Как найти координаты вершин треугольной пирамиды

Координаты вершин правильного тетраэдра

20 июня 2013

Пирамиды традиционно считаются сложными фигурами в задаче C2. А уж если в основании пирамиды лежит треугольник (т.е. пирамида становится тетраэдром), то все становится совсем грустно. В общем, если в ЕГЭ по математике вам попадется правильный тетраэдр, примите мои поздравления: это самая мерзкая и сложная фигура, которая встречается на настоящем экзамене.

Тем не менее, после небольшой тренировки все становится вполне решаемо. И в этом уроке мы пошагово разберем каждую вершину тетраэдра и найдем каждую координату. Вы убедитесь: все, что нам действительно надо знать — это две теоремы:

  1. Теорема Пифагора — без нее не решается вообще ни одна задача C2, потому что на этой теореме построена сама идея декартовой системы координат;
  2. Теорема о медианах. А именно: медианы треугольника пересекаются в одно точке и делятся ею в отношении 2 : 1, считая от вершины.

Вот и весь список! Вы знаете эти теоремы? Тогда поехали!

Задача. В правильном тетраэдре SABC, все ребра которого равны 1, введите систему координат и найдите координаты вершин.

Правильный тетраэдр SABC и высота SH

[Подпись к рисунку]

Смотрите также:

  1. Четырехугольная пирамида: как найти координаты вершин
  2. Уравнение плоскости в задаче C2. Часть 1: матрицы и определители
  3. Решение ЕГЭ-2011: вариант 1, часть B
  4. Не пишите единицы измерения в задаче B12
  5. Быстрое возведение чисел в квадрат без калькулятора
  6. Задача B4: тарифы на сотовую связь

Онлайн решение Пирамиды по координатам вершин

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Как рассчитать объем пирамиды по координатам вершин? Методика и пример задачи

Часто в задачах школьного курса геометрии приходится решать задания, которые требуют использования комплексного подхода. Одной из таких задач является вычисление объема пирамиды по координатам вершин. Как решить эту геометрическую задачу – ответит приведенная ниже статья.

Что представляет собой пирамида?

Говоря простыми словами, под этой фигурой понимают пространственный объект, ограниченный треугольными сторонами и одной многоугольной гранью, которая называется основанием. Многоугольное основание может быть произвольным n-угольником на плоскости, например, правильным треугольником, параллелограммом и так далее.

Вам будет интересно: Какую роль играет репродуктивная клетка животных и растений?

Любая пирамида имеет n + 1 грань, 2 * n ребер и n + 1 вершину. Вершины фигуры не являются равноправными. Так, существует единственная вершина, которая не принадлежит основанию. Она называется главной. Расстояние от нее до плоскости основания – это высота фигуры.

Пирамиды могут быть наклонными, если высота пересекает основание не в его центре, или прямыми, когда высота с основанием пересекается в геометрическом центре последнего. Также фигуры могут быть неправильными и правильными. Пирамиды правильные состоят из равноугольного и равностороннего основания и нескольких равнобедренных треугольников, которые друг другу равны.

Как рассчитывается объем пирамиды?

Прежде чем приводить методику вычисления по координатам вершин объема пирамиды, следует привести формулу, при помощи которой можно рассчитать эту величину для фигуры любого типа из рассматриваемого класса. Итак, объем пирамиды рассчитывается так:

Здесь So – это основания площадь, h – расстояние от главной вершины до основания, то есть высота пирамиды.

Таким образом, любая геометрическая задача на нахождение объема пирамиды сводится к расчету величин So и h.

Как найти объем пирамиды по координатам вершин: методика

Пирамида может быть представлена произвольным n-угольным основанием. Чтобы рассчитать его площадь, следует внимательно изучить условие задачи, в котором должно быть сказано, о каком типе n-угольника идет речь. Если это треугольник или параллелограмм, то расчет его площади по известным координатам очень прост: необходимо лишь найти векторное произведение соответствующих векторов сторон.

Вычислить высоту пирамиды также не представляет особого труда. Для этого следует из любых трех точек основания получить уравнение плоскости в общем виде, а затем нужно воспользоваться формулой расстояния между плоскостью и точкой (вершиной пирамиды). Формула имеет вид:

d = |(A * x1 + B * y1 + C * z1 + D)| / √(A2 + B2 + C2).

Здесь (x1; y1; z1) – координаты точки.

Уравнение плоскости имеет вид:

A * x + B * y + C * z + D = 0.

Задача с треугольной пирамидой

Решим задачу на примере самой простой пирамиды – треугольной. Условие простое: ниже даны координаты вершин пирамиды, объем найти нужно для фигуры, которая на этих координатах построена:

Положим, что основание пирамиды является треугольником ABC. Найдем длины векторов AB¯ и AC¯:

Векторное произведение AB¯ и AC¯ даст нам, с одной стороны, двойную площадь треугольника, то есть 2 * So, а с другой стороны, мы получим координаты нормального к плоскости вектора n¯, имеем:

n¯ = [AB¯ * AC¯] = (8; -10; -7).

Площадь треугольного основания равна полудлине вектора n¯, то есть:

So = √(82 + 102 + 72) / 2 = 7,3.

Прежде чем рассчитывать расстояние от D до плоскости ABC, необходимо записать уравнение плоскости. Три его коэффициента (A, B, C) мы уже знаем, они соответствуют координатам нормали n¯. Свободный член можно получить, подставив в уравнение координаты любой точки плоскости, например точки A, имеем:

D = -1 * (A * x1 + B * y1 + C * z1) = -1 * (8 * 1 + (-10) * 0 + (-7) * 3) = 13.

Тогда уравнение плоскости основания пирамиды принимает форму:

8 * x – 10 * y – 7 * z + 13 = 0.

Теперь применяем приведенную выше формулу для расчета расстояния от точки D(4; 3; 4) до найденной плоскости, получаем:

d = |(8 * 4 – 10 * 3 – 7 * 4 + 13)| / √(82 + 102 + 72) = 0,89.

Поскольку найденное значение расстояния d соответствует высоте пирамиды треугольной h, то можно воспользоваться формулой для объема фигуры:

V = 1 / 3 * So * h = 1 / 3 * 7,3 * 0,89 ≈ 2,166.

Полученное значение объема выражено в кубических единицах выбранной координатной системы.

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=onlayn-resheniye-piramidy

http://1ku.ru/obrazovanie/51574-kak-rasschitat-obem-piramidy-po-koordinatam-vershin-metodika-i-primer-zadachi/

[/spoiler]

I. Основные формулы:

1. Расстояние между точками А (, ), В , ) равно =.

2. Угол между плоскостями. Если β – угол между плоскостями, заданными уравнениями  х+z+ =0 и  х+z+ =0, то

.

3. Расстояние от точки до плоскости. Если ρ – расстояние от точки (, ), до плоскости  х+z+D =0, то

ρ=.

4. Уравнение плоскости, проходящей через три заданные точки (, ),(, ),(, ), в координатной форме:

=0;

5. Если отрезок, концами которого служат точки А (, ), В , ) разделен точкой С (х, у,) в отношении λ, то координаты точки С определяются по формулам

Х =  ; у= ; z=. 

II. Координаты вершин многогранников.

Определите координаты вершин многогранников:

1. Единичный куб AD1

Решение: координаты вершин А (0, 0, 0), А1 (0, 0, 1), В (1, 0, 0), В1 (1, 0, 1), D (0, 1, 0), D1 (0, 1, 1), С (1, 1, 0), С1 (1, 1, 1).

2. Правильная треугольная призма A…C1 , все ребра, которой равны 1.

Решение: координаты вершин: А (0, 0, 0), А1 (0, 0, 1), В (1, 0, 0), В1 (1, 0, 1), С (0,5; , 0), С1 (0,5; , 1).

3. Правильная шестиугольная призма AF1, все ребра которой равны 1.

Решение: координаты вершин: А (0, 0, 0), А1 (0, 0, 1), В (1, 0, 0), В1 (1, 0, 1), С (1,5; , 0), С1 (1,5; , 1), D (1, (1,  Е (0, , (0, ,

F(-0,5 ,  0), (-0,5, 1).

4. Правильная треугольная пирамида (тетраэдр) ABCD все ребра которой равны 1.

Решение: координаты вершин: А (0, 0, 0), В (1, 0, 0), С (0,5; , 0), D (0,5,

5. Правильная четырехугольная пирамида SABCD, все ребра которой равны 1.

Решение: координаты вершин: А (0, 0, 0), В (1, 0, 0), С (1, 1, 0), D (0, 1, 0 S (0,5; 0,5; ).

6. Правильная шестиугольная пирамида SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2.

 

III. Решение задач.

Решение: координаты вершин: А (0, 0, 0), В (1, 0, 0), С (1,5; , 0), D (1, Е (0, , F (-05,  0), S (0,5; ). 

Решение:

  1. А (0, 0, 0), А1 (0, 0, 1), В (1, 0, 0), В1 (1, 0, 1), D (0, 1, 0), D1 (0, 1, 1), С (1, 1, 0), С1 (1, 1, 1).
  2. Найдем координаты векторов (1, 0, 1) и = (0, 1, 1)
  3. Найдем косинус угла между векторами = =; α=60.

Ответ: 60.

Решение:

  1. координаты вершин А (0, 0, 0), D1 (, , 1), С (0,5; , 0), Е1 (; , 1).
  2. Найдем координаты векторов: и  (, , 1)
  3. Найдем косинус угла между векторами  = =0,7;

Ответ: 0,7.

Полностью текст работы приведен в Приложении.

Правильная
треугольная пирамида
MABC
,
сторона основания которой
равна
a
,
а высота h
.Обычно
используют один из двух вариантов
расположения системы координат.

4.1
Пусть начало координат находится в
точке A
,
ось x
направлена
вдоль ребра AC
,
ось y
проходит
через точку A
перпендикулярно
AC
,
ось z
проходит
через точку A
перпендикулярно
плоскости ABC
(см.
рис. 6). Тогда вершины пирамиды имеют
координаты: А(0; 0; 0); В(
;
;
0);С(а;0;0), М(
;


;h).

4.2
Пусть начало координат находится в
центре треугольника ABC
в
точке O
,ось
x
проходит
через точку O
параллельно
ребру AC
,
ось y
проходит
через точку O
перпендикулярно
AC
,
ось z
проходит через точку O
перпендикулярно
плоскости ABC
(см.
рис. 7). Тогда вершины пирамиды имеют
координаты: A(-
;

;0),
В(0;
;
0),

С(

;

;0),
М(0;0;h).

4.3
Еще один вариант расположения правильной
треугольной пирамиды относительно
прямоугольной декартовой системы
координат представлен на рисунке №8.

5. Правильная четырехугольная пирамида

Правильная
четырехугольная пирамида
MABC
,
сторона основания которой равна a
,
а высота h
.Обычно
используют один из двух вариантов
расположения системы координат.

5.1
Пусть начало координат находится в
точке A
,
ось x
направлена
вдоль ребра AD
,
ось y

вдоль ребра AB
,
ось z

проходит
через точку A
перпендикулярно
плоскости ABC
(см.
рис. 9). Тогда вершины пирамиды имеют
координаты:
A
(0;
0; 0) , B(0;
a;
0) , C(a;
a;
0) ,Д(а;0;0), М(
;

;
h).

5.2.
Пусть начало координат находится в
центре основания в точке O
,
ось x
проходит через точку O
параллельно
ребру AD
,
ось y
проходит
через точку O
параллельно
ребру AB,
ось z
проходит
через точку O
перпендикулярно
плоскости основания (см. рис. 10). Тогда
вершины пирамиды имеют координаты:

А(-

;

;0),
В (-

;

;0),
С(

;

;0),Д(

;

;0),М(0;0;h)

6. Правильная шестиугольная пирамида

6.1MABCDEF
,
сторона основания
которой
равна a
,
а высота h
.
Пусть начало координат находится в
точке A
,
ось x
направлена
вдоль ребра AC
,
ось y
проходит
через точку A
перпендикулярно
AC
,
ось z
проходит
через точку A,
пер-

пендикулярно
плоскости ABC
(см.
рис.11). Тогда вершины пирамиды имеют
координаты: А(0; 0; 0); В(-

;
;
0); С(0;
;0),
Д (а;
;0),
Е(
;
;
0), F(а;0;0),М(

;
;
h).

6.2
Еще один вариант расположения правильной
шестиугольной пирамиды относительно
прямоугольной декартовой системы
координат показан на рисунке 12.

Рисунок
№1


Рисунок
№2

Р
исунок
№3

Рисунок
№4


Рисунок
№5


Рисунок
№6

Рисунок
№7


Рисунок
№8

Рисунок
№9


Рисунок
№10

Рисунок
№11


рисунок
№12

18

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий