Как найти координаты вершины прямой

Прямая на плоскости. Примеры решений

Решение проводим с помощью калькулятора.
Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).
1) Координаты векторов
Координаты векторов находим по формуле:
X = xj – xi; Y = yj – yi
здесь X,Y координаты вектора; xi, yi – координаты точки Аi; xj, yj – координаты точки Аj
Например, для вектора AB
X = x2 – x1; Y = y2 – y1
X = 1-2 = -1; Y = -2-1 = -3
AB(-1;-3)
AC(-3;-1)
BC(-2;2)
2) Модули векторов
Длина вектора a(X;Y) выражается через его координаты формулой:




3) Угол между прямыми
Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:

где a1a2 = X1X2 + Y1Y2
Найдем угол между сторонами AB и AC

γ = arccos(0.6) = 53.13 0
4) Проекция вектора
Проекцию вектора b на вектор a можно найти по формуле:

Найдем проекцию вектора AB на вектор AC

5) Площадь треугольника
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) – вершины треугольника, тогда его площадь выражается формулой:

В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:

Пример. Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).
Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.

Задание. Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:

  1. составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.
  2. составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.
  3. найти косинус внутреннего угла B треугольника ABC.

Сделать чертеж.

Пример №3. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB ; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.
Скачать

Пример №4. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C ; 2) уравнение медианы, проведенной через вершину C ; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.
Скачать

Пример №5. Даны вершины треугольника ABC: A(-5;0), B(7;-9), C(11;13). Определите: 1) длину стороны AB ; 2) уравнение сторон AB и AC и их угловые коэффициенты; 3) площадь треугольника.

  • Решение
  • Видео решение

Задание. Найти острый угол между прямыми x + y -5 = 0 и x + 4y – 8 = 0 .
Рекомендации к решению. Задача решается посредством сервиса Угол между двумя прямыми.
Ответ: 30.96 o

Пример №1. Даны координаты точек А1(1;0;2), A2(2;1;1), А3(-1;2;0), A4(-2;-1;-1). Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3. Найти объем треугольной пирамиды А1A2А3A4.

  • Решение
  • Видео решение

Задание. По координатам вершин пирамиды А1,А2,А3,А4 найти: 1) длины ребер А1А2 и А1А3; 2) угол между ребрами А1А2 и А1А3; 3) площадь грани А1А2А3;4) объем пирамиды А1А2А3А4
A1(3;5;4,0,0), A2(8;7;4,0,0), A3(5;10;4,0,0), A4(4;7;9,0,0):Пример №10

Пример. В декартовой прямоугольной системе координат даны вершины пирамиды A, B, C, D. Найдите длину ребра AB, косинус угла между векторами, уравнение ребра, уравнение грани, уравнение высоты.
Решение

Пример. Даны вершины треугольника А(1, –1, -3), В(2, 0, -10), С(3, 0, -2).
а) Найти уравнение биссектрисы и высоты данного треугольника, проведенных из вершины A .
б) Найти уравнения всех его медиан и координаты точки их пересечения.
см. также Как найти периметр треугольника

Онлайн калькулятор. Уравнение прямой проходящей через две точки

Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.

Найти уравнение прямой

Выберите необходимую вам размерность:

Введите координаты точек.

Ввод данных в калькулятор для составления уравнения прямой

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для составления уравнения прямой

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение прямой.

Прямая – один из базовых элементов геометрии. Используя уравнения прямых можно существенно упростить решение многих задач.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Определение.
Любой ненулевой вектор, перпендикулярный
прямой называется её нормальным
вектором
,
и обозначается
.

Теорема.
Алгебраическое уравнение 1-й степени

,

где
коэффициенты
– произвольные действительные числа,
одновременно не равные нулю, являетсяуравнением
прямой на плоскости
,
а вектор
является её нормальным вектором.

Верно
обратное
:
на координатной плоскости
уравнение
любой прямой с нормальным вектором,
может быть записано в виде алгебраического
уравнения.

Определение.
Уравнение прямой вида

,

где
коэффициенты
– произвольные действительные числа,
одновременно не равные нулю, называетсяобщим
уравнением прямой
.

Известно,
что прямая определяется двумя точками.
Пусть

и


точки, лежащие на прямой
,


произвольная точка этой прямой. Тогда
векторы
и– коллинеарны, а их координаты
пропорциональны. Получаемуравнение
прямой, проходящей через две точки
:

.

Определение.
Вектор,
параллельный прямой, называется
направляющим
вектором прямой
.

Определение.
Пусть
– направляющий вектор прямой. Тогда из
предыдущего уравнения получаемканоническое
уравнение прямой
:

.

Определение.
В
тех же обозначениях, параметрическое
уравнение прямой

имеет вид:
.

Определение.
Уравнение прямой вида
,
гдеи– произвольные, не равные нулю
действительные числа, называетсяуравнением
прямой в отрезках
.

Теорема.
Пусть
– уравнение прямой в отрезках. Тогда,– координаты точек пересечения дан­ной
прямой с осями координат.

Определение.
Уравнение прямой вида
,
гдеи– произвольные действительные числа,
называетсяуравнением
прямой с угловым коэффициентом
,
коэффициент
называетсяугловым
коэффициентом
дан­ной
прямой.

Теорема.
Пусть
– уравнение прямой с угловым коэффициентом.
Тогда,
где угол
α

равен углу наклона данной прямой к оси
,– ордината точки пересечения с осью.

Если
известны угловые коэффициенты
идвух прямых, то один из угловмежду этими прямыми определяется по
формуле:

.

Признаком
параллельности двух прямых является
равенство их угловых коэффициентов:
.

Признаком
перпендикулярности двух прямых является
соотношение:
или.

Теорема.
(Связь нормального вектора прямой с её
направляющим вектором и её угловым
коэффициентом.)

1)
Если
– нормальный вектор прямой, то– её направляющий вектор, и, если,
то– её угловой коэффициент.

2)
Если
– направляющий вектор прямой, то– её нормальный вектор, и, если, то– её угловой коэффициент.

3)
Если
угловой коэффициент прямой, то– её нормальный вектор,

направляющий вектор.

Взаимное
расположение двух прямых на плоскости.

Две
прямые на плоскости могут пересекаться,
совпадать или быть параллельными.

Теорема.
Пусть прямые заданы общими уравнениями:

L1:,L2:.
Тогда:

1)
если
,
то прямые совпадают, и система уравнений

имеет
бесконечное множество решений;

2)
если
, то прямые параллельные, и система
уравненийне имеет решений;

3)
если
, то прямые пересекаются и координаты
точки их пересечения являются единственным
решением системы уравнений

.

Определение.
Уравнение вида
,
где– расстояние от прямой до начала
координат, называетсянормальным
уравнением прямой
,
– координаты орта вектора.

Чтобы
привести прямую к указанному виду,
разделим общее уравнение прямой на
, причем со знаком «+» в случае, когда, и со знаком «-» в случае, когда, получим:

.

Теорема.
Орт нормального вектора
имеет координаты:

,

где

.

Теорема.
Расстояние от прямой до произвольной
точки

находится
по формуле:

Чтобы
найти расстояние
между двумя параллельными прямыми
,
нужно взять произвольную точку на одной
из прямых и найти расстояние от нее до
другой прямой.

Чтобы
найти множество
точек, равноудаленных от двух прямых

и, составим уравнение:

.

Раскрывая
модули в случае параллельных прямых,
получаем параллельную им прямую, лежащую
между данными прямыми, а в случае
пересекающихся прямых – биссектрисы
углов
,
образованных пересечением прямых.

Определение.
Совокупность прямых, проходящих через
некоторую точку S,
называется пучком
прямых с центром
S.

Теорема.
Если
и– уравнения двух прямых, пересекающихся
в точкеS,
то уравнение:

,

где
– какие угодно числа, не равные
одновременно нулю, определяют прямую,
также проходящую через точкуS.

Более
того, в указанном уравнении числа всегда
возможно подобрать так, чтобы оно
определяло любую (заранее назначенную)
прямую, проходящую через точку S,
иначе говоря, любую прямую пучка с
центром S.
Поэтому уравнение вида называется
уравнением пучка с центром S.

Решение
типовых задач

Задача
№1:

Даны
уравнения двух сторон параллелограмма
,и уравнение одной из его диагоналей.
Определить координаты вершин этого
параллелограмма.

Решение:

Найдём
координаты т.
как точки пересечения прямыхи:;;
т.Выясним, какая из диагоналей задана.

Подставим
координаты т.
в уравнение диагонали:;
т.не принадлежит заданной диагонали,
следовательно– уравнение диагонали.

Найдём
координаты т.
,
как точки пересеченияи:

;

;
т..

Найдём
координаты т.,
как точки пересеченияи:

;

;
т..

Найдём
координаты т.B:
в параллелограмме диагонали делят друг
друга пополам:
.
Найдём координаты т.:
т.– середина,
следовательно, т.;
т.,
но т.– середина,
следовательно,и, поэтомуи,
т..

Ответ:

Задача
№2:

Дана
прямая
.
Составить уравнение прямой, проходящей
через точку:

  1. параллельно
    данной прямой.

  2. перпендикулярно
    к данной прямой.

Решение:

  1. Искомая
    прямая параллельна прямой
    ,
    поэтому её уравнение имеет вид:.

Найдём
т.:
точкапринадлежит этой прямой, поэтому её
координаты удовлетворяют записанному
уравнению:,.
Итак, прямая принимает вид:.

  1. Т.к.
    заданная и искомые прямые перпендикулярны,
    то их угловые коэффициенты удовлетворяют
    условию:
    .

Найдём
угловой коэффициент прямой
;;
итак,тогда.
Запишем уравнение искомой прямой:.

Точка
принадлежит этой прямой, поэтому;

Уравнение
прямой принимает вид:

.

Ответ:
;.

Задача
№3:

Определить,
при каких значениях a
и b
две прямые
,
:

  1. имеют
    одну общую точку;

  2. параллельны;

  3. совпадают.

Решение:

  1. Прямые
    имеют одну общую точку, когда они не
    параллельны (их коэффициенты при x
    и y
    не пропорциональны):
    ;

  2. Прямые
    параллельны, когда коэффициенты при x
    и y
    пропорциональны:
    ;.

  3. Прямые
    совпадают, когда все их коэффициенты
    пропорциональны:
    ;.

Задача
№4:

Найти
проекцию точки
на прямую.

