Как найти координаты точек xyz

Как находить координаты точки в пространстве (трёхмерной системе координат)?



Ученик

(146),
закрыт



2 года назад

Noname

Гений

(69596)


2 года назад

В 3х-мерном пространстве введем декартову систему координат. Выберем некоторую точку пространства, обозначим ее М, ее координаты в этой системе обозначим (x,y,z).
Проведём прямую через точку М, перпендикулярную плоскости XY. Эта прямая пересекает плоскость XY в точке, которую обозначим Mz. Длина отрезка MzM равняется координате z точки М.
Аналогично для координаты x и плоскости YZ, координаты y и плоскости XZ.

NonameГений (69596)

2 года назад

Блин, забыл, что координаты могут также быть отрицательными. Ну ладно, будем считать, что тут описан случай, когда точка находится в первом октанте, то есть x>0 и y>0 и z>0.

Построение ортогональных проекций точек

Положение точки в пространстве может быть задано двумя её ортогональными проекциями, например, горизонтальной и фронтальной, фронтальной и профильной. Сочетание любых двух ортогональных проекций позволяет узнать значение всех координат точки, построить третью проекцию, определить октант, в котором она находится. Рассмотрим несколько типичных задач из курса начертательной геометрии.

По заданному комплексному чертежу точек A и B необходимо:

  1. Записать их координаты.
  2. Достроить проекции т. A и B на плоскость П3.
  3. Определить положение точек в пространстве (октант или плоскость проекций).
  4. Построить наглядное изображение точек в системе плоскостей П1, П2, П3.

Комплексный чертеж точек A и B

Определение координат точек по их проекциям

Определим сначала координаты т. A, которые можно записать в виде A (x, y, z). Горизонтальная проекция т. A – точка A’, имеющая координаты x, y. Проведем из т. A’ перпендикуляры к осям x, y и найдем соответственно Aх, Aу. Координата х для т. A равна длине отрезка AхO со знаком плюс, так как Aх лежит в области положительных значений оси х. С учетом масштаба чертежа находим х = 10. Координата у равна длине отрезка AуO со знаком минус, так как т. Aу лежит в области отрицательных значений оси у. С учетом масштаба чертежа у = –30. Фронтальная проекция т. A – т. A” имеет координаты х и z. Опустим перпендикуляр из A” на ось z и найдем Az. Координата z точки A равна длине отрезка AzO со знаком минус, так как Az лежит в области отрицательных значений оси z. С учетом масштаба чертежа z = –10. Таким образом, координаты т. A (10, –30, –10).

Координаты т. B можно записать в виде B (x, y, z). Рассмотрим горизонтальную проекцию точки B –  т. В’. Так как она лежит на оси х, то Bx = B’ и координата Bу = 0. Абсцисса x точки B равна длине отрезка BхO со знаком плюс. С учетом масштаба чертежа x = 30. Фронтальная проекция точки B – т. B˝ имеет координаты х, z. Проведем перпендикуляр из B” к оси z, таким образом найдем Bz. Аппликата z точки B равна длине отрезка BzO со знаком минус, так как Bz лежит в области отрицательных значений оси z. С учетом масштаба чертежа определим значение z = –20. Таким образом, координаты B (30, 0, -20). Все необходимые построения представлены на рисунке ниже.

Определение координат точек по их проекциям

Построение проекций точек

Точки A и B в плоскости П3 имеют следующие координаты: A”’ (y, z); B”’ (y, z). При этом A” и A”’ лежат одном перпендикуляре к оси z, так как координата z у них общая. Точно также на общем перпендикуляре к оси z лежат B” и B”’. Чтобы найти профильную проекцию т. A, отложим по оси у значение соответствующей координаты, найденное ранее. На рисунке это сделано с помощью дуги окружности радиуса AуO. После этого проведем перпендикуляр из Aу до пересечения с перпендикуляром, восстановленным из точки A” к оси z. Точка пересечения этих двух перпендикуляров определяет положение A”’.

Точка B”’ лежит на оси z, так как ордината y этой точки равна нулю. Для нахождения профильной проекции т. B в данной задаче необходимо лишь провести перпендикуляр из B” к оси z. Точка пересечении этого перпендикуляра с осью z есть B”’.

Построение недостающих проекций точек

Определение положения точек в пространстве

Наглядно представляя себе пространственный макет, составленный из плоскостей проекций П1, П2 и П3, расположение октантов, а также порядок трансформации макета в эпюр, можно непосредственно определить, что т. A расположена в III октанте, а т. B лежит в плоскости П2.

Другим вариантом решения данной задачи является метод исключений. Например, координаты точки A (10, -30, -10). Положительная абсцисса x позволяет судить о том, что точка расположена в первых четырех октантах. Отрицательная ордината y говорит о том, что точка находится во втором или третьем октантах. Наконец, отрицательная аппликата z указывает на то, что т. A расположена в третьем октанте. Приведенные рассуждения наглядно иллюстрирует следующая таблица.

Октанты Знаки координат
 x y z
1 + + +
2 + +
3 +
4 + +
5 + +
6 +
7
8 +

Координаты точки B (30, 0, -20). Поскольку ордината т. B равна нулю, эта точка расположена в плоскости проекций П2. Положительная абсцисса и отрицательная аппликата т. B указывают на то, что она расположена на границе третьего и четвертого октантов.

Построение наглядного изображения точек в системе плоскостей П1, П2, П3

Построение наглядного изображения точек

Используя фронтальную изометрическую проекцию, мы построили пространственный макет III октанта. Он представляет собой прямоугольный трехгранник, у которого гранями являются плоскости П1, П2, П3, а угол (-y0x) равен 45 º. В этой системе отрезки по осям x, y, z будут откладываться в натуральную величину без искажений.

