambda_1}=frac{-2+frac{1}{2}cdot 4}{1+frac{1}{2}}=0.$$ 

Далее находим координаты точки $D:$

$$lambda_2=frac{AD}{DB}=frac{2}{1}=2;$$ $$x_D=frac{x_A+lambda_2x_B}{1+lambda_2}=frac{3+2cdot 6}{1+2}=5;$$ 

$$y_D=frac{y_A+lambda_2y_B}{1+lambda_2}=frac{-2+2cdot 4}{1+2}=2.$$ 

Ответ: $(4, 0)$ и $(5, 2).$

2.58.Определить координаты концов отрезка, который точками $C(2, 0, 2)$ и $D(5, -2, 0)$ разделен на три равные части.

Решение.

Пусть $A(x_A, y_A, z_A)$ и $B(x_B, y_B, z_B) -$ концы заданного отрезка.

Выпишем формулы для нахождения координат точки $C$ и подставим известные координаты:

$$lambda_1=frac{AC}{CB}=frac{1}{2};$$ $$x_C=frac{x_A+lambda_1x_B}{1+lambda_1}Rightarrow 2=frac{x_A+frac{1}{2}cdot x_B}{1+frac{1}{2}}=2frac{x_A+frac{1}{2}cdot x_B}{3}Rightarrow $$ $$Rightarrow 3=x_A+frac{1}{2}cdot x_B;$$ 

$$y_C=frac{y_A+lambda_1y_B}{1+lambda_1}Rightarrow 0=frac{y_A+frac{1}{2}cdot y_B}{1+frac{1}{2}}Rightarrow 0=y_A+frac{1}{2}cdot y_B;$$

$$z_C=frac{z_A+lambda_1z_B}{1+lambda_1}Rightarrow 2=frac{z_A+frac{1}{2}cdot z_B}{1+frac{1}{2}}=2frac{z_A+frac{1}{2}cdot z_B}{3}Rightarrow$$ $$Rightarrow 3=z_A+frac{1}{2}cdot z_B.$$ 

Аналогичные равенства запишем для точки $D:$

$$lambda_2=frac{AD}{DB}=frac{2}{1}=2;$$ $$x_D=frac{x_A+lambda_2x_B}{1+lambda_2}Rightarrow 5=frac{x_A+2cdot x_B}{1+2}=frac{x_A+2cdot x_B}{3}Rightarrow $$ $$Rightarrow 15=x_A+2cdot x_B;$$ 

$$y_D=frac{y_A+lambda_2y_B}{1+lambda_2}Rightarrow -2=frac{y_A+2cdot y_B}{1+2}Rightarrow -6=y_A+2cdot y_B;$$

$$z_D=frac{z_A+lambda_2z_B}{1+lambda_2}Rightarrow 0=frac{z_A+2cdot z_B}{1+2}Rightarrow 0=z_A+2cdot z_B.$$

Далее запишем полученные уравнения относительно $x_A, x_B;$ $y_A, y_B$  и $z_A, z_B$ попарно в виде систем и решим их:

$$left{begin{array}{lcl}x_A+frac{1}{2}x_B=3\x_A+2x_B=15end{array}right.Rightarrowleft{begin{array}{lcl}x_A=3-0,5x_B\3-0,5x_B+2x_B=15end{array}right.Rightarrow$$ $$Rightarrowleft{begin{array}{lcl}x_A=3-0,5cdot8=-1\x_B=frac{12}{1,5}=8end{array}right.$$

$$left{begin{array}{lcl}y_A+frac{1}{2}y_B=0\y_A+2y_B=-6end{array}right.Rightarrowleft{begin{array}{lcl}y_B=-2y_A\y_A-4y_A=-6end{array}right.Rightarrow$$ $$Rightarrowleft{begin{array}{lcl}y_B=-4\y_A=2end{array}right.$$

$$left{begin{array}{lcl}z_A+frac{1}{2}z_B=3\z_A+2z_B=0end{array}right.Rightarrowleft{begin{array}{lcl}-2z_B+0,5z_B=3\z_A=-2z_Bend{array}right.Rightarrow$$ $$Rightarrowleft{begin{array}{lcl}z_B=-2\z_A=4end{array}right.$$

Таким образом, получили координаты концов отрезка $A(-1, 2, 4)$ и $B(8, -4, -2).$ 

Ответ: $A(-1, 2, 4),$ $B(8, -4, -2).$ 

Найти координаты конца отрезка, если известны координаты начала, его длина и угол наклона можно по формулам:

x = x0 + cos(α) * Z

x = x0 + sin(α) * Z

Где:
x, y – координаты конца отрезка,
x0, y0 – координаты начала отрезка,
α – угол наклона в радианах (относительно горизонта),
Z – длина отрезка.

1

Расчёт в JS

Пример расчета координат и построении линии в canvas:

var x0 = 250;  // Начальная точка x
var y0 = 400;  // Начальная точка y  
var z = 400;   // Длина отрезка
var deg = -60; // Угол наклона, градусы

var x = Math.round(x0 + Math.cos(deg * Math.PI / 180) * z);
var y = Math.round(y0 + Math.sin(deg * Math.PI / 180) * z);

// Рисование линии
var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');	

ctx.beginPath();
ctx.lineWidth = 2;
ctx.strokeStyle = 'red';
ctx.moveTo(x0, y0);
ctx.lineTo(x, y);
ctx.stroke();

JS

2

Расчёт в PHP

Пример вывода линии в библиотеки GD:

$x0 = 250;  // Начальная точка x
$y0 = 400;  // Начальная точка y  
$z = 400;   // Длина отрезка
$deg = -60; // Угол наклона, градусы

$x = round($x0 + cos(deg2rad($deg)) * $z);
$y = round($y0 + sin(deg2rad($deg)) * $z);

// Рисование линии
$img = imagecreate(800, 800); 
$bg = imagecolorallocate($img, 0, 0, 0);
imagesetthickness($img, 2);
imageline($img, $x0, $y0, $x, $y, 0x000000);
imagepng($im);
imagedestroy($im);

PHP

3

Онлайн расчет

Нахождение координат середины отрезка: примеры, решения

В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.

Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .

Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .

Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .

Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B

И далее мы рассмотрим, как же определять координаты середины отрезка (точки C ) при заданных координатах концов отрезка ( A и B ), расположенных на координатной прямой или в прямоугольной системе координат.

Середина отрезка на координатной прямой

Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B : необходимо определить координату x C .

Поскольку точка C является серединой отрезка А В , верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.

| А С | = | С В | ⇔ x C – x A = x B – x C

Тогда возможно два равенства: x C – x A = x B – x C и x C – x A = – ( x B – x C )

Из первого равенства выведем формулу для координаты точки C : x C = x A + x B 2 (полусумма координат концов отрезка).

Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных – несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A ( x A ) и B ( x B ):

Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Середина отрезка на плоскости

Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .

Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y – проекции точек A , B и C на оси координат (прямые О х и О y ).

Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:

x C = x A + x B 2 и y C = y A + y B 2

Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:

Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A ( x A , y A ) и B ( x B , y B ) определяются как:

( x A + x B 2 , y A + y B 2 )

Середина отрезка в пространстве

Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .

A x , A y , A z ; B x , B y , B z и C x , C y , C z – проекции всех заданных точек на оси системы координат.

Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z

Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:

x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2

Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.

Определение координат середины отрезка через координаты радиус-векторов его концов

Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.

Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A ( x A , y A ) и B ( x B , x B ) . Точка C – середина отрезка A B .

Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) , O B → = ( x B , y B ) . Выполним некоторые операции над векторами в координатах и получим:

O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2

Следовательно, точка C имеет координаты:

x A + x B 2 , y A + y B 2

По аналогии определяется формула для нахождения координат середины отрезка в пространстве:

C ( x A + x B 2 , y A + y B 2 , z A + z B 2 )

Примеры решения задач на нахождение координат середины отрезка

Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.

Исходные данные: на плоскости – точки с заданными координатами А ( – 7 , 3 ) и В ( 2 , 4 ) . Необходимо найти координаты середины отрезка А В .

Решение

Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .

x C = x A + x B 2 = – 7 + 2 2 = – 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2

Ответ: координаты середины отрезка А В – 5 2 , 7 2 .

Исходные данные: известны координаты треугольника А В С : А ( – 1 , 0 ) , В ( 3 , 2 ) , С ( 9 , – 8 ) . Необходимо найти длину медианы А М .

Решение

  1. По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M :

x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + ( – 8 ) 2 = – 3

  1. Поскольку теперь нам известны координаты обоих концов медианы (точки A и М ), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М :

A M = ( 6 – ( – 1 ) ) 2 + ( – 3 – 0 ) 2 = 58

Ответ: 58

Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 ( 1 , 1 , 0 ) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M ( 4 , 2 , – 4 ) . Необходимо рассчитать координаты точки А .

Решение

Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А : x M = x A + x C 1 2 ⇒ x A = 2 · x M – x C 1 = 2 · 4 – 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M – y C 1 = 2 · 2 – 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M – z C 1 = 2 · ( – 4 ) – 0 = – 8

Ответ: координаты точки А ( 7 , 3 , – 8 ) .

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Как найти конец вектора зная координаты начала и середины

Найти координаты конца B отрезка, если другой конец отрезка – точка A(-5, -7), а середина отрезка – C(-9, -12).

(1)

координаты середины отрезка обозначены через x и y. По условию задачи x = -9; y = -12. Координаты одного конца отрезка точки A в этих формулах x1 = -5; y1 = -7. Координаты точки B (другого конца отрезка) – величины неизвестные, которые мы обозначим через x2 и y2. Тогда по формулам (1) для определения этих неизвестных получаем два уравнения:

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

http://www.pm298.ru/reshenie/fha0774.php

[/spoiler]



Ученик

(87),
закрыт



15 лет назад

Артур Валиев

Мудрец

(12595)


15 лет назад

🙂
Элементарно. Пусть А и В – крайние точки. Координаты х этих точек лежат за координатами х точек C и D на таком же расстоянии, что и между этими известными точками, т.е.:
А: х = 5+(5-2)=8
В: х = 2 – (5-2) = -1
то же самое с координатами y и z:
y:
А: -2 – (0-(-2))=-4
В: 0+(0-(-2))=2
z:
А: 0-(2-0)=-2
В: 2+(2-0)=4
Значит А(8;-4;-2), B(-1;2;4)

Тома

Профи

(729)


15 лет назад

Тебе прям решение? Схема такая: нужно найти расстояние между С и Д, а потом поработать с каждым концом, если надо я могу решение написать. только скажи)

Ivanne

Мастер

(1169)


15 лет назад

можно определить графически. а можно и математически попытаться
я каждую плоскость рассматривал по отдельности. т.к. это равные отрезки, то вычислил длинну 1 отрезка и к координатам одного отрезка прибавил длину. в итоге получил начало (3;-4;-2) конец (7;0;2). может я и ошибаюсь

Добавить комментарий