Решение:

Проведём
через т.прямую,
перпендикулярную прямой.
Точкапересечения прямых и является искомой
проекцией.

Прямая
перпендикулярна заданной прямой, поэтому
её направляющим вектором служит
нормальный вектор прямой,
т.е..

Запишем
уравнение прямой
в каноническом виде:

;

– уравнение.

Найдём
координаты т.:

;

;
т.

Ответ:

Задача
№5:

Найти
точку
,
симметричную точкеотносительно прямой, проходящей через
точкии.

Решение:

Составим
уравнение
,
как прямой проходящей через 2 точки:

;

– уравнение.

Найдём
уравнение прямой
перпендикулярной.

Нормальный
вектор
прямойявляется направляющим вектором прямой,
поэтому используем каноническое
уравнение прямой:;– уравнение прямой.

Найдём
координат т.,
как точки пересечения прямыхи:

;

;
т..

Так
как точка
симметрична точкеотносительно,
следовательно,
то есть т.– середина отрезка.
Найдём координаты точки,
зная начало и середину отрезка:

,


, тогда

,

,
т..

Ответ:
.

Задача
№6:

Даны
вершины треугольника
,и.
Составить уравнение перпендикуляра,
опущенного из вершинына медиану, проведенную из вершины.

Решение:

Найдём
координаты т.,
как середины отрезка:

т.
, т..

Запишем
уравнение медианы
,
как прямой, проходящей через две известные
точки:

;

– уравнение.

Нормальный
вектор для
является направляющим для прямойперпендикулярной,
тогда уравнение примет вид:

;

– уравнение.

Ответ:
.

Задача
№7:

Даны
вершины треугольника
,,.
Составить уравнение перпендикуляра,
опущенного из вершинына биссектрису внутреннего угла при
вершине.

Решение:

Пусть
– биссектриса.

Найдём
координаты т.воспользовавшись свойством биссектрисы:

Тогда:
;

;
т.;

Уравнение
биссектрисы
примет вид:
=


,

,перпендикулярен

.

Точка
принадлежит искомому перпендикуляру,
поэтому уравнениепримет вид:.

Ответ:

Задача
№8:

Две
стороны квадрата лежат на прямых
,.
Вычислить его площадь.

Решение:

  1. Выберем
    на прямой
    некоторую точку:

пусть
,
тогда
,
т.е.
.

  1. Найдём
    расстояние от точки
    до прямой:

,
где
и есть длина стороны квадрата.

  1. т.е.

    .

Ответ:
.

Задача
№9:

Даны
две противоположные вершины квадрата
и.
Составить уравнения его сторон.

Решение:

Зная
вершины
исоставим уравнение диагонали,
как прямой проходящей через две точки:

– уравнение прямой
.

Т.к.
– квадрат, его диагонали являются
биссектрисами, поэтому;
найдём угловой коэффициент

.

Зная
и,
найдём угловой коэффициент:;⇒
.
Уравнение
примет вид:.

Найдём
;
Тогда уравнение.

Т.к.
перпендикулярно
угловой коэффициент
.
Уравнениеимеет вид:,
тогда– уравнение.

Т.к.
– квадрат, то,
то уравнениепримет вид:.

Зная,
что точка
принадлежит прямой,
найдём свободный членискомого уравнения, итак– уравнение стороны.

Аналогично
найдём уравнение стороны
.

Ответ:

Задача
№10:

Вычислить
площадь треугольника, отсекаемого
прямой
от координатного угла.

Решение:

Запишем
уравнение прямой
в отрезках:+1.

Из
этого уравнения следует, что длины
отрезков
исоответственно равныи,
поэтомукв. ед.

Ответ:
кв.ед.

Задача
№11:

Составить
уравнения сторон треугольника, зная
одну из его вершин
и уравнения двух его медиан.

Решение:

Выясним,
что точка
не принадлежит известным медианами.

Найдём
координаты точки
– пересечения медиан:
т.

Продолжим
медиану
,
и на её продолжении отложим отрезок.
Соединим точкус вершинамии.
Полученный четырёхугольник– параллелограмм (его диагонали
пересекаясь в точке,
делятся пополам).

Найдём
координаты точки
,
как конца отрезкас известным началоми серединой

Найдём
уравнение прямой
,
зная, чтои точкалежит на этой прямой:

Найдём
координаты вершины
,
как точки пересечения прямыхи:
т.

Точка
– середина отрезка,
поэтому.

Найдём
координаты точки
,
как конца отрезкас известными началоми серединой:.

Зная
координаты всех вершин треугольника
,
найдём уравнения его сторон, как прямых
проходящих через две точки.

Ответ:

Задача
№12:

Составить
уравнения сторон треугольника, зная
одну из его вершин
и уравнения биссектрис двух его углов:

Решение:

Очевидно,
что точка
не принадлежит заданным биссектрисами.
Найдём точку,
симметричную точкеотносительно биссектрисы.
Можно доказать, что точкапринадлежит прямой.
Опустим из т.перпендикуляр на биссектрисудо пересечения в точкеи отложим.

Т.к.
перпендикулярно,
то;
точкапринадлежит прямой,
поэтому её уравнение примет вид:

Координаты
точки
найдём как точки пересечения прямыхи:

т.(;).

Найдём
координаты точки
,
как конца отрезкас известными началоми серединой:().

Аналогично
найдём точку
,
симметричную т.относительно биссектрисы.
Точкапринадлежит прямой,.

Тогда
уравнение стороны
примет вид:или.

Найдём
координаты точек
и,
как точек пересечения прямойи заданных биссектрис:();

Зная
координаты вершин треугольника
,
найдём уравнения его сторон.

Ответ:

Задача
№13:

Составить
уравнения биссектрис углов, образованных
двумя пересекающимися прямыми:
и.

Решение:

Известно
свойство: биссектриса есть геометрическое
место точек, равноудалённых от сторон
угла.

Пусть
– произвольная точка искомой биссектрисы,
тогда;

;

;


;.

Тогда
уравнения биссектрис примут вид:
.

Ответ:

.

Задача
№14:

Составить
уравнение биссектрисы угла между прямыми
,
в котором лежит точка

Решение:

Найдём
отклонение точки
отзаданных
прямых, для этого приведём их уравнения
к нормальному виду:;
нормирующий множитель+;+0.

Найдём
отклонение
1
т.от прямой, для этого в левую часть
нормального уравнения подставим
координаты т.:1
0.

Аналогично
найдём отклонение
2
т.от второй прямой:20.
Отклонения имеют разные знаки, поэтому
при раскрытии модулей (см. решение
предыдущей задачи) справа ставим знак
«минус».

Уравнение
биссектрисы принимает вид:

Ответ:
.

Задача
№15:

На
прямой
найти точки, равноудалённые от прямыхи

Решение:

Точки
равноудалённые от прямых
и,
лежат на биссектрисах углов, образованных
этими прямыми. Аналогично решению
предыдущих задач найдём их:.

Тогда
искомые точки являются точками пересечения
этих биссектрис и прямой
,
поэтому найдём их, решая системы:и.

Ответ:

Задача
№16:

Составить
уравнения сторон треугольника, зная
одну из его вершин
и уравнения медианыи высоты,
проведённых из различных вершин.

Решение:

Убедимся,
что точка
не принадлежит заданным медиане и
высоте.

Найдём
уравнение стороны
,
зная, что.

тогда уравнение примет вид:
,
зная координаты т.,
принадлежащей,
найдём,
тогда уравнение примет вид:.

Найдём
координаты т.,
как точки пересеченияи
медианы:
.

Пусть
точка
имеет координатыи,
найдём их. Точка– середина,
поэтому

Точка
принадлежит медиане,
точкапринадлежит высоте,
поэтомуинайдём, решая систему:

Откуда
Зная координаты вершин треугольника,
найдём уравнения всех его сторон.

Ответ:
.

Задача
№17:

Через
точку
провести прямую так, чтобы её отрезок,
заключённый между прямыми,
делился бы в точкепополам.

Решение:

Обозначим
через
иточки пересечения заданных прямых и
искомой прямой и пустьтогдат.к.– середина отрезка.
Координатынайдём, составив систему уравнений:
.

Составим
уравнение искомой прямой, которая
проходит через две точки, например,
и:

Ответ:

Задача
№18:

Составить
уравнения сторон треугольника
,
зная одну из его вершина также уравнение высотыи биссектрисы,
проведённых из одной вершины. Решить
задачу, не вычисляя координат вершини.

Решение:

Можно
проверить, что т.не принадлежит ни высоте,
ни биссектрисе.
Найдём уравнение стороны,
поэтому;,
зная координаты т.,
найдём.

Итак,
уравнение
имеет вид:.

Рассмотрим
пучок с центром в т.:.

Пусть
,
тогда уравнение пучка примет вид:

.
(1)

–прямая
пучка, причём координаты т.известны, поэтому найдёмдля прямой:,
поэтому уравнениепримет вид:,
т.е..

Найдём
угол между прямыми
и:tg
1⇒
.

Тогда
угол
равен 90°, т.е.;
.
С другой стороны найдёмиз уравнения (1):

Итак,

.

Найдём
уравнение стороны
зная, что она принадлежит пучку. Подставимв уравнение (1) и получим уравнение
стороны.

Ответ:

Образовательным
результатом после изучения данной темы
является сформированность компонент,
заявленных во введении, совокупности
компетенций (знать, уметь, владеть) на
двух уровнях: пороговый и продвинутый.
Пороговый уровень соответствует оценке
«удовлетворительно», продвинутый
уровень соответствует оценкам «хорошо»
или «отлично» в зависимости от результатов
защиты кейс-заданий.

Для
самостоятельной диагностики данных
компонент вам предлагаются следующие
задания.

Содержание:

Общее уравнение прямой:

Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.

Определение: Любое соотношение Прямая линия на плоскости и в пространстве с примерами решения

Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.

Пример:

а) 2х + Зу-5 = 0 – линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) – ему не удовлетворяет;

б) Прямая линия на плоскости и в пространстве с примерами решения

в) Прямая линия на плоскости и в пространстве с примерами решения – линии второго порядка.

Рассмотрим другое определение линии:

Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 – уравнением линии.