Построение наглядного изображения т. A (10, -30, -10) начнем с её горизонтальной проекции A’. Отложив по оси абсцисс и ординат соответствующие координаты, найдем точки Aх и Aу. Пересечение перпендикуляров, восстановленных из Aх и Aу  соответственно к осям x и y определяет положение т. A’. Отложив от A’ параллельно оси z в сторону её отрицательных значений отрезок AA’, длина которого равна 10, находим положение точки A.

Наглядное изображение т. B (30, 0, -20) строится аналогично – в плоскости П2 по осям x и z нужно отложить соответствующие координаты. Пересечение перпендикуляров, восстановленных из Bх и Bz, определит положение точки B.

Содержание:

Система координат в пространстве

Декартова система координат в пространстве

Вы познакомились с декартовой системой координат на плоскости в предыдущих классах. Систему координат в пространстве введём аналогично тому, как это было сделано на плоскости. Рассмотрим три взаимно перпендикулярных оси Ох, Оу и Оz, пересекающихся в точке О, являющейся началом координат. Через каждую пару этих прямых проведём плоскости Оху, 0xz и Оуz (рис. 1). Таким образом вводится система координат в пространстве, при этом

точку О – называют началом координат, прямые Ох, Оу и Оzосями координат, Охось абсцисс, Оу ось ординат и Оzось аппликат, плоскости Оху, Оуz и Охzкоординатными плоскостями.

Система координат в пространстве - определение с примерами решения

Координатные плоскости делят пространство на 8 октант (получетвертей) (рис. 1).

Пусть в пространстве задана произвольная точка А. Через эту точку проведём плоскости, перпендикулярные плоскостям Охz, Оуz и Охz (рис. 2). Одна из этих плоскостей пересечёт ось Ох в точке Ах.

Координату Ах на оси Ох называют координатой х или абсциссой точки А.

Аналогично определяют у – координату (ординату) и z- координату (аппликату) точки А.

Координаты точки А записывают в виде А (х; у; z) или короче (х; у; z). Точки, изображённые на рисунке 3, имеют следующие координаты: А (0; 5; 0), B (4; 0; 0), М (0; 5; 4), К (2; 3; 4), Р (-2; 3; -4). Система координат в пространстве - определение с примерами решения

Пример:

Пусть в пространстве в декартовой системе координат

задана точка А (2; 3; 4). Где она расположена?

Решение:

От начала координат в положительном направлении осей Ох и Оу отложим отрезки ОАх = 2 и ОАу = 3 (рис. 4).

Через точку Ах проведём прямую, лежащую в плоскости Оху и параллельную оси Оу. А через точку Аy проведём прямую, лежащую в плоскости Оху и параллельную оси Ох. Точку пересечения этих прямых обозначим A1 . Через точку A1 проведём прямую, перпендикулярную плоскости Оху и на ней в положительном направлении Oz отложим отрезок АА1 = 4. Тогда точка А (2; 3; 4) и будет искомой точкой. Система координат в пространстве - определение с примерами решения

Пользуясь системой координат, созданной для современных программируемых станков и автоматизированных роботов, составляются программы, на основе которых обрабатываются металлы (рис. 5).

Система координат в пространстве - определение с примерами решения

Расстояние между двумя точками

Пусть заданы две точки А (х1; у1; z1) и B (х2; у2; z2).

1.Сначала рассмотрим случай, когда прямая АВ не параллельна оси Оz (рис. 6). Через точки А и В проведём прямые, параллельные оси Оz. И пусть они пересекают плоскость Оху в точках Аz и Вz .

Координаты х и у этих точек соответственно равны координатам х и у точек А, В, а координаты z равны 0.

Теперь через точку В проведём плоскость а, параллельную плоскости Оху. Она пересечёт прямую ААz в некоторой точке С.

По теореме Пифагора: АВ2 = АС2 + СВ2.

Однако Система координат в пространстве - определение с примерами решения

Поэтому Система координат в пространстве - определение с примерами решения

2.Пусть отрезок АВ параллелен оси Оz, тогда Система координат в пространстве - определение с примерами решения и, так как

х1= х2 , у1 = у2 , мы опять приходим к вышеприведённой формуле.

Следовательно, расстояние между двумя точками А и В:

Система координат в пространстве - определение с примерами решения (1)

Примечание. Формула (1) выражает длину диагонали прямоугольного параллелепипеда, измерения которого равны Система координат в пространстве - определение с примерами решения

Уравнение сферы и шара

Известно, что множество всех точек М (х; у; z), расположенных на расстоянии R от данной точки А (а; Ь; с) образуют сферу (рис. 7). Тогда по формуле (1) координаты всех точек, расположенных на сфере радиуса R с центром в точке А (а; b; с), удовлетворяют равенству Система координат в пространстве - определение с примерами решения

Отсюда, ясно, что неравенство для точек шара радиуса R с центром в

точке А (а; b; с) имеет вид: Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Пример:

Найдите периметр треугольника ABC с вершинами в

точках А (9; 3; -5), В (2; 10; -5), С (2; 3; 2).

Решение:

Р=АВ+АС+ВС периметр треугольника ABC. Воспользовавшись формулой Система координат в пространстве - определение с примерами решения расстояния между двумя точками, найдём длины сторон треугольника:

Система координат в пространстве - определение с примерами решения

Следовательно, треугольник ABC равносторонний и его периметр Система координат в пространстве - определение с примерами решения.

Ответ: Система координат в пространстве - определение с примерами решения

Координаты середины отрезка

Пусть А (x1; y1;z1) и В (х2; у2; z2) – произвольные точки, точка С (х; у; z) середина отрезка AB (рис. 8). Система координат в пространстве - определение с примерами решения

Через точки А, В и С проведём прямые, параллельные оси пересекающие плоскость Оху в точках Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения. Тогда по теореме Фалеса точка Сz – середина отрезка АzВz.

Отсюда по формулам нахождения координат середины отрезка на плоскости Система координат в пространстве - определение с примерами решения

Чтобы найти координату z, нужно вместо плоскости Оху рассмотреть плоскость 0xz или Оуz.

Тогда и для z получим формулу, подобную вышеприведённой.

Система координат в пространстве - определение с примерами решения

Аналогично, используя координаты концов A и B отрезка AB, по формулам Система координат в пространстве - определение с примерами решения

находят координаты точки Р(х1;у]; г,), делящей отрезок АВ в отношении X САР: РВ = X).

Задача 3. Докажите, что четырёхугольник МЛШЬ с вершинами М{3; 6; 4), N(0; 2; 4), К(3; 2; 8), 1(6; 6; 8) – параллелограмм (рис. 9).

Доказательство: Для решения задачи используем признак параллелограмма: Четырёхугольник, точка пересечения диагоналей которого делит их пополам, является параллелограммом.

Координаты середины отрезка МК:

Система координат в пространстве - определение с примерами решения

Координаты середины отрезка NL:

Система координат в пространстве - определение с примерами решения

Координаты середин отрезков МК и NL равны. Это говорит о том, что отрезки пeрeсeкаются и в точке пeрeсeчeния делятся пополам. Следовательно, четырёхугольник MNLK – параллелограмм.Система координат в пространстве - определение с примерами решения

В переписке с известным целителем и математиком Абу Али ибн Сино Абу Райхон Беруни задаёт следующий вопрос: «Почему Аристотель и другие (философы) называют шесть сторон?»

Рассматривая шестисторонний куб, Беруни говорит о фигурах «с другим количеством сторон» и добавляет, что «шарообразные фигуры не имеют сторон.» А Ибн Сино отвечает, что «во всех случаях нужно считать, что сторон шесть, так как у каждой фигуры, независимо от её формы, есть три измерения – длина, глубина и ширина».

Здесь Ибн Сино имеет ввиду три координаты, именуемые условно «шесть сторон».

В произведении «Канон Масъуда» Беруни приводит точное математическое определение шести сторон: «Сторон шесть, так как они ограничивают движение фигур по своим измерениям. Измерений три: длина, ширина и глубина. А их в два раза больше самих измерений.»

В предыдущих книгах автор определяет положение небесных тел с помощью двух координат относительно небесной сферы – эклиптического уравнения. Либо через те же координаты, но относительно небесного экватора или горизонта. Однако при определении взаимного расположения звёзд и небесных светил придётся учитывать и случаи затмений. Вот в таких случаях появляется необходимость в третьей сферической координате. Эта необходимость привела Беруни к отказу от теории небесных координат.

Векторы в пространстве и действия над ними

Векторы в пространстве

Понятие вектора в пространстве вводят также как на плоскости.

Вектором в пространстве называют направленный отрезок. Основные понятия, относящиеся к векторам в пространстве, аналогичны этим понятиям на плоскости: длина (модуль), направление вектора, равенство векторов.

Система координат в пространстве - определение с примерами решения

Координатами вектора с началом в точке А (х1; у1; z1) и концом в точке В (х1; у1; z1) называют числа Система координат в пространстве - определение с примерами решения, (рис. 17).

Приведем без доказательства свойства векторов, аналогичных свойствам на плоскости.

Также как на плоскости, соответствующие координаты равных векторов равны и, обратно, векторы с равными координатами равны.

Hа основании этого вектор можно обозначить как Система координат в пространстве - определение с примерами решения или Система координат в пространстве - определение с примерами решения или кратко Система координат в пространстве - определение с примерами решения (рис. 18).

Вектор можно записать и без координат Система координат в пространстве - определение с примерами решения (или Система координат в пространстве - определение с примерами решения). В этой записи

на первом месте начало вектора, а на втором – конец.

Вектор с координатами, равными нулю, называют нулевым вектором и обозначают Система координат в пространстве - определение с примерами решения или Система координат в пространстве - определение с примерами решения, направление этого вектора не определено.

Если начало вектора расположено в начале координат О, а числа а1,

а2 и а3 – координаты точки А, то есть А (а1; а2; а3), то эти же числа будут

координатами вектора Система координат в пространстве - определение с примерами решения: Система координат в пространстве - определение с примерами решения (а1; а2; а3).

Однако вектор в пространстве Система координат в пространстве - определение с примерами решения с началом в точке К(с1; с2; с3) и концом в точке Система координат в пространстве - определение с примерами решения будет иметь те же координаты: Система координат в пространстве - определение с примерами решения.

Отсюда следует, что вектор можно приложить к любой точке пространства. В геометрии мы рассматриваем такие свободные векторы. Но в физике, обычно вектор связан с некоторой точкой. Например, воздействие силы приложенная к пружине F на рисунке 19 зависит от точки её приложения.

Длинной вектора называют длину направленного отрезка

изображающего его (рис. 17). Длину вектора Система координат в пространстве - определение с примерами решения записывают

такСистема координат в пространстве - определение с примерами решения. Длина вектора Система координат в пространстве - определение с примерами решения, заданного координатами,

вычисляется по формуле Система координат в пространстве - определение с примерами решения .

Пример:

Даны точки А (2; 7;-3),В (1; 0; 3), С (-3;-4; 5) и D (-2; 3; -1). Какие из векторов Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения равны между собой?

Решение:

У равных векторов равны соответствующие координаты. Поэтому найдём координаты векторов:

Система координат в пространстве - определение с примерами решения

Следовательно, Система координат в пространстве - определение с примерами решения.

Докажите самостоятельно, что Система координат в пространстве - определение с примерами решения

Действия над векторами в пространстве

Действия над векторами. Сложение векторов, умножение на число и их скалярное произведение определяется также как на плоскости.

Суммой векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения (b1; b2; b3); называют вектор Система координат в пространстве - определение с примерами решения (рис. 20).

Система координат в пространстве - определение с примерами решения

Пусть кран на рисунке 20.b движется вдоль вектора Система координат в пространстве - определение с примерами решения, а груз относительно крана вдоль вектора Система координат в пространстве - определение с примерами решения. В результате груз движется вдоль вектора Система координат в пространстве - определение с примерами решения. Поэтому из рисунка 20.с, на котором изображён сюжeт басни русского писателя И.А.Крылова, ясно, что герои басни не смогут сдвинуть телегу с места.

Свойства суммы векторов

Для любых векторов Система координат в пространстве - определение с примерами решения,Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения имеют место следующие свойства:

a)Система координат в пространстве - определение с примерами решения – переместительный закон сложения векторов;

b)Система координат в пространстве - определение с примерами решения – распределительный закон сложения.

Правило треугольника сложения векторов

Для любых точек А, В и С (рис. 21): Система координат в пространстве - определение с примерами решения

Правило параллелограмма сложения векторов

Если АВСD – параллелограмм (рис. 22), то Система координат в пространстве - определение с примерами решения

Правило многоугольника сложения векторов

Если точки А, В, С, D и Е – вершины многоугольника (рис. 23), тоСистема координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Правило параллелепипеда сложения трёх векторов, не лежащих в одной плоскости. Если АВСDА1В1С1D1 параллелепипед (рис. 24), то

Система координат в пространстве - определение с примерами решения.

Вектор Система координат в пространстве - определение с примерами решенияСистема координат в пространстве - определение с примерами решения​​​​​​= (Система координат в пространстве - определение с примерами решенияa1; Система координат в пространстве - определение с примерами решенияa2; Система координат в пространстве - определение с примерами решенияa3) – называют умножением вектора

Система координат в пространстве - определение с примерами решения (a1; a2; a3) на число Система координат в пространстве - определение с примерами решения (рис. 25). Свойства операции умножения вектора на число.

Для любых векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения и чисел Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения

а)Система координат в пространстве - определение с примерами решения;

b)Система координат в пространстве - определение с примерами решения;

c)Система координат в пространстве - определение с примерами решения и направление вектора Система координат в пространстве - определение с примерами решенияСистема координат в пространстве - определение с примерами решения

совпадает с направлением вектора Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения,

противоположно направлению вектора Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения. Система координат в пространстве - определение с примерами решения

Коллинеарные и компланарные векторы

Пусть заданы ненулевые векторы Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения. Если векторы

Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения сонаправлены или противоположно направлены,

то их называют коллинеарными векторами (рис. 26).

Свойство 1. Если для векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения имеет место равенство Система координат в пространстве - определение с примерами решения, то они коллинеарны и наоборот.

Если Система координат в пространстве - определение с примерами решения, то векторы Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения сонаправлены Система координат в пространстве - определение с примерами решения, еслиСистема координат в пространстве - определение с примерами решения, то

противоположно направлены Система координат в пространстве - определение с примерами решения.

Свойство 2. Если векторы Система координат в пространстве - определение с примерами решения (a1; a2; a3) и Система координат в пространстве - определение с примерами решения (b1; b2; b3) коллинеарны,

то их соответствующие координаты пропорциональны:

Система координат в пространстве - определение с примерами решения и наоборот.

Пример:

Найдите вектор с началом в точке А (1; 1; 1) и концом в точке В, лежащей в плоскости Оху, коллинеарный вектору Система координат в пространстве - определение с примерами решения( 1; 2; 3).

Решение:

Пусть точка В имеет координаты В (х; у; z). Так как точка В лежит в плоскости Оху, то z=0. Тогда Система координат в пространстве - определение с примерами решения(х – 1 ;у – 1; – 1).

По условию задачи векторы Система координат в пространстве - определение с примерами решения(х – 1 ;у – 1; – 1) и Система координат в пространстве - определение с примерами решения(1, 2, 3) коллинеарны. Следовательно, их координаты пропорциональны.

Тогда получаем следующие пропорции Система координат в пространстве - определение с примерами решения.

Откуда находим Система координат в пространстве - определение с примерами решения, Система координат в пространстве - определение с примерами решения.

Итак,Система координат в пространстве - определение с примерами решения

Векторы, лежащие в одной плоскости или параллельных плоскостях, называют компланарными векторами (рис. 27). Система координат в пространстве - определение с примерами решения

Векторы Система координат в пространстве - определение с примерами решения(1; 0; 0), Система координат в пространстве - определение с примерами решения(0; 1; 0) и Система координат в пространстве - определение с примерами решения(0; 0; 1) называют ортами (рис. 28).

Любой вектор Система координат в пространстве - определение с примерами решения можно единственным образом разложить по ортам, то есть представить в виде Система координат в пространстве - определение с примерами решения(рис. 29).

Система координат в пространстве - определение с примерами решения

Точно также, если заданы три нeкомпланарных вектора Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения, то любой вектор Система координат в пространстве - определение с примерами решения можно единственным образом представить в виде:

Система координат в пространстве - определение с примерами решения.

