Как найти координаты векторов онлайн калькулятор

Онлайн калькулятор для нахождения координат вектора на плоскости по двум или по трём точкам в пространстве.

Чтобы узнать координаты вектора в плоскости (i,j) или найти координаты вектора в пространстве (i,j,k), необходимо произвести ряд однотипных вычислений на основе координат точек его начала и конца.

Предположим, нам дана точка начала вектора A с координатами (1;2) и точка конца вектора с координатами B(3;5). Для того чтобы рассчитать координаты самого вектора необходимо отнять координату начала от координаты конца вдоль каждой оси.
[ bar{i}=x_{2}-x_{1}=3-1=2 ]
[ bar{j}=y_{2}-y_{1}=5-2=3 ]

Таким образом, координатами вектора становятся (2;3), причем порядок расположения координат строго соблюдается. Аналогично происходит, если отталкиваться от координат в пространстве (x,y,z).
[ A(0;3;1) ]
[ B(2;2;1) ]
[ bar{i}=x_{2}-x_{1}=2-0=2 ]
[ bar{j}=y_{2}-y_{1}=2-3=-1 ]
[ bar{k}=z_{2}-z_{1}=1-1=0 ]
Координаты вектора: [ = (2,-1,0) ]

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Операции над векторами: онлайн-калькуляторы

На нашем сайте представлен полный набор калькуляторов векторов онлайн, с помощью которых вы сможете получить подробное и точное решение необходимой геометрической задачи.

Чтобы найти вектор онлайн:

  • не потребуется много времени. Расчет происходит за секунду.
  • не надо искать способ решения. Необходимая формула уже заложена в калькуляторе.
  • не стоит беспокоиться за потерю данных между действиями. Система вычислений происходит за 1 раз после ввода необходимых значений.

Вам предоставляется пошаговый расчет и ответ без погрешностей.

Нахождение вектора онлайн-калькулятором

Решение векторов онлайн пригодится ученикам школ, изучающим тему на уроках геометрии. При подготовке домашних заданий, чтобы проверить самостоятельно решенный пример, можно ввести исходные данные в калькулятор и рассчитать автоматически. Такой способ самопроверки эффективен, так как в случае несовпадения ответов или затруднений в понимании есть возможность изучить способ решения.

Студентам посчитать вектор онлайн часто необходимо в качестве промежуточного действия в составной задаче. На быстро полученном точном ответе базируются последующие вычисления.

Не всегда для решения задания с векторами можно обойтись расчетами, на которых построены калькуляторы. В таких случаях обращайтесь в Zaochnik:

  • консультант расскажет об условиях сотрудничества и предложит скидку на услуги;
  • преподаватель-математик выполнит необходимый вид работы к указанному сроку;
  • отдел контроля качества проверит итоговый файл;
  • вы получите решенные задачи по выгодной цене.

Мы сотрудничаем с преподавателями математики школ, университетов, инженерами-проектировщиками, поэтому сможем подобрать подходящего исполнителя конкретно для вашей работы.

Чтобы узнать координаты вектора в плоскости (i,j) или найти координаты вектора в пространстве (i,j,k), необходимо произвести ряд однотипных вычислений на основе координат точек его начала и конца.

Предположим, нам дана точка начала вектора A с координатами (1;2) и точка конца вектора с координатами B(3;5). Для того чтобы рассчитать координаты самого вектора необходимо отнять координату начала от координаты конца вдоль каждой оси.
i=x2-x1=3-1=2
j=y2-y1=5-2=3

Таким образом, координатами вектора становятся (2;3), причем порядок расположения координат строго соблюдается. Аналогично происходит, если отталкиваться от координат в пространстве (x,y,z).
A(0;3;1)
B(2;2;1)
i=x2-x1=2-0=2
j=y2-y1=2-3=-1
k=z2-z1=1-1=0

Координаты вектора: (2,-1,0).

Вектором называется направленный отрезок AB; точка A – начало, точка B – конец вектора
Чтобы найти координаты вектора AB, зная координаты его начальной точки А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.

Формула определения координат вектора для плоских задач

В случае плоской задачи вектор AB заданный координатами точек A(Ax ; Ay) и B(Bx ; By) можно найти воспользовавшись следующей формулой

AB = {Bx-Ax; By-Ay}

Формула определения координат вектора для пространственных задач

В случае пространственной задачи вектор AB заданный координатами точек A(Ax; Ay; Az) и B(Bx; By; Bz) можно найти воспользовавшись следующей формулой

AB = {Bx-Ax ; By-Ay ; Bz-Az}

Формула определения координат вектора для n -мерного пространства

В случае n-мерного пространства вектор AB заданный координатами точек A(A1 ; A2 ; … ; An) и B(B1 ; B2 ; … ; Bn) можно найти воспользовавшись следующей формулой

AB = {B1-A1 ; B2-A2 ; … ; Bn-An}

Примеры задач

Рассмотрим несколько задач связанных с определением координат вектора по двум точкам

Пример 1.

Найти координаты вектора AB, если A(1; 4), B(3; 1). Решение: AB = {3-1; 1-4} = {2; -3}.

Пример 2.

Найти координаты точки B вектора AB = {5; 1}, если координаты точки A(3; -4). Решение: AB x = B x-A x => B x = AB x + A x => B x = 5 + 3 = 8
AB y = B y-A y => B y = AB y + A y => B y = 1 + (-4) = -3 Ответ: B(8;-3).

Пример 3.

Найти координаты вектора AB, если A(1; 4; 5), B(3; 1; 1). Решение: AB = {3-1; 1-4; 1-5} = {2; -3; -4}.

Пример 4.

Найти координаты вектора AB, если A(1; 4; 5; 5; -3), B(3; 0; 1; -2; 5). Решение: AB = {3-1; 0-4; 1-5; -2-5; 5-(-3)} = {2; -4; -4; -7; 8}.

Координаты вектора по двум точкам можно вычислять вручную или при помощи онлайн-калькулятора. Сервис используют при решении плоских и пространственных задач. Для этого необходимо знать начальную и конечную точку вектора. После внесения значений в соответствующие окошки и нажатия клавиши «Решение», ответ появляется на экране в течение нескольких минут.

Кто и для чего использует сервис?

Калькулятор координаты вектора по двум точкам – удобный инструмент. Им обычно пользуются:

  • школьники и студенты при выполнении письменных работ разного уровня;
  • преподаватели при проверке правильности выполнения заданий.

Сервис прост в использовании, поэтому он пользуется спросом у родителей, которые контролируют, как дети выполняют домашние задания.

Инструмент доступен для всех пользователей фриланс-биржи «Напишем».

Добавить комментарий