Определение: Общим уравнением прямой называется уравнение первого порядка вида Прямая линия на плоскости и в пространстве с примерами решения

Рассмотрим частные случаи этого уравнения:

а) С = 0; Прямая линия на плоскости и в пространстве с примерами решения – прямая проходит начало системы координат (Рис. 20):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 20. Прямая, проходящая через начало координат.

б) 5 = 0; Ах+С=0 – прямая проходит параллельно оси ординат Оу (Рис. 21):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 21. Прямая, проходящая параллельно оси ординат Оу.

в) А = 0; Ву+С=0 – прямая проходит параллельно оси абсцисс Ох (Рис. 22):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.

Виды уравнений прямой

1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой Прямая линия на плоскости и в пространстве с примерами решения в котором коэффициент Прямая линия на плоскости и в пространстве с примерами решения Разрешим общее уравнение прямой относительно переменной Прямая линия на плоскости и в пространстве с примерами решения Обозначим через Прямая линия на плоскости и в пространстве с примерами решения тогда уравнение примет вид Прямая линия на плоскости и в пространстве с примерами решения которое называется уравнением прямой с угловым коэффициентом. Выясним геометрический смысл параметров Прямая линия на плоскости и в пространстве с примерами решения При х = 0, у = b, т.е. параметр b показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета. При Прямая линия на плоскости и в пространстве с примерами решения т.е. прямая отсекает на оси абсцисс отрезок к Прямая линия на плоскости и в пространстве с примерами решения (Рис. 23, для определенности принято, что Прямая линия на плоскости и в пространстве с примерами решения):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 23. Отрезки, отсекаемые прямой на координатных осях.

Из рисунка видно, что Прямая линия на плоскости и в пространстве с примерами решения т.е. угловой коэффициент k определяет тангенс угла наклона прямой к положительному направлению оси абсцисс Ох.

2. Уравнение прямой в отрезках.

Пусть в общем уравнении прямой параметр Прямая линия на плоскости и в пространстве с примерами решения Выполним следующие преобразования Прямая линия на плоскости и в пространстве с примерами решения

Обозначим через Прямая линия на плоскости и в пространстве с примерами решения тогда последнее равенство перепишется в виде Прямая линия на плоскости и в пространстве с примерами решения. которое называется уравнением прямой в отрезках. Выясним геометрический смысл величин m и n (Рис. 24). При х=0, у=n, т.е. параметр n показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета.

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 24. Отрезки, отсекаемые прямой на координатных осях.

При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки: Прямая линия на плоскости и в пространстве с примерами решения

3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки Прямая линия на плоскости и в пространстве с примерами решения Так как точки Прямая линия на плоскости и в пространстве с примерами решения лежат на прямой, то их координаты удовлетворяют общему уравнению прямой, т.е. выполняются равенства Прямая линия на плоскости и в пространстве с примерами решения Вычтем первое из этих равенств из общего уравнения прямой и из второго равенства:

Прямая линия на плоскости и в пространстве с примерами решения

Пусть Прямая линия на плоскости и в пространстве с примерами решения тогда полученные равенства можно преобразовать к виду Прямая линия на плоскости и в пространстве с примерами решения Отсюда находим, что Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения Полученное уравнение называется уравнением прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения

4. Уравнение прямой, проходящей через заданную точку Прямая линия на плоскости и в пространстве с примерами решенияпараллельно заданному вектору Прямая линия на плоскости и в пространстве с примерами решения (каноническое уравнение прямой). Пусть прямая проходит через заданную точку Прямая линия на плоскости и в пространстве с примерами решения параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения

Определение: Вектор Прямая линия на плоскости и в пространстве с примерами решения называется направляющим вектором прямой. Возьмем на прямой произвольную точку Прямая линия на плоскости и в пространстве с примерами решения и создадим вектор Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения (Рис. 25):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.

В силу того, что вектора Прямая линия на плоскости и в пространстве с примерами решения коллинеарны, то воспользуемся первым условием коллинеарности: отношения соответствующих проекций равны между собой Прямая линия на плоскости и в пространстве с примерами решения

Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.

5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой Прямая линия на плоскости и в пространстве с примерами решения

Основные задачи о прямой на плоскости

1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями Прямая линия на плоскости и в пространстве с примерами решения Требуется найти координаты точки пересечения этих прямых. Для того чтобы вычислить координаты точки пересечения М(х; у), необходимо решить вышеприведенную систему линейных алгебраических уравнений, так как координаты точки М(х; у) должны одновременно удовлетворять уравнениям прямых Прямая линия на плоскости и в пространстве с примерами решения

2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами

Прямая линия на плоскости и в пространстве с примерами решения

Требуется найти угол между этими прямыми (Рис. 26):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 26. Угол между двумя прямыми.

Из рисунка видно, что Прямая линия на плоскости и в пространстве с примерами решения ВычислимПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Наименьший угол между пересекающимися прямыми определим формулой Прямая линия на плоскости и в пространстве с примерами решения Из полученной формулы видно:

Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Определить угол между прямыми Прямая линия на плоскости и в пространстве с примерами решения

Решение:

В силу того, что Прямая линия на плоскости и в пространстве с примерами решения что прямые параллельны, следовательно, Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Выяснить взаимное расположение прямых Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как угловые коэффициенты Прямая линия на плоскости и в пространстве с примерами решения и связаны между собой соотношением Прямая линия на плоскости и в пространстве с примерами решения то прямые взаимно перпендикулярны.

3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки Прямая линия на плоскости и в пространстве с примерами решения на прямую Прямая линия на плоскости и в пространстве с примерами решения Если прямая Прямая линия на плоскости и в пространстве с примерами решения задана общим уравнением, то расстояние от точки до прямой определяется формулой: Прямая линия на плоскости и в пространстве с примерами решения

Если прямая Прямая линия на плоскости и в пространстве с примерами решения задана уравнением прямой с угловым коэффициентом, то расстояние от точки до прямой определяется формулой: Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве. Системы координат на плоскости

Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка Прямая линия на плоскости и в пространстве с примерами решения. Точку О будем называть началом координат; ее собственная координата равна нулю. Так вводятся координаты на прямой.

Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая – второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси – координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую – осью ординат, обозначаемую Оу.

Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно Прямая линия на плоскости и в пространстве с примерами решения.

Координатами точки М в заданной системе называются числа Прямая линия на плоскости и в пространстве с примерами решения, обозначающие величину отрезка Прямая линия на плоскости и в пространстве с примерами решенияоси абсцисс и величину отрезка Прямая линия на плоскости и в пространстве с примерами решения оси ординат, где х – первая координата, а у- вторая координата точки М (рис.7.1). Символически это записывается в виде М(х, у). Прямая линия на плоскости и в пространстве с примерами решения

Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у – М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.

На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3). Прямая линия на плоскости и в пространстве с примерами решения

Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:

Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.

Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.

Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3). Прямая линия на плоскости и в пространстве с примерами решения

Каждая точка М в полярной системе координат задается парой координат Прямая линия на плоскости и в пространстве с примерами решения.

Декартова прямоугольная система координат связана с полярной системой формулами: Прямая линия на плоскости и в пространстве с примерами решения

Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точкамиПрямая линия на плоскости и в пространстве с примерами решенияи Прямая линия на плоскости и в пространстве с примерами решения. Числа Прямая линия на плоскости и в пространстве с примерами решениямогут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 7.4 все числа выбраны положительными. Проведем через точку Прямая линия на плоскости и в пространстве с примерами решения горизонтальную прямую, а через точку Прямая линия на плоскости и в пространстве с примерами решения – вертикальную. Пусть R -точка их пересечения. Тогда по теореме Пифагора

Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения (7.1.1)

Это и есть формула для вычисления расстояния между двумя точками. Прямая линия на плоскости и в пространстве с примерами решения

Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки Прямая линия на плоскости и в пространстве с примерами решения. Например, если точка Прямая линия на плоскости и в пространстве с примерами решения расположена ниже точки Прямая линия на плоскости и в пространстве с примерами решенияи справа от нес, как на рис. 7.5, то отрезок Прямая линия на плоскости и в пространстве с примерами решения можно считать равныму Прямая линия на плоскости и в пространстве с примерами решения.

Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как Прямая линия на плоскости и в пространстве с примерами решения. Заметим, что, так как величина Прямая линия на плоскости и в пространстве с примерами решения в этом случае отрицательна, то разность Прямая линия на плоскости и в пространстве с примерами решения больше, чемПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Если обозначить через Прямая линия на плоскости и в пространстве с примерами решения угол, образованный положительным направлением оси абсцисс и отрезком Прямая линия на плоскости и в пространстве с примерами решения , то формулы

Прямая линия на плоскости и в пространстве с примерами решения

выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:

Прямая линия на плоскости и в пространстве с примерами решения

позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u – произвольная ось, аПрямая линия на плоскости и в пространстве с примерами решения – угол наклона отрезкаПрямая линия на плоскости и в пространстве с примерами решения к этой оси, то проекция отрезка на ось равна его длине, умноженной на косинус угла наклона к этой оси:

Прямая линия на плоскости и в пространстве с примерами решения.

Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая – второй. Обозначим их в заданном порядке через Прямая линия на плоскости и в пространстве с примерами решения. Проведем через данные точки ось u. Пусть М- еще одна точка оси и, расположенная на ней как угодно, но не совпадает с точкой Прямая линия на плоскости и в пространстве с примерами решения.

Определение 7.1.1. Число Прямая линия на плоскости и в пространстве с примерами решенияопределяемое равенствомПрямая линия на плоскости и в пространстве с примерами решения где Прямая линия на плоскости и в пространстве с примерами решения– величины направленных отрезков Прямая линия на плоскости и в пространстве с примерами решения оси u, называется отношением, в котором точка М делит направленный отрезок Прямая линия на плоскости и в пространстве с примерами решения .

Число Прямая линия на плоскости и в пространстве с примерами решения не зависит от направления оси и от масштаба, т.к. при изменении этих параметров будут одновременно меняться величины Прямая линия на плоскости и в пространстве с примерами решения . Кроме того, Прямая линия на плоскости и в пространстве с примерами решения будет положительно, если Мнаходится между точками Прямая линия на плоскости и в пространстве с примерами решения если же М вне отрезка Прямая линия на плоскости и в пространстве с примерами решения , то Прямая линия на плоскости и в пространстве с примерами решения -отрицательное.

Задача о делении отрезка в данном отношении формулируется следующим образом:

Считая известными координаты двух точек Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решенияПрямая линия на плоскости и в пространстве с примерами решения и отношение Прямая линия на плоскости и в пространстве с примерами решения в котором некоторая неизвестная точка М делит отрезок Прямая линия на плоскости и в пространстве с примерами решения, найти координаты точки М.

Решение задачи определяется следующей теоремой.

Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок Прямая линия на плоскости и в пространстве с примерами решения в отношении Прямая линия на плоскости и в пространстве с примерами решения то координаты этой точки выражаются формулами:

Прямая линия на плоскости и в пространстве с примерами решения

Доказательство:

Спроектируем точки Прямая линия на плоскости и в пространстве с примерами решения на ось Ох и обозначим их проекции соответственно через Прямая линия на плоскости и в пространстве с примерами решения (рис. 7.6). На основании теоремы о пропорциональности отрезков прямых, заключенных между параллельными прямыми (Если две прямые пересечь тремя параллельными прямыми, то отношение двух отрезков, получившихся на одной прямой, равно отношению двух соответствующих отрезков другой прямой), имеем:

Прямая линия на плоскости и в пространстве с примерами решения

Подставив в (7.1.4) величины отрезков Прямая линия на плоскости и в пространстве с примерами решенияи

Прямая линия на плоскости и в пространстве с примерами решения, получимПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Разрешая это уравнение относительно х, находим: Прямая линия на плоскости и в пространстве с примерами решения

Вторая формула (7.1.3) получается аналогично. Прямая линия на плоскости и в пространстве с примерами решения

Если Прямая линия на плоскости и в пространстве с примерами решения – две произвольные точки и М(х,y) –

середина отрезкаПрямая линия на плоскости и в пространстве с примерами решения , то Прямая линия на плоскости и в пространстве с примерами решения. Эти формулы

получаются из (7.1.3) при Прямая линия на плоскости и в пространстве с примерами решения.

Основная теорема о прямой линии на плоскости

Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.

Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора Прямая линия на плоскости и в пространстве с примерами решения одной и той же прямой коллинеарны между собой, т.е.

Прямая линия на плоскости и в пространстве с примерами решения, .

Для всех направляющих векторов Прямая линия на плоскости и в пространстве с примерами решения данной прямой, не параллельной оси ординат, отношение Прямая линия на плоскости и в пространстве с примерами решения ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.

Действительно, если Прямая линия на плоскости и в пространстве с примерами решения – два направляющих вектора данной прямой /, то векторы коллинеарны, т.е.

Прямая линия на плоскости и в пространстве с примерами решения их координаты пропорциональны: Прямая линия на плоскости и в пространстве с примерами решенияа значит Прямая линия на плоскости и в пространстве с примерами решения

Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.

Справедлива следующая теорема.

Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.

Доказательство: Пусть В = (О,b}- точка пересечения прямой L с осью у, а Р = (х,у) – любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р – прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.

Прямая линия на плоскости и в пространстве с примерами решения

Так как треугольники BSQ и BRP подобны, то Прямая линия на плоскости и в пространстве с примерами решения или после упрощения

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.

Таким образом, уравнение любой прямой можно записать в виде:

Прямая линия на плоскости и в пространстве с примерами решения (не вертикальная прямая) Прямая линия на плоскости и в пространстве с примерами решения, (7.2.2), х = а (вертикальная прямая) (7.2.3).

В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).

Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:

Ах+Ву+С=0. (7.2.4)

Если Прямая линия на плоскости и в пространстве с примерами решения, мы можем записать уравнение (7.2.4) в виде

Прямая линия на плоскости и в пространстве с примерами решения

т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению

А х = —С,

или Прямая линия на плоскости и в пространстве с примерами решения, т.е. к уравнению вида (7.2.3).

Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую. Прямая линия на плоскости и в пространстве с примерами решения

Уравнение (7.2.4) называется общим уравнением прямой. Так

как Прямая линия на плоскости и в пространстве с примерами решения, то вектор Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором прямой (7.2.4). Вектор Прямая линия на плоскости и в пространстве с примерами решения перпендикулярен прямой (7.2.4) и называется нормальным вектором. Возможны частные случаи:

1. Прямая линия на плоскости и в пространстве с примерами решения или у =b, где Прямая линия на плоскости и в пространстве с примерами решения, -это уравнсние прямой, параллельной оси Ох.

2. Прямая линия на плоскости и в пространстве с примерами решения или х = а, где Прямая линия на плоскости и в пространстве с примерами решения, – это уравнение прямой, параллельной оси Оу.

3. Прямая линия на плоскости и в пространстве с примерами решения– это уравнение прямой, проходящей через начало координат.

4. А=0; С=0; Ву-0 или у = 0 – это уравнение оси абсцисс Ох.

5. В=0;С=0; Ах=0 или х = 0 – это уравнение оси ординат Оу.

Различные виды уравнений прямой на плоскости

Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.

Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения-длины отрезков, отсекаемых прямой l на осях координат, взятые с соответствующими знаками (в зависимости от того, положительные или отрицательные полуоси координат пересекает прямая l).

Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки Прямая линия на плоскости и в пространстве с примерами решения. Тогда вектор Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором этой прямой l.

Геометрическое место концов всевозможных векторов вида Прямая линия на плоскости и в пространстве с примерами решения где Прямая линия на плоскости и в пространстве с примерами решения пробегает все вещественные числовые значения, определяет прямую l. Уравнение (7.3.2) называется уравнением прямой в векторной форме (векторным уравнением прямой). Записав векторное уравнение (7.3.2) в координатной форме Прямая линия на плоскости и в пространстве с примерами решения и воспользовавшись определением равенства векторов, получим параметрические уравнения прямой:

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения– координаты направляющего вектора.

Система (7.3.3) равносильна уравнению

Прямая линия на плоскости и в пространстве с примерами решения

называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение

Прямая линия на плоскости и в пространстве с примерами решения которое называется уравнением прямой, проходящей через две данные точки Прямая линия на плоскости и в пространстве с примерами решения

Если абсциссы точек Прямая линия на плоскости и в пространстве с примерами решения одинаковы, т. е.Прямая линия на плоскости и в пространстве с примерами решения то прямая Прямая линия на плоскости и в пространстве с примерами решения параллельна оси ординат и ее уравнение имеет вид: х=а.

Если ординаты точек Прямая линия на плоскости и в пространстве с примерами решения одинаковы, т. е. Прямая линия на плоскости и в пространстве с примерами решения, то прямая Прямая линия на плоскости и в пространстве с примерами решения параллельна оси абсцисс и ее уравнение имеет вид: у=b. Уравнение (7.3.5) можно преобразовать к виду:

Прямая линия на плоскости и в пространстве с примерами решения

или

Прямая линия на плоскости и в пространстве с примерами решения

где

Прямая линия на плоскости и в пространстве с примерами решения

угловой коэффициент прямой.

Уравнение (7.3.6) называется уравнением прямой, проходящей через точку Прямая линия на плоскости и в пространстве с примерами решения и имеющей угловой коэффициент k.

Пример:

Составить уравнение прямой, проходящей через две точки Прямая линия на плоскости и в пространстве с примерами решения

Решение:

I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек Прямая линия на плоскости и в пространстве с примерами решения, получим искомое уравнение прямой:

Прямая линия на плоскости и в пространстве с примерами решения

II способ. Зная координаты точек Прямая линия на плоскости и в пространстве с примерами решения по формуле (7.3.7) можно найти угловой коэффициент искомой прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: Прямая линия на плоскости и в пространстве с примерами решения.

Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения

Прямая линия на плоскости и в пространстве с примерами решения.

Взаимное расположение двух прямых на плоскости

Пусть на плоскости заданы две прямые общими уравнениями Прямая линия на плоскости и в пространстве с примерами решения. Угол между ними можно вычислить как угол между направляющими векторами

Прямая линия на плоскости и в пространстве с примерами решения этих прямых:

Прямая линия на плоскости и в пространстве с примерами решения

Если прямые параллельныПрямая линия на плоскости и в пространстве с примерами решения, то их нормальные векторы Прямая линия на плоскости и в пространстве с примерами решенияколлинеарны, а это значит, что их соответствующих координаты пропорциональны:

Прямая линия на плоскости и в пространстве с примерами решения

И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:

Теорема 7.4.1. Две прямыеПрямая линия на плоскости и в пространстве с примерами решения параллельны тогда и только тогда, когда в их уравнениях коэффициенты при соответствующих переменных х и у пропорциональны.

Например, прямые Прямая линия на плоскости и в пространстве с примерами решения параллельны,

т. к.Прямая линия на плоскости и в пространстве с примерами решения.

Если прямые перпендикулярны Прямая линия на плоскости и в пространстве с примерами решения, то их нормальные векторы Прямая линия на плоскости и в пространстве с примерами решения тоже перпендикулярны, а это значит, что скалярное произведение этих векторов равно нулю: Прямая линия на плоскости и в пространстве с примерами решения , или в координатной форме

Прямая линия на плоскости и в пространстве с примерами решения

Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.

Теорема 7.4.2. Две прямые Прямая линия на плоскости и в пространстве с примерами решения перпендикулярны тогда и только тогда, когда коэффициенты при переменных х и у удовлетворяют равенству Прямая линия на плоскости и в пространстве с примерами решения.

Например, прямые Прямая линия на плоскости и в пространстве с примерами решения перпендикулярны, так как

Прямая линия на плоскости и в пространстве с примерами решения.

Если прямые заданы уравнениями вида Прямая линия на плоскости и в пространстве с примерами решенияи Прямая линия на плоскости и в пространстве с примерами решения, то угол между ними находится по формуле:

Прямая линия на плоскости и в пространстве с примерами решения

Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство

Прямая линия на плоскости и в пространстве с примерами решения (7.4.5)

а для их перпендикулярности необходимо и достаточно, чтобы

Прямая линия на плоскости и в пространстве с примерами решения (7.4.6)

Пример:

Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).

Решение:

Проекция точки Р на прямую АВ – это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.

Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:

Прямая линия на плоскости и в пространстве с примерами решения

Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку Прямая линия на плоскости и в пространстве с примерами решения,то из равенства Прямая линия на плоскости и в пространстве с примерами решения находим угловой коэффициент перпендикуляра Прямая линия на плоскости и в пространстве с примерами решения. Подставляя найденное значение углового коэффициента Прямая линия на плоскости и в пространстве с примерами решения и координаты точки Р (2, 3) в уравнение (7.3.6), получаем:

Прямая линия на плоскости и в пространстве с примерами решения.

Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра

Прямая линия на плоскости и в пространстве с примерами решения

найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .

Решение:

Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:

Прямая линия на плоскости и в пространстве с примерами решения

Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:

Прямая линия на плоскости и в пространстве с примерами решения (млн. дсн. ед)

Пример:

Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.

Решение:

Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: Прямая линия на плоскости и в пространстве с примерами решения. Найдём точку безубыточности. т.е. значение x, при котором доход фирмы равен затратам: D=K, т.е. 10x = 6x + 300. Решив это уравнение, получим значение объёма производства, при котором фирма работает без убытка: х=75. Следовательно, если объём производства Прямая линия на плоскости и в пространстве с примерами решения то фирма будет работать с прибылью.

Прямая линия в пространстве

Системы координат в пространстве

В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).

Прямая линия на плоскости и в пространстве с примерами решения

Пусть задано пространствоПрямая линия на плоскости и в пространстве с примерами решения. Важнейшим понятием пространственной аналитической геометрии является понятие уравнения поверхности. Всякая же линия рассматривается как пересечение двух поверхностей. Мы остановимся на изучении поверхности первого порядка – плоскости и прямой линии.

Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки Прямая линия на плоскости и в пространстве с примерами решения и вектора Прямая линия на плоскости и в пространстве с примерами решенияпараллельного этой прямой.

Вектор Прямая линия на плоскости и в пространстве с примерами решения, параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая L проходит через точку Прямая линия на плоскости и в пространстве с примерами решения, лежащую на прямой, параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения(см. рис. 7.9).

Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор Прямая линия на плоскости и в пространстве с примерами решения параллельный (коллинеарный) вектору Прямая линия на плоскости и в пространстве с примерами решения. Поскольку векторыПрямая линия на плоскости и в пространстве с примерами решения коллинеарны, то найдётся такое число t, что Прямая линия на плоскости и в пространстве с примерами решения , где множитель t может принимать любое числовое значение в зависимости от положения точки М на прямой.

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение Прямая линия на плоскости и в пространстве с примерами решения (7.5.1) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки M, лежащей на прямой. Это уравнение можно записать в виде: Прямая линия на плоскости и в пространстве с примерами решения (см. рис. 7.9). Запишем это уравнение в координатной форме. Подставив координаты векторов Прямая линия на плоскости и в пространстве с примерами решения в уравнение (7.5.1) и воспользовавшись определением алгебраических операций над векторами и равенством векторов, получим уравнения:

Прямая линия на плоскости и в пространстве с примерами решения

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.

Разрешив уравнения (7.5.2) относительно t

Прямая линия на плоскости и в пространстве с примерами решения

и приравняв найденные значенияt получим канонические уравнения прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Если прямая L в пространстве задается двумя своими точками Прямая линия на плоскости и в пространстве с примерами решения,то вектор

Прямая линия на плоскости и в пространстве с примерами решения

можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения. (7.5.4)- это уравнение прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить параметрические уравнения прямой, проходящей через точкуПрямая линия на плоскости и в пространстве с примерами решения, перпендикулярно плоскости Oxz.

Решение:

В качестве направляющего вектораПрямая линия на плоскости и в пространстве с примерами решения искомой прямой можно взять единичный вектор оси Оу: Прямая линия на плоскости и в пространстве с примерами решения • Подставив значения координат точкиПрямая линия на плоскости и в пространстве с примерами решения и значения координат направляющего вектора в уравнения (7.5.2), получаем: Прямая линия на плоскости и в пространстве с примерами решения.

Пример:

Записать уравнения прямой Прямая линия на плоскости и в пространстве с примерами решения в параметрическом виде.

ОбозначимПрямая линия на плоскости и в пространстве с примерами решения. Тогда Прямая линия на плоскости и в пространстве с примерами решения,

Прямая линия на плоскости и в пространстве с примерами решения, откуда следует, что Прямая линия на плоскости и в пространстве с примерами решения.

Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор Прямая линия на плоскости и в пространстве с примерами решения

прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид Прямая линия на плоскости и в пространстве с примерами решения

Исключая из уравнений параметр t, получим уравнения прямой в виде

Прямая линия на плоскости и в пространстве с примерами решения

Однако и в этом случае формально можно записывать канонические уравнения прямой в виде Прямая линия на плоскости и в пространстве с примерами решения. Таким образом, если в знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, канонические уравнения

Прямая линия на плоскости и в пространстве с примерами решения определяют прямую перпендикулярную осям О х и О у или параллельную оси О z.

Пример:

Составить канонические и параметрические уравнения прямой, проходящей через точку Прямая линия на плоскости и в пространстве с примерами решения параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Подставив координаты точки Прямая линия на плоскости и в пространстве с примерами решения, и вектора Прямая линия на плоскости и в пространстве с примерами решения в (7.5.2) и (7.5.3), находим искомые канонические уравнения:

.Прямая линия на плоскости и в пространстве с примерами решенияи параметрические уравнения:

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно

а) прямой Прямая линия на плоскости и в пространстве с примерами решения;

б) оси Ох;

в) оси Оу;

г) оси Oz.

Решение:

а) Поскольку направляющий вектор заданной прямой

Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором искомой прямой, то

подставив координаты точки М(2; -1; 4) и вектора Прямая линия на плоскости и в пространстве с примерами решения в (7.5.3) получим уравнение искомой прямой: Прямая линия на плоскости и в пространстве с примерами решения

б) Поскольку единичный вектор оси О х: Прямая линия на плоскости и в пространстве с примерами решения будет направляющим вектором искомой прямой, то подставив в уравнение

(7.5.3) координаты точки М(2; -1; 4 ) и вектора Прямая линия на плоскости и в пространстве с примерами решения, получаем:

Прямая линия на плоскости и в пространстве с примерами решения

в) В качестве направляющего вектора Прямая линия на плоскости и в пространстве с примерами решения искомой прямой можно взять единичный вектор оси Оу: Прямая линия на плоскости и в пространстве с примерами решения. В соответствии с уравнением (7.5.3), получаем Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения.

г) Единичный вектор оси Oz : Прямая линия на плоскости и в пространстве с примерами решения будет направляющим вектором искомой прямой. В соответствии с уравнением (7.5.3), получаем

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить уравнение прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Подставив координаты точек Прямая линия на плоскости и в пространстве с примерами решенияв уравнение

(7.5.4), получим:Прямая линия на плоскости и в пространстве с примерами решения

Взаимное расположение двух прямых в пространстве

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:

Прямая линия на плоскости и в пространстве с примерами решения

Очевидно, что за угол Прямая линия на плоскости и в пространстве с примерами решения между прямыми можно принять угол между их направляющими векторами Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения, косинус которого находится по формуле:

Прямая линия на плоскости и в пространстве с примерами решения

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторовПрямая линия на плоскости и в пространстве с примерами решения:

Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:

Прямая линия на плоскости и в пространстве с примерами решения

т.е. Прямая линия на плоскости и в пространстве с примерами решения параллельна Прямая линия на плоскости и в пространстве с примерами решения тогда и только тогда, когда Прямая линия на плоскости и в пространстве с примерами решения параллелен

Прямая линия на плоскости и в пространстве с примерами решения.

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю: Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Найти угол между прямыми Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения. Тогда Прямая линия на плоскости и в пространстве с примерами решения, откуда Прямая линия на плоскости и в пространстве с примерами решения илиПрямая линия на плоскости и в пространстве с примерами решения.

Вычисление уравнения прямой

Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол Прямая линия на плоскости и в пространстве с примерами решения, образованный полупрямой M0Q, лежащей выше оси М0х’ или совпадающей с ней, называется углом между данной прямой и осью Ох.

Прямая линия на плоскости и в пространстве с примерами решения

Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.

1) Пусть сначала Прямая линия на плоскости и в пространстве с примерами решения. Тогда прямая PQ пересекает ось Оу в некоторой точке В (0, b), которую можно принять за начальную.

Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:

Прямая линия на плоскости и в пространстве с примерами решения

из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

при х > 0.

Прямая линия на плоскости и в пространстве с примерами решения

Таким образом,

Прямая линия на плоскости и в пространстве с примерами решения

при х > 0.

Нетрудно проверить, что формула (3) остается справедливой также и при х < 0.

Мы доказали, что координаты любой точки М (х, у) прямой PQ удовлетворяют уравнению (3). Легко убедиться в обратном: если координаты какой-нибудь точки Ml Прямая линия на плоскости и в пространстве с примерами решения удовлетворяют уравнению (3), то точка Мх обязательно лежит на прямой PQ. Следовательно, уравнение (3) представляет собой уравнение прямой линии PQ (так называемое уравнение прямой с угловым коэффициентом). Постоянные величины Прямая линия на плоскости и в пространстве с примерами решения (параметры) имеют следующие значения: b = ОБ — начальный отрезок (точнее, начальная ордината), k = tg ф — угловой коэффициент. Заметим, что если точка В расположена выше оси Ох, то Прямая линия на плоскости и в пространстве с примерами решения, а если ниже, то b < 0. При 6 = 0 прямая проходит через начало координат и уравнение такой прямой есть

Прямая линия на плоскости и в пространстве с примерами решения

При k = 0 получаем уравнение прямой, параллельной оси Ох:

Прямая линия на плоскости и в пространстве с примерами решения

2) Если Прямая линия на плоскости и в пространстве с примерами решения, то с помощью аналогичных рассуждений мы также приходим к уравнению (3).

3) Если Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая АВ перпендикулярна оси Ох, то ее уравнение есть

Прямая линия на плоскости и в пространстве с примерами решения

где а — абсцисса следа этой прямой на оси Ох (т. е. ее точки пересечения с осью Ох).

Замечание. Как частные случаи получаем уравнения осей координат:

Прямая линия на плоскости и в пространстве с примерами решения

Прямую легко построить по ее уравнению.

Пример:

Построить прямую, заданную уравнением

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Известно, что две точки вполне определяют положение прямой. Поэтому достаточно найти две точки, через которые проходит наша прямая. В данном уравнении b = -4. Следовательно, прямая проходит через точку В (0, -4). С другой стороны, координаты х и у любой точки, лежащей на нашей прямой, связаны заданным уравнением. Поэтому, задав абсциссу некоторой точки, лежащей на прямой, мы из уравнения прямой найдем ее ординату. Положим, например, х = 2; из уравнения прямой получим у = -1. Таким образом, наша прямая проходит через точки А (2, -1) и В (0, -4). Построив эти точки по их координатам и проведя через них прямую (рис. 24), мы получим искомую прямую.

Прямая линия на плоскости и в пространстве с примерами решения

Из предыдущего видно, что для произвольной прямой на плоскости можно составить ее уравнение; обратно, зная уравнение некоторой прямой, можно построить эту прямую. Таким образом, уравнение прямой полностью характеризует положение ее на плоскости.

Из формул (3) и (5) видно, что уравнение прямой есть уравнение первой степени относительно текущих координат х и у. Справедливо и обратное утверждение.

Теорема: Всякое невырожденное уравнение первой степени

Прямая линия на плоскости и в пространстве с примерами решения

представляет собой уравнение некоторой прямой линии на плоскости Оху (общее уравнение прямой линии).

Доказательство: 1) Пусть сначала В ^ 0. Тогда уравнение (7) можно представить в виде

Прямая линия на плоскости и в пространстве с примерами решения Сравнивая с (3), мы получим, что это есть уравнение прямой с угловым коэффициентом k = -А/В и начальной ординатой Прямая линия на плоскости и в пространстве с примерами решения

2) Пусть теперь В = 0; тогда А Прямая линия на плоскости и в пространстве с примерами решения 0. Имеем Ах + С = 0 и

х = -С/А.

Уравнение (9) представляет собой уравнение прямой, параллельной оси Оу и отсекающей на оси Ох отрезок a = -С/А.

Так как все возможные случаи исчерпаны, то теорема доказана.

  • Заказать решение задач по высшей математике

Угол между двумя прямыми

Рассмотрим две прямые (не параллельные оси Оу)у заданные их уравнениями с угловыми коэффициентами (рис. 25):

Прямая линия на плоскости и в пространстве с примерами решения

Требуется определить угол 9 между ними. Точнее, под углом 0 мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой (0 < 0 < я). Этот угол 9 (рис. 25) равен углу АСВ треугольника ABC. Далее, из элементарной геометрии известно, что внешний угол треугольника равен сумме внутренних, с ним не смежных. Поэтому ф’ = ф + 0, или

0 = ф’ – ф;

отсюда на основании известной формулы тригонометрии получаем

Прямая линия на плоскости и в пространстве с примерами решения

Заменяя tg ф и tg ф’ соответственно на к и k окончательно будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Формула (3) дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.

Прямая линия на плоскости и в пространстве с примерами решения

Выведем теперь условия параллельности и перпендикулярности двух прямых.

Если прямые (1) и (2) параллельны, то ф’ = ф и, следовательно,

k’ = к. (4)

Обратно, если выполнено условие (4), то, учитывая, что ф’ и ф заключаются в пределах от 0 до я, получаем

Ф’ – ф, (5)

и, следовательно, рассматриваемые прямые или параллельны, или сливаются (параллельность в широком смысле).

Правило 1. Прямые на плоскости параллельны (в широком смысле) тогда и только тогдау когда их угловые коэффициенты равны между собой.

Если прямые перпендикулярны, то Прямая линия на плоскости и в пространстве с примерами решения и, следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

отсюда 1 + kk’ = 0 и

k’ = -l/k.

Справедливо также и обратное утверждение.

Правило 2. Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.

Пусть теперь уравнения прямых заданы в общем виде:

Ах + By + С = 0 (7)

и

А’х + В’у + С’ = 0. (8)

Отсюда, предполагая, что Прямая линия на плоскости и в пространстве с примерами решения, получаем

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно, угловые коэффициенты этих прямых есть

Прямая линия на плоскости и в пространстве с примерами решения

Из формулы (3), производя несложные выкладки, находим тангенс угла между этими прямыми:

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда получаем:

1) условие параллельности прямых (0 = 0)

Прямая линия на плоскости и в пространстве с примерами решения

2) условие перпендикулярности прямых Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Отметим, в частности, что прямые

Прямая линия на плоскости и в пространстве с примерами решения взаимно перпендикулярны.

Для прямых, параллельных осям Ох и Оу, условно полагают Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Определить угол между прямыми у = х и у = 1,001Прямая линия на плоскости и в пространстве с примерами решения + 10. Здесь угловые коэффициенты прямых есть k = 1 и k’ = 1,001.

Решение:

По формуле (3) получаем

Прямая линия на плоскости и в пространстве с примерами решения

Так как для малых углов 0 справедливо приближенное равенство Прямая линия на плоскости и в пространстве с примерами решения, то

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая РМ образует угол ф с положительным направлением оси Ох (рис. 26) и проходит через заданную точку Р Прямая линия на плоскости и в пространстве с примерами решения. Выведем уравнение этой прямой, предполагая сначала, что прямая не параллельна оси Оу.

В этом случае, как мы видели, уравнение прямой имеет вид

у = kx + b, (1)

где k = tg ф — угловой коэффициент прямой, а Ь — длина отрезка, отсекаемого нашей прямой на оси Оу. Так как точка Р Прямая линия на плоскости и в пространстве с примерами решения лежит на прямой РМ, то ее координаты хг и ух должны удовлетворять уравнению (1), т. е.

ух = kxt+ b. (2)

Вычитая из равенства (1) равенство (2), получим

Прямая линия на плоскости и в пространстве с примерами решения

Это и есть уравнение искомой прямой.

Если прямая, проходящая через точку Р Прямая линия на плоскости и в пространстве с примерами решения параллельна оси Оу, то ее уравнение, очевидно, будет

Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Если k — заданное число, то уравнение (3) представляет вполне определенную прямую. Если же k — переменный параметр, то это уравнение определит пучок прямых у проходящих через точку Р Прямая линия на плоскости и в пространстве с примерами решения (рис. 27); при этом k называется параметром пучка.

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точку Р (3, 2) и параллельной прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как искомая прямая параллельна данной прямой, то ее угловой коэффициент k = 4/3. Следовательно, на основании формулы (3) уравнение этой прямой имеет вид Прямая линия на плоскости и в пространстве с примерами решения, или

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точку Р (4, 5) и перпендикулярной к прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как искомая прямая перпендикулярна прямой с угловым коэффициентом k = -2/3, то ее угловой коэффициент k’ = -l/k = 3/2. Следовательно, на основании формулы (3) уравнение этой прямой таково:

Прямая линия на плоскости и в пространстве с примерами решения, или окончательно

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой, проходящей через две данные точки

Известно, что через две не совпадающие между собой точки можно провести прямую, и притом только одну. Отыщем уравнение прямой, проходящей через точки Прямая линия на плоскости и в пространстве с примерами решения

Предположим сначала, что Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая PQ не параллельна оси Оу, Поскольку прямая PQ проходит через точку Прямая линия на плоскости и в пространстве с примерами решения то ее уравнение имеет вид 

Прямая линия на плоскости и в пространстве с примерами решения

где k — неизвестный нам угловой коэффициент этой прямой. Однако так как наша прямая проходит также через точку Q Прямая линия на плоскости и в пространстве с примерами решения, то координаты Прямая линия на плоскости и в пространстве с примерами решения этой последней точки должны удовлетворять уравнению (1). Отсюда

Прямая линия на плоскости и в пространстве с примерами решения=Прямая линия на плоскости и в пространстве с примерами решения

и, следовательно, при Прямая линия на плоскости и в пространстве с примерами решения имеем

Прямая линия на плоскости и в пространстве с примерами решения

Подставляя выражение (2) для углового коэффициента k в уравнение (1), получим уравнение прямой PQ:

Прямая линия на плоскости и в пространстве с примерами решения

Это уравнение при Прямая линия на плоскости и в пространстве с примерами решения можно записать также в виде пропорции:

Прямая линия на плоскости и в пространстве с примерами решения

Если Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая, проходящая через точки Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения, параллельна оси Оу, то уравнение этой прямой, очевидно, будет

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точки Р(4, -2) и Q(3, -1).

Решение:

На основании уравнения (3) имеем

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой в «отрезках»

Выведем теперь уравнение прямой, положение которой на плоскости задано ненулевыми отрезками, отсекаемыми ею на осях координат. Предположим, например, что прямая АВ отсекает на оси Ох отрезок OA = а, а на оси Оу — отрезок О В = b (рис. 28), причем ясно, что тем самым положение прямой вполне определено.

Для вывода уравнения прямой АВ заметим, что эта прямая проходит через точки А (а, 0) и Б Прямая линия на плоскости и в пространстве с примерами решения поэтому уравнение ее легко получается из уравнения (3′), если положить в нем Прямая линия на плоскости и в пространстве с примерами решения. Имеем

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда

Прямая линия на плоскости и в пространстве с примерами решения

и окончательно

Прямая линия на плоскости и в пространстве с примерами решенияПрямая линия на плоскости и в пространстве с примерами решения

Это и есть так называемое уравнение прямой в «отрезках». Здесь х и у, как обычно, — координаты произвольной точки М (х, у), лежащей на прямой АВ (рис. 28).

Пример:

Написать уравнение прямой АВ, отсекающей на оси Ох отрезок OA = 5, а на оси Оу отрезок ОВ = -4.

Полагая в уравнении (1) а = 5 и b = -4, получим Прямая линия на плоскости и в пространстве с примерами решения, или

Прямая линия на плоскости и в пространстве с примерами решения

Примечание. Уравнение прямой, проходящей через начало координат или параллельной одной из осей координат, не может быть записано как уравнение прямой в «отрезках».

Точка пересечения двух прямых

Пусть имеем две прямые

Прямая линия на плоскости и в пространстве с примерами решения

Точка пересечения этих прямых лежит как на первой прямой, так и на второй. Поэтому координаты точки пересечения должны удовлетворять как уравнению первой, так и уравнению второй прямой. Следовательно, для того чтобы найти координаты точки пересечения двух данных прямых, достаточно решить совместно систему уравнений этих прямых.

Последовательно исключая из уравнений (1) и (2) неизвестные у и х, будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда если Прямая линия на плоскости и в пространстве с примерами решения, то для координат точки пересечения прямых получаем такие выражения: Прямая линия на плоскости и в пространстве с примерами решения или, введя определители второго порядка, имеемПрямая линия на плоскости и в пространстве с примерами решения

Для прямых (1) и (2) возможны следующие три случая.

Прямая линия на плоскости и в пространстве с примерами решения

На основании  прямые не параллельны. Координаты их единственной точки пересечения определяются из формул (6).

Прямая линия на плоскости и в пространстве с примерами решения

Прямые параллельны и точки пересечения нет. Аналитически это видно из того, что по меньшей мере одно из уравнений (3) или (4) противоречиво и, значит, система (1) и (2) несовместна.

Прямая линия на плоскости и в пространстве с примерами решения

Прямые (1) и (2) сливаются, и, таким образом, существует бесчисленное множество точек пересечения. В этом случае левые части уравнений (1) и (2) отличаются только на постоянный множитель и, следовательно, система этих уравнений допускает бесконечно много решений.

Пример:

Решая совместно систему уравнений прямых

Прямая линия на плоскости и в пространстве с примерами решения

получаем х = 2 и у = 1. Следовательно, эти прямые пересекаются в точке N(2,1).

Расстояние от точки до прямой

Рассмотрим прямую KL, заданную общим уравнением

Прямая линия на плоскости и в пространстве с примерами решения

и некоторую точку МПрямая линия на плоскости и в пространстве с примерами решения. Под расстоянием от точки М до прямой KL понимается длина перпендикуляра d = Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения, опущенного из точки М на прямую KL (рис. 29).

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение перпендикуляра MN можно записать в виде

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда для основания перпендикуляра N(x2, у2) будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

и, следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

где t — коэффициент пропорциональности. Поэтому

Прямая линия на плоскости и в пространстве с примерами решения

С другой стороны, учитывая, что точка N(*2, i/2) лежит на прямой KL, причем из (4) имеем Прямая линия на плоскости и в пространстве с примерами решения получаем

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

Таким образом, в силу формулы (5) имеем

Прямая линия на плоскости и в пространстве с примерами решения

В частности, полагая Прямая линия на плоскости и в пространстве с примерами решения, получаем расстояние от начала координат до прямой

Прямая линия на плоскости и в пространстве с примерами решения

Замечание. Разделив обе части уравнения прямой (1) на Прямая линия на плоскости и в пространстве с примерами решения, получим уравнение

Прямая линия на плоскости и в пространстве с примерами решения

свободный член которого Прямая линия на плоскости и в пространстве с примерами решения численно равен расстоянию от

начала координат до прямой. Такое уравнение прямой будем называть нормированным.

Из формулы (7) получаем правило:

чтобы определить расстояние от точки до прямой, нужно в левую часть нормированного уравнения этой прямой подставить координаты данной точки и взять модуль полученного результата.

Пример:

Определить расстояние от точки М (-2, 7) до прямой

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Нормируя уравнение этой прямой, будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда искомое расстояние есть

Прямая линия на плоскости и в пространстве с примерами решения

  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Приложения производной функции одной переменной
  • Обратная матрица – определение и нахождение
  • Ранг матрицы – определение и вычисление
  • Определители второго и третьего порядков и их свойства
  • Метод Гаусса – определение и вычисление

Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.

Уравнение прямой, проходящей через две заданные точки на плоскости

Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.

Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой. Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.

Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a, проходящей через две несовпадающие точки M1(x1, y1) и M2(x2, y2), находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющего вид x-x1ax=y-y1ay, задается прямоугольная система координат Оху с прямой, которая пересекается с ней в точке с координатами M1(x1, y1) с направляющим вектором  a→=(ax, ay).

Необходимо составить каноническое уравнение прямой a, которая пройдет через две точки с координатами M1(x1, y1) и M2(x2, y2).

Прямая а имеет направляющий вектор M1M2→ с координатами(x2-x1, y2-y1), так как пересекает точки М1 и М2. Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение  с координатами направляющего вектора M1M2→=(x2-x1, y2-y1) и координатами лежащих на них точках M1(x1, y1) и M2(x2, y2). Получим уравнение вида x-x1x2-x1=y-y1y2-y1 или x-x2x2-x1=y-y2y2-y1.

Рассмотрим рисунок, приведенный ниже.

Уравнение прямой, проходящей через две заданные точки на плоскости

Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M1(x1, y1) и M2(x2, y2). Получим уравнение вида x=x1+(x2-x1)·λy=y1+(y2-y1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λ.

Рассмотрим подробней на решении нескольких примеров.

Пример 1

Записать уравнение прямой, проходящей через 2 заданные точки с координатами M1-5, 23, M21, -16.

Решение

Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x1, y1 и x2, y2 принимает вид x-x1x2-x1=y-y1y2-y1. По условию задачи имеем, что x1=-5, y1=23, x2=1, y2=-16.  Необходимо подставить числовые значения в уравнение x-x1x2-x1=y-y1y2-y1. Отсюда получим, что каноническое уравнение примет вид x-(-5)1-(-5)=y-23-16-23⇔x+56=y-23-56.

Ответ: x+56=y-23-56.

При необходимости  решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.

Пример 2

Составить общее уравнение прямой, проходящей через точки с координатами M1(1, 1) и M2(4, 2) в системе координат Оху.

Решение

Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x-14-1=y-12-1⇔x-13=y-11.

Приведем каноническое уравнение к искомому виду, тогда получим:

x-13=y-11⇔1·x-1=3·y-1⇔x-3y+2=0

Ответ: x-3y+2=0.

Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y=kx+b. Если необходимо найти значение углового коэффициента k и числа b, при которых уравнение y=kx+b определяет линию в системе Оху, которая проходит через  точки M1(x1, y1) и M2(x2, y2), где x1≠x2. Когда x1=x2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М1М2 определена общим неполным уравнением вида x-x1=0.

Потому как точки М1 и М2 находятся на прямой, тогда их координаты удовлетворяют уравнению y1=kx1+bи y2=kx2+b. Следует решить систему уравнений y1=kx1+by2=kx2+b относительно k и b.

Для этого найдем k=y2-y1x2-x1b=y1-y2-y1x2-x1·x1 или k=y2-y1x2-x1b=y2-y2-y1x2-x1·x2.

С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x1 или y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x2.

Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.

Пример 3

Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M2(2, 1) и y=kx+b.

Решение

Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y=kx+b. Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M1(-7, -5) и M2(2, 1).

Точки М1 и М2  располагаются на прямой, тогда их координаты должны обращать уравнение y=kx+b  верное равенство. Отсюда получаем, что -5=k·(-7)+b и 1=k·2+b. Объединим уравнение в систему -5=k·-7+b1=k·2+bи решим.

При подстановке получаем, что

-5=k·-7+b1=k·2+b⇔b=-5+7k2k+b=1⇔b=-5+7k2k-5+7k=1⇔⇔b=-5+7kk=23⇔b=-5+7·23k=23⇔b=-13k=23

Теперь значения k=23 и b=-13 подвергаются подстановке в уравнение y=kx+b. Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y=23x-13.

Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.

Запишем каноническое уравнение прямой, проходящей через M2(2, 1) и M1(-7, -5), имеющее вид x-(-7)2-(-7)=y-(-5)1-(-5)⇔x+79=y+56. 

Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x+79=y+56⇔6·(x+7)=9·(y+5)⇔y=23x-13.

Ответ: y=23x-13.

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве

Если в трехмерном пространстве имеется прямоугольная система координат Охуz с двумя заданными несовпадающими точками с координатами M1(x1, y1, z1) и M2(x2, y2, z2), проходящая через них прямая M1M2, необходимо получить уравнение этой прямой.

Имеем, что канонические уравнения вида x-x1ax=y-y1ay=z-z1az и параметрические вида x=x1+ax·λy=y1+ay·λz=z1+az·λспособны задать линию в системе координат Охуz, проходящую через точки, имеющие координаты (x1, y1, z1) с направляющим вектором a→=(ax, ay, az).

Прямая M1M2 имеет направляющий вектор вида M1M2→=(x2-x1, y2-y1, z2-z1), где прямая проходит через точку M1(x1, y1, z1) и M2(x2, y2, z2), отсюда каноническое уравнение может быть вида x-x1x2-x1=y-y1y2-y1=z-z1z2-z1 или x-x2x2-x1=y-y2y2-y1=z-z2z2-z1, в свою очередь параметрические x=x1+(x2-x1)·λy=y1+(y2-y1)·λz=z1+(z2-z1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λz=z2+(z2-z1)·λ.

Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве  и уравнение прямой.

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве

Пример 4

Написать уравнение прямой, определенной в прямоугольной системе координат Охуz трехмерного пространства, проходящей через заданные две точки с координатами M1(2, -3, 0) и M2(1, -3, -5).

Решение

Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x-x1x2-x1=y-y1y2-y1=z-z1z2-z1.

По условию имеем, что x1=2, y1=-3, z1=0, x2=1, y2=-3, z2=-5. Отсюда следует, что необходимые уравнения запишутся таким образом:

x-21-2=y-(-3)-3-(-3)=z-0-5-0⇔x-2-1=y+30=z-5

Ответ: x-2-1=y+30=z-5.

210

Определить, какие из точек M1(3; 1), M2(2; 3), M3(6; 3), M4(-3;
-3), M5(3; -1), M6(-2; 1) лежат
на прямой
и какие на ней не лежат.
211 Точки P1,
P2, P3, P4, P5 расположены
на прямой
; их абсциссы соответственно равны
числам 4; 0; 2; -2; -6. Определить ординаты этих точек.
212 Точки Q1,
Q2, Q3, Q4, Q5 расположены
на прямой
; их ординаты соответственно равны
числам 1; 0; 2; -1, 3. Определить абсциссы этих точек.
213 Определить точки
пересечения прямой
с координатными
осями и построить эту прямую на чертеже.
214 Найти точку
пересечения двух прямых
, . 215 Стороны АВ, ВС и АС
треугольника АВС даны соответственно
уравнениями
, , . Определить
координаты его вершин.
216 Даны уравнения двух
сторон параллелограмма
, и уравнение одной из
его диагоналей
.
Определить координаты вершин
этого параллелограмма.
217 Стороны
треугольника лежат на прямых
, , . Вычислить его площадь S. 218 Площадь
треугольника S=8, две его вершины суть точки А(1; -2),
В(2; 3), а третья вершина С лежит на прямой
. Определить координаты вершины С. 219 Площадь
треугольника S=1,5, две его вершины суть точки А(2;
-3), В(3; -2), центр масс этого треугольника лежит на
прямой
.
Определить координаты третьей
вершины С.
220 Составить
уравнение прямой и построить прямую на чертеже,
зная ее угловой коэффициент k и отрезок b,
отсекаемый ею на оси Oy:
220.1 k=2/3, b=3; 220.2 k=3, b=0; 220.3 k=0, b=-2; 220.4 k=-3/4, b=3; 220.5 k=-2, b=-5; 220.6 k=-1/3, b=2/3. 221 Определить угловой
коэффициент k и отрезок b, отсекаемый на оси Oy, для
каждой из прямых:
221.1 ; 221.2 ; 221.3 ; 221.4 ; 221.5 . 222 Дана прямая . Определить угловой коэффициент k
прямой:
222.1 Параллельной
данной прямой;
222.2 Перпендикулярно к
данной прямой.
223 Дана прямая . Составить уравнение прямой,
проходящей через точку М
0(2; 1):
223.1 Параллельно данной
прямой;
223.2 Перпендикулярно
данной прямой.
224 Даны уравнения двух
сторон прямоугольника
, и одна из его вершин
А(2; -3). Составить уравнения двух других сторон
этого прямоугольника.
225 Даны уравнения двух
сторон прямоугольника
, и уравнение одной из
его диагоналей
.
Найти вершины прямоугольника.
226 Найти проекцию
точке Р(-5; 13) относительно прямой
. 227 Найти точку Q,
симметричную точке Р(-5; 13) относительно прямой
. 228 В каждом из
следующих случаев составить уравнение прямой,
параллельной двум данным прямым и проходящей
посередине между ними:
228.1 , ; 228.2 , ; 228.3 , ; 228.4 , ; 228.5 , . 229 Вычислить угловой
коэффициент k прямой, проходящей через две данные
точки:
229.1 M1(2;
-5), M2(3; 2);
229.2 P(-3, 1), Q(7; 8); 229.3 A(5; -3), B(-1; 6). 230 Составить
уравнения прямых, проходящих через вершины
треугольника A(5; -4), B(-1; 3), C(-3; -2) параллельно
противоположным сторонам.
231 Даны середины
сторон треугольника M
1(2; 1), M2(5;
3), M3(3; -4). Составить
уравнение его сторон.
232 Даны две точки P(2; 3),
Q(-1; 0). Составить уравнение прямой, проходящей
через точку Q перпендикулярно к отрезку
. 233 Составить
уравнение прямой, если точка P(2; 3) служит
основанием перпендикуляра, опущенного из начала
координат на эту прямую.
234 Даны вершины
треугольника M
1(2; 1), M2(-1; -1),
M3(3; 2). Составить уравнения
его высот.
235 Стороны
треугольника даны уравнениями
, , . Определить точку пересечения его
высот.
236 Даны вершины
треугольника A(1; -1), B(-2; 1), C(3; 5). Составить
уравнение перпендикуляра, опущенного из вершины
А на медиану, проведенную из вершины В.
237 Даны вершины
треугольника A(2; -2), B(3; -5), C(5; 7). Составить
уравнение перпендикуляра, опущенного из вершины
С на биссектрису внутреннего угла при вершине А.
238 Составить
уравнения сторон и медиан треугольника с
вершинами A(3; 2), B(5; -2), C(1; 0).
239 Через точки M1(-1; 2), M2(2; 3) проведена
прямая. Определить точки пересечения этой прямой
с осями координат.
240

Доказать,
что условие, при котором три точки M
1(x1,
y1), M2(x2, y2), M3(x3,
y3) лежат на одной прямой,
может быть записано в следующем виде:

241

Доказать,
что уравнение прямой, проходящей через две
данные точки M
1(x1, y1),
M2(x2, y2), может
быть записано в следующем виде:

242 Даны
последовательные вершины выпуклого
четырехугольника A(-3; 1), B(3; 9), C(7; 6), D(-2; -6).
Определить точку пересечения его диагоналей.
243 Даны две смежные
вершины A(-3; -1), B(2; 2) параллелограмма ABCD и точка Q(3;
0) пересечения его диагоналей. Составить
уравнения сторон этого параллелограмма.
244 Даны уравнения двух
сторон прямоугольника
, и уравнение его
диагонали
. Составить уравнения остальных
сторон и второй диагонали этого прямоугольника.
245 Даны вершины
треугольника A(1; -2), B(5; 4), C(-2; 0). Составить
уравнения биссектрис его внутреннего и внешнего
углов при вершине А.
246 Составить
уравнение прямой, проходящей через точку P(3; 5) на
одинаковых расстояниях от точек A(-7; 3) и B(11; -15).
247 Найти проекцию
точки P(-8; 12) на прямую, проходящую через точки A(2;
-3), B(-5; 1).
248 Найти точку M1, симметричную точке М2(8;
-9) относительно прямой,
проходящей через точки А(3; -4), B(-1; -2).
249 На оси абсцисс
найти такую точку P, чтобы сумма ее расстояний до
точек M(1; 2), N(3; 4) была наименьшей.
250 На оси ординат
найти такую точку P, чтобы сумма ее расстояний до
точек M(-3; 2), N(2; 5) была наибольшей.
251 На прямой найти такую точку Р, сумма
расстояний которой до точек A(-7; 1), B(-5; 5) была бы
наименьшей.
252 На прямой найти такую точку Р, разность
расстояний которой до точек A(4; 1), B(0; 4) была бы
наибольшей.
253 Определить угол между двумя прямыми: 253.1 , ; 253.2 , ; 253.3 , ; 253.4 , . 254 Дана прямая . Составить уравнение прямой,
проходящей через точку M
0(2; 1) под углом 450 к данной прямой.
255 Точка А(-4; 5)
является вершиной квадрата, диагональ которого
лежит на прямой
. Составить
уравнения сторон и второй диагонали этого
квадрата.
256 Даны две
противоположные вершины квадрата A(-1; 3), C(6; 2).
Составить уравнения его сторон.
257 Точка E(1; -1) является
центром квадрата, одна из сторон которого лежит
на прямой
. Составить уравнения
прямых, на которых лежат остальные стороны этого
квадрата.
258 Из точки M0(-2; 3) под углом к оси
Ox направлен луч света. Известно, что
. Дойдя
до оси Ox, луч от нее отразился. Составить
уравнения прямых, на которых лежат падающий и
отраженный лучи.
259 Луч света направлен
по прямой
, луч от нее отразился.
Составить уравнение прямой, на которой лежит
отраженный луч.
260 Даны уравнения
сторон треугольника
, , . Доказать, что этот треугольник
равнобедренный. Решить задачу при помощи
сравнения углов треугольника.
261 Доказатть, что
уравнение прямой, проходящей через точку M
1(x1; y1) параллельно
прямой
, может быть записано в виде .
262 Составить
уравнение прямой, проходящей через точку М
1(2: -3) параллельно
прямой:
262.1 ; 262.2 ; 262.3 ; 262.4 ; 262.5 . 263 Доказать, что
условие перпендикулярности прямых
; может быть записано
в следующем виде:
.
264 Установить, какие
из следующих пар прямых перпендикулярны. Решить
задачу, не вычисляя угловых коэффициентов данных
прямых.
264.1  , ; 264.2 , ; 264.3 , ; 264.4 , ; 264.5 , ; 264.6 , . 265

Доказать,
что формула для определения угла
между
прямыми
, может
быть записана в следующей форме:

266 Определить угол , образованный двумя прямыми. Решить
задачу, не вычисляя угловых коэффициентов данных
прямых.
266.1 , ; 266.2  , ; 266.3  , . 267 Даны две вершины
треугольника M
1(-10; 2), M2(6; 4);
его высоты пересекаются в точке
N(5; 2). Определить координаты третьей вершины M
3.
268 Даны две вершины A(3;
-1), B(5; 7) треугольника ABC и точка N(4; -1) пересечения
его высот. Составить уравнения сторон этого
треугольника.
269 В треугольнике АВС
даны: уравнение стороны АВ:
, уравнения
высот АМ:
и BN: . Составить уравнения двух
других сторон и третьей высоты этого
треугольника.
270 Составить
уравнения сторон треугольника АВС, если даны
одна из его вершина А(1; 3) и уравнения двух медиан
, . 271 Составить
уравнения сторон треугольника, сли даны одна из
его вершин B(-4; -5) и уравнения двух высот
, . 272 Составить
уравнения сторон треугольника, зная одну из его
вершин A(4; -1) и уравнения двух биссектрис
, . 273 Составить
уравнения сторон треугольника, зная одну из его
вершин B(2; 6), а также уравнения высоты
и
биссектрисы
, проведенных из одной вершины.
274 Составить
уравнения сторон треугольника, зная одну его
вершину B(2; -1), а также уравнения высоты
и биссектрисы , проведенных из
различных вершин.
275 Составить
уравнения сторон треугольника, зная одну его
вершину C(4; -1), а также уравнения высоты
и медианы , проведенной из
одной вершины.
276 Составить
уравнения сторон треугольника, зная одну его
вершину B(2; -7), а также уравнения высоты
и медианы , проведенных из
различных вершин.
277 Составить
уравнения сторон треугольника, зная одну его
вершину C(4; 3), а также уравнения биссектрисы
и медианы , проведенных из
одной вершины.
278 Составить
уравнения сторон треугольника, зная одну его
вершину A(3; -1), а также уравнения биссектрисы
и медианы , проведенных из
различных вершин.
279 Составить
уравнение прямой, которая проходит черезначало
координат и вместе с прямыми
, образует
треугольник с площадью, равной 1,5.
280 Среди прямых,
проходящих через точку P(3; 0), найти такую, отрезок
которой, заключенный между прямыми
, , делится в точке Р
пополам.
281 Через точку Р(-3; -1)
проведены всевозможные прямые. Доказать, что
отрезок каждой из них, заключенный между прямыми
, , делится
в точке Р пополам.
282 Через точку Р(0; 1)
проведены всевозможные прямые. Доказать, что
среди них нет прямой, отрезок которой,
заключенный между прямыми
, , делился бы в точке Р
пополам.
283 Составить
уравнение прямой, проходящей через начало
координат, зная, что длина ее отрезка,
заключенного между прямыми
, , равна . 284 Составить
уравнение прямой, проходящей через точку С(-5; 4),
зная, что длина ее отрезка, заключенного между
прямыми
, , равна 5.

Добавить комментарий