Здесь Система координат в пространстве - определение с примерами решения некоторые действительные числа. Тогда говорят, что вектор разложен по заданным векторам.

Скалярное произведение векторов

Углом между ненулевыми векторами Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения называют угол между направленными отрезками векторов Система координат в пространстве - определение с примерами решения = Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения=Система координат в пространстве - определение с примерами решения, исходящих из точки О (рис. 30).

Угол между векторами Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения обозначают так Система координат в пространстве - определение с примерами решения.

Система координат в пространстве - определение с примерами решения

Скалярным произведением векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения называют произведение длин этих векторов на косинус угла между ними.

Если один из векторов нулевой, то скалярное произведение этих векторов равно нулю.

Скалярное произведение обозначают Система координат в пространстве - определение с примерами решения или Система координат в пространстве - определение с примерами решения. По определениюСистема координат в пространстве - определение с примерами решения (1)

Из определения следует, что если скалярное произведение векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения равно нулю, то эти векторы перпендикулярны и наоборот.

В физике работа A, выполненная при движении тела на расстоянии Система координат в пространстве - определение с примерами решения, под воздействием силы Система координат в пространстве - определение с примерами решения (рис. 31), равна скалярному произведению силы Система координат в пространстве - определение с примерами решенияна расстояниеСистема координат в пространстве - определение с примерами решения: Система координат в пространстве - определение с примерами решения

Свойство. Если Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения (b1; b2; b3), то (Система координат в пространстве - определение с примерами решенияСистема координат в пространстве - определение с примерами решения) = Система координат в пространстве - определение с примерами решения

Доказательство. Приложим векторы Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения к началу

координат О (рис.32). Тогда Система координат в пространстве - определение с примерами решения= Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения= (b1; b2; b3).

Если векторы неколлинеарны, то получаем треугольник АВО , для которого справедлива теорема косинусов.

Система координат в пространстве - определение с примерами решения

ТогдаСистема координат в пространстве - определение с примерами решения .

Однако, Система координат в пространстве - определение с примерами решения,Система координат в пространстве - определение с примерами решения

и Система координат в пространстве - определение с примерами решения.

Следовательно,Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения.

Самостоятельно докажите, что и в случае, когда данные векторы коллинеарны Система координат в пространстве - определение с примерами решения, также выполняется

это равенство. Система координат в пространстве - определение с примерами решения

Свойства скалярного произведения векторов

1.Система координат в пространстве - определение с примерами решения – переместительное свойство.

2.Система координат в пространстве - определение с примерами решения – распределительное свойство.

3.Система координат в пространстве - определение с примерами решения – сочетательное свойство.

4.Если векторы а и b являются сонаправленными коллинеарными

векторами, то Система координат в пространстве - определение с примерами решения, так как соs 0° = 1.

5.Если же векторы противоположно направлены, то Система координат в пространстве - определение с примерами решения, так как cos l80° = -1.

6. Система координат в пространстве - определение с примерами решения.

7. Если векторСистема координат в пространстве - определение с примерами решения перпендикулярен вектору Система координат в пространстве - определение с примерами решения, то Система координат в пространстве - определение с примерами решения. Следствия: а) Длина вектора Система координат в пространстве - определение с примерами решения ; (1) b) косинус угла между векторами

Система координат в пространстве - определение с примерами решения : Система координат в пространстве - определение с примерами решения; (2)

с) условие перпендикулярности векторов Система координат в пространстве - определение с примерами решения и

Система координат в пространстве - определение с примерами решения.

Система координат в пространстве - определение с примерами решения (3)

Пример:

Система координат в пространстве - определение с примерами решения – заданные точки. Найдите косинус угла между векторами Система координат в пространстве - определение с примерами решения.

Решение:

Найдём длины векторов Система координат в пространстве - определение с примерами решения:

Система координат в пространстве - определение с примерами решения,

Система координат в пространстве - определение с примерами решения.

Система координат в пространстве - определение с примерами решения ,

Система координат в пространстве - определение с примерами решения .

Следовательно,

Система координат в пространстве - определение с примерами решения

Пример:

Найдите угол между векторами Система координат в пространстве - определение с примерами решения.

Решение:

Система координат в пространстве - определение с примерами решения Итак, Система координат в пространстве - определение с примерами решения

Пример:

Найдите Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения, Система координат в пространстве - определение с примерами решения и угол между векторамиСистема координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения равен Система координат в пространстве - определение с примерами решения .

Решение:

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Пример:

Найдите координаты и длины векторов 1)Система координат в пространстве - определение с примерами решения; 2)Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения.

Решение:

Подставим в выражения искомых векторов разложения векторов Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения по координатам:

1)Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения. Следовательно,Система координат в пространстве - определение с примерами решения.

ТогдаСистема координат в пространстве - определение с примерами решения.

2)Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения Система координат в пространстве - определение с примерами решения.

Следовательно, Система координат в пространстве - определение с примерами решения.

Тогда Система координат в пространстве - определение с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Найдите произведениеСистема координат в пространстве - определение с примерами решения, если угол между векторами Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения равен 30° и Система координат в пространстве - определение с примерами решения , Система координат в пространстве - определение с примерами решения.

Решение:

Сначала найдём поизведение векторов Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения :

Система координат в пространстве - определение с примерами решения.

Затем перемножим заданные выражения как многочлены

и, пользуясь распределительным свойством умножения

вектора на число, получим:

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения.

Учитывая, что Система координат в пространстве - определение с примерами решения,

Система координат в пространстве - определение с примерами решения найдём искомое произведение

Система координат в пространстве - определение с примерами решения

Преобразование и подобие в пространстве

Геометрические преобразования в пространстве

Если каждую точку заданной в пространстве фигуры F изменить одним и тем же способом, то получим фигуру F1. Если при этом преобразовании различные точки первой фигуры переходят в различные точки второй, то говорят о преобразовании геометрической фигуры.

Если рассматривать все пространства как геометрическую фигуру, то также можно говорить о преобразовании геометрической фигуры.

Понятие геометрического преобразование в пространстве вводят также как на плоскости. Следовательно, свойства некоторых рассматриваeмых ниже видов преобразований и их доказательства также подобны соответствующим им на плоскости. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.

Движение и параллельный перенос

Преобразование фигур, при котором сохраняются расстояния между точками, называют движением. Можно привести следующие свойства движения. При движении прямая переходит в прямую, луч – в луч, отрезок – в равный ему отрезок, угол – в равный ему угол, треугольник – в равный ему треугольник, плоскость – в плоскость, тетраэдр – в равный ему тетраэдр.

В пространстве фигуры, которые можно перевести одну в другую при некотором движении называют равными фигурами.

Простейшим примером движения является параллельный перенос.

Система координат в пространстве - определение с примерами решения

Пусть в пространстве даны векторСистема координат в пространстве - определение с примерами решения и произвольная точка Х

(рис. 44). Говорят, что точка Х перешла в точку X1 параллельным

переносом на вектор Система координат в пространстве - определение с примерами решения, если выполняется условие Система координат в пространстве - определение с примерами решения. Если каждую точку фигуры F сдвинуть на вектор Система координат в пространстве - определение с примерами решения при помощи параллельного переноса (рис. 45), то получим фигуру F1. Тогда говорят, что фигура F получена параллельным переносом фигуры F1 . При параллельном переносе каждая точка фигуры F сдвигается в одном и том же направлении на одно и то же расстояние.

Каждая точка подъёмного крана, изображённого на рисунке 46, параллельно перенесена на 40 м относительно начального положения.

Ясно, что параллельный перенос является движением. Поэтому прямая переходит в прямую, луч – в луч, плоскость – в плоскость,

и т. д.

Пусть точка Система координат в пространстве - определение с примерами решения фигуры F перешла в точку Система координат в пространстве - определение с примерами решения

фигуры F1 при помощи параллельного переноса

на вектор Система координат в пространстве - определение с примерами решения.

Тогда по определению получим:

Система координат в пространстве - определение с примерами решения или

Система координат в пространстве - определение с примерами решения.

Эти равенства называют формулами параллельного переноса.

Пример:

В какую точку перейдёт точка Р (-2; 4; 6) при параллельном переносе на векторСистема координат в пространстве - определение с примерами решения = (3; 2; 5)?

Решение:

По вышеприведённым формулам параллельного переноса: Система координат в пространстве - определение с примерами решения.

Ответ: Система координат в пространстве - определение с примерами решения.

Центральная симметрия в пространстве

Если в пространстве Система координат в пространстве - определение с примерами решения, то есть точка О – середина отрезка АА1 то точки А и А1 называют симметричными относительно точки О.

Если в пространстве каждая точка фигуры F переходит в точку, симметричную относительно точки О (рис. 47), то такое преобразование называют симметрией относительно точки О. На рисунках 48, 49 изображёны фигуры симметричные относительно точки О. Симметрия относительно точки является движением.

Если при симметрии относительно точки О фигура F переходит в себя, то её называют центрально симметричной фигурой.

Система координат в пространстве - определение с примерами решения

Например, диагонали параллелепипеда (рис. 50) относительно их точки пересечения О являются центрально симметричными фигурами.

Система координат в пространстве - определение с примерами решения

Пример:

В какую точку перейдет точка A = (1; 2; 3) при симметрии относительно точки О (2; 4; 6)?

Решение:

Пусть А1 = (х; у; z) – искомая точка. По определению точка

О – середина отрезка АА1. Следовательно,

Система координат в пространстве - определение с примерами решения

Из этих уравнений получаем:

Система координат в пространстве - определение с примерами решения.

Ответ: Система координат в пространстве - определение с примерами решения

Симметрия относительно плоскости

Точки А и А1 называют симметричными относительно плоскости а,

если плоскость перпендикулярна отрезку и делит его пополам (рис. 51). Фигуры F1, и F2 на рисунке 52 симметричны относительно

плоскости а. Очевидно, что наш силуэт и его отражение симметричны относительно плоскости зеркала (рис. 53).

Симметрия относительно плоскости а является движением. Система координат в пространстве - определение с примерами решения

Поэтому при симметрии относительно плоскости а отрезок переходит в равный ему отрезок, прямая – в прямую, плоскость – в плоскость.

Если при симмeтрии относительно плоскости фигура F переходит в себя, то её называют фигурой симметричной относительно плоскости.

Например, изображённый на рисунке 54 куб, есть фигура, симметричная относительно плоскости а, проходящей через его диагонали АА1 и СС1.

Поворот и симметрия относительно оси

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Пусть в пространстве заданы точки А и А1 и прямая l. Если перпендикуляры АК и А1К, опущенные на прямую l, равны и образуют угол Система координат в пространстве - определение с примерами решения, то говорят, что точка А перешла в точку А1 в результате поворота на угол Система координат в пространстве - определение с примерами решения относительно прямой l (рис. 55).

Если каждую точку фигуры F повернуть на угол Система координат в пространстве - определение с примерами решения относительно прямой l, то получим новую фигуру F1 . Тогда говорят, что фигура F перешла в фигуру F1 с помощью поворота на угол Система координат в пространстве - определение с примерами решения относительно прямой l. На рисунке 56 мы видим фигуры, полученные таким поворотом. Например, повернув куб, изображённый на рисунке 57, на 180° относительно прямой l, получим новый куб.

Поворот относительно прямой также является движением.

Поворот на 180° относительно прямой l называют симметрией относительно прямой l.

Центр, ось и плоскость симметрии называют элементами симметрии. Точки, симметричные точке А (х; у; z) относительно координатных плоскостей, координатных осей и начала координат, будут иметь следующие координаты:

Система координат в пространстве - определение с примерами решения

Симметрия в природе и технике

Система координат в пространстве - определение с примерами решения

В природе на каждом шагу можно встретить симметрию.

Например, множество живых существ, в частности тела человека и животных, листья растений и цветы устроены симметрично (рис. 58). Также в неживой природе есть элементы, например, снежинки, кристаллы соли. Молекулярное строение веществ тоже состоит из симметричных фигур. Это, конечно, неспроста, поскольку симметричные фигуры не только красивы, но и самые устойчивые.

Раз так, то можно считать, что красота и совершенство природы построены на основе симметрии. Взяв за основу природную красоту и совершенство, строители, инженеры и архитекторы создают строения и механизмы, здания и сооружения, технику и транспортные средства симметричными. В этой работе им очень помогает наука геометрия.

Подобие пространственных фигур

Пусть Система координат в пространстве - определение с примерами решения и преобразование переводят фигуру F1, в фигуру F2. Если

при этом преобразовании для произвольных точек X1 и Х2 фигуры F1 и соответствующих им точек Y1 и Y2 фигуры Система координат в пространстве - определение с примерами решения, то это преобразование называют преобразованием подобия (рис. 59).

Система координат в пространстве - определение с примерами решения

Как видим, понятие преобразования подобия в пространстве вводится также как на плоскости. Следовательно, рассматриваемые ниже виды подобия, их свойства и доказательства этих свойств подобны соответствующим на плоскости. Поэтому, мы не будем останавливаться на их доказательствах и рекомендуем провести их самостоятельно. Преобразование подобия в пространстве отображает прямую в прямую, луч в луч, отрезок в отрезок и угол в угол. Точно также это преобразование плоскость отображает в плоскость.

Если в пространстве одна из фигур перешла в другую с помощью преобразования подобия, то эти фигуры называют подобными.

Пусть в пространстве задана фигура F, точка О и число к Система координат в пространстве - определение с примерами решения. Преобразование, переводящее произвольную точку X фигуры F в точку Х1 удовлетворяющую условию Система координат в пространстве - определение с примерами решения, называют гомотетией относительно центра О с коэффициентом Система координат в пространстве - определение с примерами решения(рис. 61). Точку О называют центром гомотетии, а число Система координат в пространстве - определение с примерами решения коэффициентом гомотетии. Если в результате такого преобразования каждой точки фигуры F получена фигура F1 то говорят, что фигура F гомотетична фигуре F1.

Вы видите, что определение гомотетии в пространстве аналогично соответствующему определению на плоскости. Следовательно, все свойства и их доказательства аналогичны. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.

Система координат в пространстве - определение с примерами решения

Гомотетия относительно точки О с коэффициентом Система координат в пространстве - определение с примерами решения является преобразованием подобия. Гомотетия с отличным от нуля коэффициентом Система координат в пространстве - определение с примерами решения при Система координат в пространстве - определение с примерами решения= 1 отображает фигуру F в себя, а при Система координат в пространстве - определение с примерами решения=-1 в фигуру F1 симметричную фигуре F относительно точки О. В остальных случаях гомотетии не сохраняет расстояния между точками, т. е. не является движением. В результате гомотетии расстояние между точками увеличивается в одно и тоже число Система координат в пространстве - определение с примерами решения раз, т. е. меняются измерения фигуры, но сохраняется её форма. При гомотетии а) прямая отображается в параллельную ей прямую (рис. 62.а); b) плоскость – в параллельную ей плоскость (рис. 62.b), если они не проходят через центр гомотетии.

Если же прямая или плоскость проходят через центр гомотетии, то они отображаются в себя.

  • Иррациональные числа
  • Действительные числа
  • Решение уравнений высших степеней
  • Системы неравенств
  • Уравнения и неравенства
  • Уравнения и неравенства содержащие знак модуля
  • Уравнение
  • Метод математической индукции

При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.

Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.

Прямоугольная декартова система координат на плоскости

Чтобы ввести систему координат на плоскости, необходимо провести на плоскости две перпендикулярные прямые. Выбираем положительное направление, обозначая стрелочкой. Необходимо выбрать масштаб. Точку пересечения прямых назовем буквой O. Она считается началом отсчета. Это и называется прямоугольной системой координат на плоскости.

Прямые с началом O, имеющие направление и масштаб, называют координатной прямой или координатной осью.

Прямоугольная система координат обозначается Oxy. Координатными осями называют Ох и Оу, называемые соответственно ось абсцисс и ось ординат.

Изображение прямоугольной системы координат на плоскости.

Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление Ох слева направо, а Oy – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.

Прямоугольная декартова система координат на плоскости

Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.

Прямоугольная система координат в трехмерном пространстве

Трехмерное евклидовое пространство имеет аналогичную систему, только оно состоит не из двух, а из трех Ох, Оу, Оz осей. Это три взаимно перпендикулярные прямые, где Оz имеет название ось аппликат.

По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.

Оси координат пересекаются в точке O, называемой началом. Каждая ось имеет положительное направление, которое указывается при помощи стрелок на осях. Если при повороте Ох против часовой стрелки на 90° ее положительное направление совпадает с положительным Оу, тогда это применимо для положительного направления Оz. Такую систему считают правой. Иначе говоря, если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y, а средний за Z.

Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.

Прямоугольная система координат в трехмерном пространстве

Координаты точки в декартовой системе координат на плоскости

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равняется единственной точке М, расположенной на данной прямой. Если точка расположена на координатной прямой на расстоянии 2 от начала отсчета по положительному направлению, то она равна 2 , если -3, то соответственное расстояние 3. Ноль – это начало отсчета координатных прямых.

Иначе говоря, каждая точка М, расположенная на Ox, равна действительному числу xM . Этим действительным числом и является ноль, если точка M расположена в начале координат, то есть на пересечении Ox и Оу. Число длины отрезка всегда положительно, если точка удалена в положительном направлении и наоборот.

Имеющееся число xM называют координатой точки М на заданной координатной прямой.

Координаты точки в декартовой системе координат на плоскости

Возьмем точку как проекцию точки Mx на Ох, а как проекцию точки My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, где послучим соответственные точки пересечения  Mx и My .

Тогда точка Mx на оси Ох имеет соответствующее число xM , а My на Оу – yM. На координатных осях это выглядит так:

Координаты точки в декартовой системе координат на плоскости

Каждая точка M на заданной плоскости в прямоугольной декартовой системе координат имеет одну соответствующую пару чисел (xM, yM), называемую ее координатами. Абсцисса M – это xM , ордината M – это yM .

Обратное утверждение также считается верным: каждая упорядоченная пара (xM, yM) имеет соответствующую заданную в плоскости точку.

Координаты точки в прямоугольной системе координат в трехмерном пространстве

Определение точки М в трехмерном пространстве. Пусть имеются Mx, My, Mz,  являющиеся проекциями точки М на соответствующие оси Ох, Оу, Оz. Тогда значения этих точек на осях Ох, Оу, Оz примут значения xM, yM, zM. Изобразим это на координатных прямых.

Координаты точки в прямоугольной системе координат в трехмерном пространстве

Чтобы получить проекции точки M, необходимо добавить перпендикулярные прямые Ох, Оу, Оz продолжить и изобразит в виде плоскостей, которые проходят через M. Таким образом, плоскости пересекутся в Mx, My, Mz

Координаты точки в прямоугольной системе координат в трехмерном пространстве

Каждая точка трехмерного пространства имеет свои данные (xM, yM, zM) , которые имеют название координаты точки M, , xM, yM, zM- это числа, называемые абсциссой, ординатой и аппликатой заданной точки M. Для данного суждения верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (xM, yM, zM) в заданной прямоугольной системе координат имеет одну соответствующую точку M трехмерного пространства.

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Прямоугольная система координат

Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.

Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)

Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Координаты точки

Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).

Произвольная точка. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ

Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).

Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

«Координаты точки и координаты вектора. Как найти координаты вектора» 👇

Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.

Пример 1

Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.

Параллелепипед. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Точка $O$ начало координат, следовательно, $O=(0,0,0)$.

Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит

$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$

Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит

$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$

Точка $P$ имеет координаты $P=(2,2.5,1.5)$

Координаты вектора по двум точкам и формула нахождения

Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline{i}$, по направлению оси $Oy$ – единичный вектор $overline{j}$, а единичный вектор $overline{k}$ нужно направлять по оси $Oz$.

Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).

Теорема 1

Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.

Математически это выглядит следующим образом:

$overline{δ}=moverline{α}+noverline{β}+loverline{γ}$

Так как векторы $overline{i}$, $overline{j}$ и $overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид

$overline{δ}=moverline{i}+noverline{j}+loverline{k}$ (1)

где $n,m,l∈R$.

Определение 1

Три вектора $overline{i}$, $overline{j}$ и $overline{k}$ будут называться координатными векторами.

Определение 2

Коэффициенты перед векторами $overline{i}$, $overline{j}$ и $overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть

$overline{δ}=(m,n,l)$

Линейные операции над векторами

Теорема 2

Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.

Доказательство.

Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline{α}=(α_1,α_2,α_3)$, $overline{β}=(β_1,β_2 ,β_3)$.

Эти вектора можно записать следующим образом

$overline{α}=α_1overline{i}+ α_2overline{j}+α_3overline{k}$, $overline{β}=β_1overline{i}+ β_2overline{j}+β_3overline{k}$

$overline{α}+overline{β}=α_1overline{i}+α_2overline{j}+α_3overline{k}+β_1overline{i}+ β_2overline{j}+β_3overline{k}=(α_1+β_1 )overline{i}+(α_2+β_2 )overline{j}+(α_3+β_3)overline{k}$

Следовательно

$overline{α}+overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$

Теорема доказана.

Замечание 1

Замечание: Аналогично, находится решение разности нескольких векторов.

Теорема 3

Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.

Доказательство.

Возьмем $overline{α}=(α_1,α_2,α_3)$, тогда $overline{α}=α_1overline{i}+α_2overline{j}+α_3overline{k}$, а

$loverline{α}=l(α_1overline{i}+ α_2overline{j}+α_3overline{k})=lα_1overline{i}+ lα_2overline{j}+lα_3overline{k}$

Значит

$koverline{α}=(lα_1,lα_2,lα_3)$

Теорема доказана.

Пример 2

Пусть $overline{α}=(3,0,4)$, $overline{β}=(2,-1,1)$. Найти $overline{α}+overline{β}$, $overline{α}-overline{β}$ и $3overline{α}$.

Решение.

$overline{α}+overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$

$overline{α}-overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$

$3overline{α}=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий