Содержание:
- Координаты вектора
- Направляющие косинусы
- Сумма двух векторов, заданных координатами
- Умножение вектора на число
- Основное свойство направляющих косинусов
Для решения задач с векторами необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении
и длине.
Координаты вектора
Пусть задана прямоугольная декартова система координат (ПДСК) $x O y$
и произвольный вектор $overline{a}$, начало которого совпадает
с началом системы координат (рис. 1).
Определение
Координатами вектора $overline{a}$ называются проекции
$a_{x}$ и $a_{y}$
данного вектора на оси $O x$ и
$O y$ соответственно:
$$a_{x}=Пр_{O x} bar{a}, a_{y}=Пр_{O y} bar{a}$$
Величина $a_{x}$ называется абсциссой вектора
$overline{a}$, а число $a_{y}$
– его ординатой. То, что вектор $overline{a}$ имеет координаты
$a_{x}$ и $a_{y}$,
записывается следующим образом: $overline{a}=left(a_{x} ; a_{y}right)$.
Пример
Запись $overline{a}=(5 ;-2)$ означает, что вектор $overline{a}$
имеет следующие координаты: абсцисса равна 5, ордината равна -2.
Сумма двух векторов, заданных координатами
Пусть заданы $overline{a}=left(a_{x} ; a_{y}right)$ и $overline{b}=left(b_{x} ; b_{y}right)$,
тогда вектор $overline{c}=overline{a}+overline{b}$ имеет координаты
$left(a_{x}+b_{x} ; a_{y}+b_{y}right)$ (рис. 2).
Определение
Чтобы найти сумму двух векторов, заданных своими координатами, надо сложить их соответствующие координаты.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Заданы $overline{a}=(-3 ; 5)$
и $overline{b}=(0 ;-1)$. Найти координаты вектора $overline{c}=overline{a}+overline{b}$
Решение. $overline{c}=overline{a}+overline{b}=(-3 ; 5)+(0 ;-1)=(-3+0 ; 5+(-1))=(-3 ; 4)$
Умножение вектора на число
Если задан $overline{a}=left(a_{x} ; a_{y}right)$, то тогда вектор
$m overline{a}$ имеет координаты
$m overline{a}=left(m a_{x} ; m a_{y}right)$, здесь
$m$ – некоторое число (рис. 3).
Определение
Чтобы умножить вектор на число, надо каждую координату этого вектора умножить на заданное
число.
Пример
Задание. Вектор $overline{a}=(3 ;-2)$.
Найти координаты вектора 2$overline{a}$
Решение. $2 overline{a}=2 cdot(3 ;-2)=(2 cdot 3 ; 2 cdot(-2))=(6 ;-4)$
Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две
точки $Aleft(a_{x} ; a_{y}right)$ и $Bleft(b_{x} ; b_{y}right)$.
Тогда координаты вектора $overline{A B}=left(x_{1} ; y_{1}right)$ находятся по формулам (рис. 4):
$x_{1}=b_{x}-a_{x}, y_{1}=b_{y}-a_{y}$
Определение
Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат
конца отнять соответствующие координаты начала.
Пример
Задание. Найти координаты вектора $overline{A B}$,
если $A(-4 ; 2), B(1 ;-3)$
Решение. $overline{A B}=(1-(-4) ;-3-2)=(5 ;-5)$
Направляющие косинусы
Определение
Направляющими косинусами вектора называются косинусы углов, образованных вектором с
положительными направлениями осей координат.
Направление вектора однозначно задается направляющими косинусами. Для
единичного вектора направляющие косинусы
равны его координатам.
Если в пространстве задан вектор $overline{a}=left(a_{x} ; a_{y} ; a_{z}right)$, то
его направляющие косинусы вычисляются по формулам:
$cos alpha=frac{a_{x}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, cos beta=frac{a_{y}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, cos gamma=frac{a_{z}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}$
Здесь $alpha$, $beta$ и
$gamma$ – углы, которые составляет вектор с положительными
направлениями осей $O x$, $O y$ и
$O z$ соответственно.
Основное свойство направляющих косинусов
Определение
Сумма квадратов направляющих косинусов равна единице.
