Как найти координаты вектора равного разности векторов

Координаты вектора равного разности двух векторов

Ключевые слова: вектор, координаты, длина вектора

Прямые x, y, z называются координатными осями (или осями координат),
точка их пересечения – началом координат,
а плоскости , и – координатными плоскостями.
Точка разбивает каждую координатную ось на две полупрямые, которые называются положительной и отрицательной полуосями.

Координатой точки по оси будем называть число, равное по абсолютной величине длине отрезка : положительное, если точка лежит на положительной полуоси , и отрицательное, если она лежит на отрицательной полуоси.

Аналогично можно определить координаты и точки . Координаты точки записываются в скобках рядом с названием этой точки: .

Единичным вектором или ортом называется вектор, длина которого равна единице и который направлен вдоль какой-либо координатной оси.

  • Единичный вектор, направленный вдоль оси , обозначается $$vec i$$.
  • Единичный вектор, направленный вдоль оси обозначается $$vec j$$.
  • Единичный вектор, направленный вдоль оси , обозначается $$vec k$$.

Вектора $$vec i$$, $$vec j$$, $$vec k$$ называются координатными векторами.

  • Любой вектор $$vec a$$ можно разложить по координатным векторам: $$vec a = x cdot vec i+y cdot vec j+z cdot k$$.
  • Коэффициенты разложения определяются единственным образом и называются координатами вектора $$vec a$$ в данной системе координат.

Свойства векторов, заданных координатами

  • Координаты нулевого вектора равны нулю.
  • Координаты равных векторов соответственно равны.
  • Координаты вектора суммы двух векторов равны сумме соответствующих координат этих векторов.
  • Координаты вектора разности двух векторов равны разностям соответствующих координат этих векторов.
  • Координаты вектора произведения данного вектора на число равны произведениям соответствующих координат этого вектора на данное число.

Определение разности двух векторов

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block >

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) — это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
  7. Разностью векторов a и b называют сумму a и (b), где (b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a <a₁; a₂> и b <b₁; b₂> расчёты будут иметь следующий вид: c <c₁; c₂> = <a₁ — b₁; a₂ — b₂>.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a <a₁; a₂; a₃> и b <b₁; b₂; b₃> координаты разности будут также получены попарным вычитанием: c <c₁; c₂; c₃> = <a₁ — b₁; a₂ — b₂; a₃ — b₃>.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

[block > Результат операции вычитания показан на рисунке ниже.

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.

Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:

Аналогичный расчёт выполняется для CD:

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = ab координаты имеют вид <c₁; c₂> = <a₁ — b₁; a₂ — b₂>. Для конкретного случая можно записать:

Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block > Задача 2. На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.

Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

[block > Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
  • (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
  • (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.

Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block > [block >

Как найти разность векторов

Формула

Примеры нахождения разности векторов

Задание. Найти разность векторов $bar-bar$, где $bar=(3 ; 0)$ и $bar=(1 ; 2)$

Решение. Для нахождения разности векторов $bar$ и $bar$, вычтем их соответствующие координаты:

Решение. Для нахождения искомой разности векторов вычтем их соответствующие координаты:

Остались вопросы?

Здесь вы найдете ответы.

Поможем выполнить
любую работу

Все еще сложно?

Наши эксперты помогут разобраться

Не получается написать работу самому?

Доверь это кандидату наук!

Ищещь ответ на вопрос с которым нужна помощь?

[spoiler title=”источники:”]

http://www.webmath.ru/poleznoe/formules_13_2.php

[/spoiler]

Вектор – направленный отрезок, имеющий как начало, так и конец, иначе – величина характеризуемая числовым значением и направлением, обозначается

текст при наведении

Координаты вектора – его проекции на координатные оси Ox, Oy и Oz, обозначаются

текст при наведении

Разность двух векторов равна сумме первого вектора и противоположного второму вектора ( то есть второй вектор с противоположным знаком), и разность двух одинаковых векторов равна нулевому вектору. Координаты разности векторов равны разности соответствующих координат этих векторов, на плоскости:

текст при наведении

в пространстве:

текст при наведении

Содержание:

  • Формула
  • Примеры нахождения разности векторов

Формула

Чтобы найти разность векторов $bar{a}-bar{b}$, заданных на плоскости координатами $bar{a}=left(a_{x} ; a_{y}right)$ и $bar{b}=left(b_{x} ; b_{y}right)$, необходимо вычесть из
координат первого вектора соответствующие
координаты второго, то есть

$$bar{a}-bar{b}=left(a_{x}-b_{x} ; a_{y}-b_{y}right)$$

В случае если векторы заданы в пространстве, то есть $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$, то их разность равна

$$bar{a}-bar{b}=left(a_{x}-b_{x} ; a_{y}-b_{y} ; a_{z}-b_{z}right)$$

Примеры нахождения разности векторов

Пример

Задание. Найти разность векторов $bar{a}-bar{b}$, где
$bar{a}=(3 ; 0)$ и $bar{b}=(1 ; 2)$

Решение. Для нахождения разности векторов
$bar{a}$ и
$bar{b}$, вычтем их соответствующие координаты:

$$bar{a}-bar{b}=(3 ; 0)-(1 ; 2)=(3-1 ; 0-2)=(2 ;-2)$$

Ответ. $bar{a}-bar{b}=(2 ;-2)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти разность векторов
$bar{a}-bar{b}-bar{c}$, заданных в трехмерном пространстве своими координатами $bar{a}=(2 ;-3 ; 1), bar{b}=(1 ; 0 ;-2)$ и $bar{c}=(-1 ; 2 ; 3)$

Решение. Для нахождения искомой разности векторов вычтем их соответствующие координаты:

$$begin{aligned} bar{a}-bar{b}-bar{c}=(2 ;-3 ; 1)-(1 ; 0 ;-2)-(-1 ; 2 ; 3)=& \=(2-1-(-1) ;-3-0-2 ; 1-(-2)-3)=(2 ;-5 ; 0) end{aligned}$$

Ответ. $begin{aligned} bar{a}-bar{b}-bar{c}=(2 ;-5 ; 0) end{aligned}$

Читать дальше: как найти проекцию вектора.

Ключевые слова: вектор, координаты, длина вектора

Прямые x, y, z называются координатными осями (или осями координат) , точка их пересечения O – началом координат, а плоскости xOy, xOz и yOz – координатными плоскостями. Точка O разбивает каждую координатную ось на две полупрямые, которые называются положительной и отрицательной полуосями.

Координатой точки A по оси x будем называть число, равное по абсолютной величине длине отрезка OAx: положительное, если точка A лежит на положительной полуоси x, и отрицательное, если она лежит на отрицательной полуоси.

Аналогично можно определить координаты y и z точки A. Координаты точки A записываются в скобках рядом с названием этой точки: A (x; y; z).

Определение. Единичным вектором или ортом называется вектор, длина которого равна единице и который направлен вдоль какой-либо координатной оси.

Единичный вектор, направленный вдоль оси x, обозначается i.
Единичный вектор, направленный вдоль оси y, обозначается j.
Единичный вектор, направленный вдоль оси z, обозначается k.
Определение. Вектора i, j, k называются координатными векторами.

Эти векторы некомпланарны, а значит, любой вектор a можно разложить по координатным векторам: a=xi+yj+zk.
Коэффициенты разложения определяются единственным образом и называются координатами вектора a в данной системе координат.

Свойства векторов, заданных координатами

Координаты нулевого вектора равны нулю.
Координаты равных векторов соответственно равны.
Координаты вектора суммы двух векторов равны сумме соответствующих координат этих векторов.
Координаты вектора разности двух векторов равны разностям соответствующих координат этих векторов.
Координаты вектора произведения данного вектора на число равны произведениям соответствующих координат этого вектора на данное число.
Формулы

Угол между векторами: a(xa;ya;za)b(xb;yb;zb) cos=xaxb+yayb+zazbx2a+ya2+za2x2b+yb2+zb2

Перпендикулярность векторов: a(xa;ya;za)b(xb;yb;zb) ab=0xaxb+yayb+zazb=0

Коллинеарность векторов: a(xa;ya;za)b(xb;yb;zb) xbxa=ybya=zbza если координаты векторов не равны нулю.

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Метод координат
  5. Координаты вектора

Прямоугольная система координат (декаротова система координат) — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Для задания прямоугольной системы координат нужно провести две взаимно перпендикулярные прямые, на каждой из них выбрать направление (оно обозначается стрелкой) и выбрать единицу измерения отрезков.

На рисунке выше оси и перпендикулярны. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом. В дальнейшем под длиной отрезка мы будем понимать это число. Так, единичный вектор – это вектор, длина которого равна 1.

Отложим от начала координат О единичные векторы и так, чтобы их направления совпадали с направлениями осей и соответственно.

Векторы и называют координатными векторами.

Координатные векторы не коллинеарны, поэтому любой вектор можно разложить по координатным векторам, т.е. представить в виде , причем коэффициенты разложения и определяются единственным образом. Коэффициенты разложения вектора по координатным векторам называются координатами вектора в данной системе координат.

Координаты вектора записывают в фигурных скобках после обозначения вектора: .

На рисунке выше .

Нулевой вектор можно представить в виде , следовательно, его координаты равны нулю: .

Если векторы и равны, то и . Значит, координаты равных векторов соответственно равны.

Правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число:

10. Каждая координата суммы двух и более векторов равна сумме соответствующих координат этих векторов.

Доказательство

Дано: , , .

Доказать: .

Доказательство:

По условию и , тогда и .

Сложим последние два равенства и применим свойства сложения векторов и умножения вектора на число, получим: , следовательно, координаты вектора равны , т.е. . Что и требовалось доказать.

20. Каждая координата разности двух векторов равна разности соответствующих координат этих векторов.

Доказательство

Дано: , , .

Доказать: .

Доказательство:

По условию и , тогда (1)  и (2) 

Вычтем из равенства (1) равенство (2) и применим свойства сложения векторов и умножения вектора на число, получим: , следовательно, координаты вектора равны , т.е. . Что и требовалось доказать.

30. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.

Доказательство

Дано: , – число, .

Доказать: .

Доказательство:

По условию , значит, .

Умножим последнее равенство на число и используя свойства умножения вектора на число, получим: , следовательно, координаты вектора равны , т.е. . Что и требовалось доказать.

Данные правила позволяют определить координаты любого вектора, представленного в виде алгебраической суммы данных векторов с известными координатами.

Пример

Найти координаты вектора , если известно, что .

Решение:

По правилу 30 вектор будет иметь координаты , т.е. , вектор координаты , т.е. .

Так как , то координаты вектора можно найти по правилу 10: , т.е. .

Ответ: .

Советуем посмотреть:

Разложение вектора по двум неколлинеарным векторам

Связь между координатами вектора его начала и конца

Простейшие задачи в координатах

Уравнение линии на плоскости

Уравнение окружности

Уравнение прямой

Взаимное расположение двух окружностей

Метод координат


Правило встречается в следующих упражнениях:

7 класс

Задание 926,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 939,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 944,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 4,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 5,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 10,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 22,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 989,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 999,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 2,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Добавить комментарий