1
$cos ^{2} alpha+cos ^{2} beta+cos ^{2} gamma=1$
Если известны направляющие косинусы вектора $overline{a}=left(a_{x} ; a_{y}right)$,
то его координаты могут быть найдены по формулам:
$a_{x}=|overline{a}| cos alpha, a_{y}=|overline{a}| cos beta$
Аналогичные формулы имеют место и в трехмерном случае – если известны направляющие косинусы вектора
$overline{a}=left(a_{x} ; a_{y} ; a_{z}right)$,
то его координаты могут быть найдены по формулам:
$a_{x}=|overline{a}| cos alpha, a_{y}=|overline{a}| cos beta, a_{z}=|overline{a}| cos gamma$
Читать дальше: длина (модуль) вектора.
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Метод координат
- Координаты вектора
Прямоугольная система координат (декаротова система координат) — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Для задания прямоугольной системы координат нужно провести две взаимно перпендикулярные прямые, на каждой из них выбрать направление (оно обозначается стрелкой) и выбрать единицу измерения отрезков.
На рисунке выше оси и перпендикулярны. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом. В дальнейшем под длиной отрезка мы будем понимать это число. Так, единичный вектор – это вектор, длина которого равна 1.
Отложим от начала координат О единичные векторы и так, чтобы их направления совпадали с направлениями осей и соответственно.
Векторы и называют координатными векторами.
Координатные векторы не коллинеарны, поэтому любой вектор можно разложить по координатным векторам, т.е. представить в виде , причем коэффициенты разложения и определяются единственным образом. Коэффициенты разложения вектора по координатным векторам называются координатами вектора в данной системе координат.
Координаты вектора записывают в фигурных скобках после обозначения вектора: .
На рисунке выше .
Нулевой вектор можно представить в виде , следовательно, его координаты равны нулю: .
Если векторы и равны, то и . Значит, координаты равных векторов соответственно равны.
Правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число:
10. Каждая координата суммы двух и более векторов равна сумме соответствующих координат этих векторов.
Доказательство
Дано: , , .
Доказать: .
Доказательство:
По условию и , тогда и .
Сложим последние два равенства и применим свойства сложения векторов и умножения вектора на число, получим: , следовательно, координаты вектора равны , т.е. . Что и требовалось доказать.
20. Каждая координата разности двух векторов равна разности соответствующих координат этих векторов.
Доказательство
Дано: , , .
Доказать: .
Доказательство:
По условию и , тогда (1) и . (2)
Вычтем из равенства (1) равенство (2) и применим свойства сложения векторов и умножения вектора на число, получим: , следовательно, координаты вектора равны , т.е. . Что и требовалось доказать.
30. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
Доказательство
Дано: , – число, .
Доказать: .
Доказательство:
По условию , значит, .
Умножим последнее равенство на число и используя свойства умножения вектора на число, получим: , следовательно, координаты вектора равны , т.е. . Что и требовалось доказать.
Данные правила позволяют определить координаты любого вектора, представленного в виде алгебраической суммы данных векторов с известными координатами.
Пример
Найти координаты вектора , если известно, что .
Решение:
По правилу 30 вектор будет иметь координаты , т.е. , вектор координаты , т.е. .
Так как , то координаты вектора можно найти по правилу 10: , т.е. .
Ответ: .
Советуем посмотреть:
Разложение вектора по двум неколлинеарным векторам
Связь между координатами вектора его начала и конца
Простейшие задачи в координатах
Уравнение линии на плоскости
Уравнение окружности
Уравнение прямой
Взаимное расположение двух окружностей
Метод координат
Правило встречается в следующих упражнениях:
7 класс
Задание 916,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 918,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 927,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 929,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 943,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 945,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 948,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 15,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1010,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 8,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Математика
Тема 5: Метод координат
Урок 4: Координаты вектора. Разложение вектора по двум неколлинеарным векторам
- Видео
- Тренажер
- Теория
Заметили ошибку?
Координаты вектора. Разложение вектора по двум неколлинеарным векторам.
Если векторы a⃗ и b⃗ коллинеарны и a⃗≠0⃗, то существует такое число k, что b⃗=ka⃗.
Пусть a⃗ и b⃗ – два данных вектора. Если вектор p представлен в виде p⃗=xa⃗+yb⃗, где x и y – некоторые числа, то говорят, что вектор p⃗ разложен по векторам a⃗ и b⃗. Числа x и y называются коэффициентами разложения.
Теорема
На плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.
Напомню, что для задания прямоугольной системы координат нужно провести две взаимно перпендикулярные прямые, на каждой из них выбрать направление (оно обозначается стрелкой) и выбрать единицу измерения отрезков. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.
В дальнейшем под длиной отрезка мы будем понимать это число.
Отложим от начала координат O единичные векторы (т.е. векторы, длины которых равны единице) i⃗ и j⃗ так, чтобы направление вектора i⃗совпало с напралением оси Ox, а направление вектора j⃗ – с направлением оси Oy. Векторы i⃗ и j⃗ назовем координатными векторами.
Координатные векторы не коллинеарны, поэтому любой вектор p⃗ можно разложить по координатным векторам, т.е. представить в виде p⃗=xi⃗+yj⃗, причем коэффициенты разложения (числа x и y) определяются единственным образом. Коэффициенты разложения вектора p⃗ по координатным векторамназываются координатными векторамиp⃗ в данной системе координат. Координаты вектора будем записывать в фигурных скобках после обозначения вектора: p⃗{x;y}.
Так как нулевой вектор можно представить в виде 0⃗=0.i⃗+0.j⃗, то его координаты равны нулю: 0⃗{0;0}. Если векторы a⃗=x1i⃗+y1j⃗ и b⃗=x2i⃗+y2j⃗ равны, то x1 = x2 и y1 = y3. Таким образом, координаты равных векторов соответственно равны.
Рассмотрим правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число.
-
Каждая координата суммы двух или более векторов равна сумме соответствующих координат этих векторов.
Докажем это утверждение для двух векторов. Рассмотрим векторы a{x1;y1} и b{x2;y2}. Так как a⃗=x1i⃗+y1j⃗ и b ⃗=x2i⃗ +y2j⃗ ,то, пользуясь свойствами сложения векторов и умножения вектора на число, получим:
a⃗+b⃗=x1i⃗+y1j⃗+x2i⃗+y2j⃗=(x1+x2)i⃗+(y1+y2)j⃗ .
Следовательно, что координаты вектора a⃗+b⃗ равны {x1+x2; y1+y2}.
Аналогично доказывается следующее утверждение:
-
Каждая координата разности двух или более векторов равна разности соответствующих координат этих векторов.
Иными словами, если a⃗{x1;y1} и b⃗{x2;y2} – данные векторы, то вектор a⃗–b⃗ имеет координаты {x1-x2;y1-y2}.
-
Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
В самом деле, пусть вектор a⃗ имеет координаты {x;y}. Найдем координаты вектора ka⃗, гдеk – произвольное число. Так как a⃗=xi⃗+yj⃗, то kxi⃗+kyj⃗. Отсюда следует, что координаты вектора ka⃗ равны {kx;ky}.
Рассмотренные правила позволяют определить координаты любого вектора, представленного в виде алгебраической суммы данных векторов с известными координатами.
Найти координаты вектора a⃗+b⃗,если a⃗{3;2},b⃗{2;5}
Чтобы найти координаты вектора суммы, надо сложить соответствующие координаты данных векторов, получим:
a⃗+b⃗ имеет координаты {3 + 2; 2 + 5}, то есть {5; 7}
Найти координаты вектора 2a⃗, если a⃗{3;2}
Значит, вектор 2a⃗ имеет координаты {2 ⋅ 3; 2 ⋅ 2}, то есть {6;4}
Итак, сегодня мы узнали, что любой вектор можно разложить по двум неколлинеарным векторам, ввели понятие координат вектора и рассмотрели правила, позволяющие находить координаты суммы, разности векторов, и произведения вектора на число. А в следующий раз мы найдем связь между координатами вектора и координатами его начала и конца.
Заметили ошибку?
Расскажите нам об ошибке, и мы ее исправим.
Уважаемые студенты!
Заказать задачи по физике, информатике, экономике, праву, химии, теормеху, сопромату и другим предметам можно здесь всего за 10 минут.
Сложение векторов
Формула
Чтобы складывать вектора нужно найти суммы соответствующих координат данных векторов. Например, пусть есть векторы на плоскости $ overline{a} = (x_1;y_1) $ и $ overline{b}=(x_2;y_2) $, тогда их сумму можно найти по формуле: $$ overline{a}+overline{b} = (x_1+x_2;y_1+y_2)$$
Если векторы заданы в пространстве тремя координатами $ overline{a} = (x_1;y_1;z_1) $ и $ overline{b}=(x_2;y_2;z_2) $, то выполнить сложение нужно по другой формуле:
$$ overline{a}+overline{b} = (x_1+x_2;y_1+y_2; z_1+z_2) $$
При сложении первая координата первого вектора складывается с первой координатой второго вектора, вторая координата первого вектора складывается со второй координатой второго вектора и так далее в зависимости от размерности векторов. Стоит отметить, что складывать векторы можно только одинаковой размерности.
Примеры решений
Пример |
Даны два вектора $ overline{a} = (1,3) $ и $ overline{b} = (2,4) $. Нужно сложить два вектора. |
Решение |
Итак, как складывать вектора по координатам? К первой прибавляем первую, вторую ко второй: $$ overline{a}+overline{b} = (1+2;3+4) = (3;7) $$ В этой задаче векторы заданы в двумерном пространстве и имеют только две координаты. Если бы координат было бы три, то применять нужно вторую формулу для трехмерной задачи. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ overline{a}+overline{b} = (3;7) $$ |
Если задана плоскость Oxy с векторами a→=ax, ay и b→=(bx, by), то мы можем разложить их по координатным векторам i→ и j→. Тогда это будет иметь вид a→=ax·i→+ay·j→ и b→=bx·i→+by·j→. Чтобы найти сумму a→ и b→ и произведение a→ на λ, рассмотрим:
a→+b→=ax·i→+ay·j→+bx·i→+by·j→=(ax+bx)·i→+(ay+by)·j→
λ·a→=λ·(ax·i→+ay·j→)=(λ·ax)·i→+(λ·ay)·j→
Это равенство справедливо по свойству операций над векторами.
Разложение векторов – это a→+b→ и λ·a→, представленное в частях неравенства по i→ и j→ координатам. Координаты векторов a→+b→ и λ·a→ равны соответственно (ax+bx, ay+by) и (λ·ax, λ·ay).
Таким же образом a→=(ax, ay, az) и b→=(bx, by, bz) записываются как a→+b→=ax·i→+ay·j→+az·k→+bx·i→+by·j→+bz·k→=(ax+bx)·i⇀+(ay+by)·j→+(az+bz)·k→λ·a→=λ·(ax·i→+ay·j→+az·k→)=(λ·ax)·i→+(λ·ay)·j→+(λ·az)·k→
а значит a→+b→=(ax+bx, ay+by, az+bz), λ·a→=(λ·ax, λ·ay, λ·az)
Отсюда делаем вывод, что координаты векторов a→ и b→ равны сумме соответствующих координат векторов a→и b→, координаты произведения вектора a→ на λ приравниваются к соответствующим координатам вектора a→, умноженным на число в заданной системе координат.
При необходимости нахождения координат суммы нескольких векторов, необходимо сложить координаты каждого вектора соответственно. Рассмотрим примеры.
Нужно выполнить сложение a→=(2, 3-13) и b→=(-1,-13). Чему равны координаты произведения вектора a→ на 3.
Решение
Из определения имеем, что сумма векторов равна сумме их координат соответственно, тогда a→+b→=(2+(-1),3-13+(-13))=(1, -13).
Числовое значение умножается на каждую координату: 3·a→=(3·2, 3·3-13)=23,3-33.
Ответ: a→+b→=(1, -13), 3·a→=(23, 3-33)
Заданы векторы a→=(0, 1, -2), b→=(-1, -1, 3), c→=(4, -3, 2) .
Каковы координаты вектора 2·a→+3·(b→-c→)=2·a→+3·b→+(-3)·c→.
Решение
Применяя свойства векторов, получим: 2·a→+3·(b→-c→)=2·a→+3·b→+(-3)·c→.
Подставляем значения координат и получаем: 2·a→+3·b→+(-3)·c→=2·(0,1,-2)+3·(-1,-1, 3)+(-3)·(4,-3, 2)=
=(2·0, 2·1, 2·(-2))+(3·(-1), 3·(-1), 3·3)+((-3)·4,(-3)·(-3)·2)=
=(0, 2, -4)+(-3, -3, 9) + (-12, 9 -6)=
=(0+(-3)+(-12), 2+(-3)+9, -4+9+(-6))=(-15, 8, -1)
Можно решить другим способом.
Обратим внимание на разложение a→, b→ и c→ :
a→=0·i→+1·j→+(-2)·k→=j→-2·k→
b→=(-1)·i→+(-1)·j→+3 ·k→=-i→-j→+3·k→
c→=4·i→+(-3)·j→+2·k→=4·i→-3·j→+2·k→
Исходя из свойств векторов, видим, что: 2·a→+3·(b→-c→)=2·(j→-2·k→)+3·(-i→-j→+3·k→-(4·i→-3·j→+2·k→))==2·j→-4·k→+3·(-5·i→+2·j→+1·k→)=-15·i→+8·j→-k→
Значит, координаты вектора 2·a→+3·(b→-c→) равны (-15, 8, -1).
Ответ: 2·a→+2·(b→-c→)=(-15, 8, -1)
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта