Прямая на плоскости. Примеры решений
Решение проводим с помощью калькулятора.
Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).
1) Координаты векторов
Координаты векторов находим по формуле:
X = xj – xi; Y = yj – yi
здесь X,Y координаты вектора; xi, yi – координаты точки Аi; xj, yj – координаты точки Аj
Например, для вектора AB
X = x2 – x1; Y = y2 – y1
X = 1-2 = -1; Y = -2-1 = -3
AB(-1;-3)
AC(-3;-1)
BC(-2;2)
2) Модули векторов
Длина вектора a(X;Y) выражается через его координаты формулой:
3) Угол между прямыми
Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:
где a1a2 = X1X2 + Y1Y2
Найдем угол между сторонами AB и AC
γ = arccos(0.6) = 53.13 0
4) Проекция вектора
Проекцию вектора b на вектор a можно найти по формуле:
Найдем проекцию вектора AB на вектор AC
5) Площадь треугольника
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) – вершины треугольника, тогда его площадь выражается формулой:
В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:
Пример. Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).
Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.
Задание. Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:
- составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.
- составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.
- найти косинус внутреннего угла B треугольника ABC.
Сделать чертеж.
Пример №3. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB ; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.
Скачать
Пример №4. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C ; 2) уравнение медианы, проведенной через вершину C ; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.
Скачать
Пример №5. Даны вершины треугольника ABC: A(-5;0), B(7;-9), C(11;13). Определите: 1) длину стороны AB ; 2) уравнение сторон AB и AC и их угловые коэффициенты; 3) площадь треугольника.
- Решение
- Видео решение
Задание. Найти острый угол между прямыми x + y -5 = 0 и x + 4y – 8 = 0 .
Рекомендации к решению. Задача решается посредством сервиса Угол между двумя прямыми.
Ответ: 30.96 o
Пример №1. Даны координаты точек А1(1;0;2), A2(2;1;1), А3(-1;2;0), A4(-2;-1;-1). Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3. Найти объем треугольной пирамиды А1A2А3A4.
- Решение
- Видео решение
Задание. По координатам вершин пирамиды А1,А2,А3,А4 найти: 1) длины ребер А1А2 и А1А3; 2) угол между ребрами А1А2 и А1А3; 3) площадь грани А1А2А3;4) объем пирамиды А1А2А3А4
A1(3;5;4,0,0), A2(8;7;4,0,0), A3(5;10;4,0,0), A4(4;7;9,0,0):Пример №10
Пример. В декартовой прямоугольной системе координат даны вершины пирамиды A, B, C, D. Найдите длину ребра AB, косинус угла между векторами, уравнение ребра, уравнение грани, уравнение высоты.
Решение
Пример. Даны вершины треугольника А(1, –1, -3), В(2, 0, -10), С(3, 0, -2).
а) Найти уравнение биссектрисы и высоты данного треугольника, проведенных из вершины A .
б) Найти уравнения всех его медиан и координаты точки их пересечения.
см. также Как найти периметр треугольника
Онлайн калькулятор. Уравнение прямой проходящей через две точки
Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.
Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.
Найти уравнение прямой
Выберите необходимую вам размерность:
Введите координаты точек.
Ввод данных в калькулятор для составления уравнения прямой
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для составления уравнения прямой
- Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.
Теория. Уравнение прямой.
Прямая – один из базовых элементов геометрии. Используя уравнения прямых можно существенно упростить решение многих задач.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Решить треугольник Онлайн по координатам
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Определение.
Любой ненулевой вектор, перпендикулярный
прямой называется её нормальным
вектором,
и обозначается
.
Теорема.
Алгебраическое уравнение 1-й степени
,
где
коэффициенты
– произвольные действительные числа,
одновременно не равные нулю, являетсяуравнением
прямой на плоскости
,
а вектор
является её нормальным вектором.
Верно
обратное:
на координатной плоскости
уравнение
любой прямой с нормальным вектором,
может быть записано в виде алгебраического
уравнения.
Определение.
Уравнение прямой вида
,
где
коэффициенты
– произвольные действительные числа,
одновременно не равные нулю, называетсяобщим
уравнением прямой.
Известно,
что прямая определяется двумя точками.
Пусть
и
–
точки, лежащие на прямой
,
–
произвольная точка этой прямой. Тогда
векторы
и– коллинеарны, а их координаты
пропорциональны. Получаемуравнение
прямой, проходящей через две точки:
.
Определение.
Вектор,
параллельный прямой, называется
направляющим
вектором прямой.
Определение.
Пусть
– направляющий вектор прямой. Тогда из
предыдущего уравнения получаемканоническое
уравнение прямой:
.
Определение.
В
тех же обозначениях, параметрическое
уравнение прямой
имеет вид:
.
Определение.
Уравнение прямой вида
,
гдеи– произвольные, не равные нулю
действительные числа, называетсяуравнением
прямой в отрезках.
Теорема.
Пусть
– уравнение прямой в отрезках. Тогда,– координаты точек пересечения данной
прямой с осями координат.
Определение.
Уравнение прямой вида
,
гдеи– произвольные действительные числа,
называетсяуравнением
прямой с угловым коэффициентом,
коэффициент
называетсяугловым
коэффициентом данной
прямой.
Теорема.
Пусть
– уравнение прямой с угловым коэффициентом.
Тогда,
где угол
α
равен углу наклона данной прямой к оси
,– ордината точки пересечения с осью.
Если
известны угловые коэффициенты
идвух прямых, то один из угловмежду этими прямыми определяется по
формуле:
.
Признаком
параллельности двух прямых является
равенство их угловых коэффициентов:
.
Признаком
перпендикулярности двух прямых является
соотношение:
или.
Теорема.
(Связь нормального вектора прямой с её
направляющим вектором и её угловым
коэффициентом.)
1)
Если
– нормальный вектор прямой, то– её направляющий вектор, и, если,
то– её угловой коэффициент.
2)
Если
– направляющий вектор прямой, то– её нормальный вектор, и, если, то– её угловой коэффициент.
3)
Если
угловой коэффициент прямой, то– её нормальный вектор,
–
направляющий вектор.
Взаимное
расположение двух прямых на плоскости.
Две
прямые на плоскости могут пересекаться,
совпадать или быть параллельными.
Теорема.
Пусть прямые заданы общими уравнениями:
L1:,L2:.
Тогда:
1)
если
,
то прямые совпадают, и система уравнений
имеет
бесконечное множество решений;
2)
если
, то прямые параллельные, и система
уравненийне имеет решений;
3)
если
, то прямые пересекаются и координаты
точки их пересечения являются единственным
решением системы уравнений
.
Определение.
Уравнение вида
,
где– расстояние от прямой до начала
координат, называетсянормальным
уравнением прямой,
– координаты орта вектора.
Чтобы
привести прямую к указанному виду,
разделим общее уравнение прямой на
, причем со знаком «+» в случае, когда, и со знаком «-» в случае, когда, получим:
.
Теорема.
Орт нормального вектора
имеет координаты:
,
где
.
Теорема.
Расстояние от прямой до произвольной
точки
находится
по формуле:
Чтобы
найти расстояние
между двумя параллельными прямыми,
нужно взять произвольную точку на одной
из прямых и найти расстояние от нее до
другой прямой.
Чтобы
найти множество
точек, равноудаленных от двух прямых
и, составим уравнение:
.
Раскрывая
модули в случае параллельных прямых,
получаем параллельную им прямую, лежащую
между данными прямыми, а в случае
пересекающихся прямых – биссектрисы
углов,
образованных пересечением прямых.
Определение.
Совокупность прямых, проходящих через
некоторую точку S,
называется пучком
прямых с центром S.
Теорема.
Если
и– уравнения двух прямых, пересекающихся
в точкеS,
то уравнение:
,
где
– какие угодно числа, не равные
одновременно нулю, определяют прямую,
также проходящую через точкуS.
Более
того, в указанном уравнении числа всегда
возможно подобрать так, чтобы оно
определяло любую (заранее назначенную)
прямую, проходящую через точку S,
иначе говоря, любую прямую пучка с
центром S.
Поэтому уравнение вида называется
уравнением пучка с центром S.
Решение
типовых задач
Задача
№1:
Даны
уравнения двух сторон параллелограмма
,и уравнение одной из его диагоналей.
Определить координаты вершин этого
параллелограмма.
Решение:
Найдём
координаты т.
как точки пересечения прямыхи:;;
т.Выясним, какая из диагоналей задана.
Подставим
координаты т.
в уравнение диагонали:;
т.не принадлежит заданной диагонали,
следовательно– уравнение диагонали.
Найдём
координаты т.
,
как точки пересеченияи:
;
;
т..
Найдём
координаты т.,
как точки пересеченияи:
;
;
т..
Найдём
координаты т.B:
в параллелограмме диагонали делят друг
друга пополам:
.
Найдём координаты т.:
т.– середина,
следовательно, т.;
т.,
но т.– середина,
следовательно,и, поэтомуи,
т..
Ответ:
Задача
№2:
Дана
прямая
.
Составить уравнение прямой, проходящей
через точку:
-
параллельно
данной прямой. -
перпендикулярно
к данной прямой.
Решение:
-
Искомая
прямая параллельна прямой
,
поэтому её уравнение имеет вид:.
Найдём
т.:
точкапринадлежит этой прямой, поэтому её
координаты удовлетворяют записанному
уравнению:,.
Итак, прямая принимает вид:.
-
Т.к.
заданная и искомые прямые перпендикулярны,
то их угловые коэффициенты удовлетворяют
условию:
.
Найдём
угловой коэффициент прямой
;;
итак,тогда.
Запишем уравнение искомой прямой:.
Точка
принадлежит этой прямой, поэтому;
Уравнение
прямой принимает вид:
.
Ответ:
;.
Задача
№3:
Определить,
при каких значениях a
и b
две прямые
,
:
-
имеют
одну общую точку; -
параллельны;
-
совпадают.
Решение:
-
Прямые
имеют одну общую точку, когда они не
параллельны (их коэффициенты при x
и y
не пропорциональны):
; -
Прямые
параллельны, когда коэффициенты при x
и y
пропорциональны:
;. -
Прямые
совпадают, когда все их коэффициенты
пропорциональны:
;.
Задача
№4:
Найти
проекцию точки
на прямую.
Решение:
Проведём
через т.прямую,
перпендикулярную прямой.
Точкапересечения прямых и является искомой
проекцией.
Прямая
перпендикулярна заданной прямой, поэтому
её направляющим вектором служит
нормальный вектор прямой,
т.е..
Запишем
уравнение прямой
в каноническом виде:
;
– уравнение.
Найдём
координаты т.:
;
;
т.
Ответ:
Задача
№5:
Найти
точку
,
симметричную точкеотносительно прямой, проходящей через
точкии.
Решение:
Составим
уравнение
,
как прямой проходящей через 2 точки:
;
– уравнение.
Найдём
уравнение прямой
перпендикулярной.
Нормальный
вектор
прямойявляется направляющим вектором прямой,
поэтому используем каноническое
уравнение прямой:;– уравнение прямой.
Найдём
координат т.,
как точки пересечения прямыхи:
;
;
т..
Так
как точка
симметрична точкеотносительно,
следовательно,
то есть т.– середина отрезка.
Найдём координаты точки,
зная начало и середину отрезка:
,
, тогда
,
,
т..
Ответ:
.
Задача
№6:
Даны
вершины треугольника
,и.
Составить уравнение перпендикуляра,
опущенного из вершинына медиану, проведенную из вершины.
Решение:
Найдём
координаты т.,
как середины отрезка:
т.
, т..
Запишем
уравнение медианы
,
как прямой, проходящей через две известные
точки:
;
– уравнение.
Нормальный
вектор для
является направляющим для прямойперпендикулярной,
тогда уравнение примет вид:
;
– уравнение.
Ответ:
.
Задача
№7:
Даны
вершины треугольника
,,.
Составить уравнение перпендикуляра,
опущенного из вершинына биссектрису внутреннего угла при
вершине.
Решение:
Пусть
– биссектриса.
Найдём
координаты т.воспользовавшись свойством биссектрисы:
Тогда:
;
;
т.;
Уравнение
биссектрисы
примет вид:
=
⇒
,
,перпендикулярен⇒
.
Точка
принадлежит искомому перпендикуляру,
поэтому уравнениепримет вид:.
Ответ:
Задача
№8:
Две
стороны квадрата лежат на прямых
,.
Вычислить его площадь.
Решение:
-
Выберем
на прямой
некоторую точку:
пусть
,
тогда⇒
,
т.е.
.
-
Найдём
расстояние от точки
до прямой:
⇒,
где
и есть длина стороны квадрата.
-
т.е.
.
Ответ:
.
Задача
№9:
Даны
две противоположные вершины квадрата
и.
Составить уравнения его сторон.
Решение:
Зная
вершины
исоставим уравнение диагонали,
как прямой проходящей через две точки:⇒
– уравнение прямой
.
Т.к.
– квадрат, его диагонали являются
биссектрисами, поэтому;
найдём угловой коэффициент
.
Зная
и,
найдём угловой коэффициент:;⇒
.
Уравнение
примет вид:.
Найдём
;
Тогда уравнение.
Т.к.
перпендикулярно⇒
угловой коэффициент
.
Уравнениеимеет вид:,
тогда– уравнение.
Т.к.
– квадрат, то,
то уравнениепримет вид:.
Зная,
что точка
принадлежит прямой,
найдём свободный членискомого уравнения, итак– уравнение стороны.
Аналогично
найдём уравнение стороны
.
Ответ:
Задача
№10:
Вычислить
площадь треугольника, отсекаемого
прямой
от координатного угла.
Решение:
Запишем
уравнение прямой
в отрезках:+1.
Из
этого уравнения следует, что длины
отрезков
исоответственно равныи,
поэтомукв. ед.
Ответ:
кв.ед.
Задача
№11:
Составить
уравнения сторон треугольника, зная
одну из его вершин
и уравнения двух его медиан.
Решение:
Выясним,
что точка
не принадлежит известным медианами.
Найдём
координаты точки
– пересечения медиан:⇒
т.
Продолжим
медиану
,
и на её продолжении отложим отрезок.
Соединим точкус вершинамии.
Полученный четырёхугольник– параллелограмм (его диагонали
пересекаясь в точке,
делятся пополам).
Найдём
координаты точки
,
как конца отрезкас известным началоми серединой
Найдём
уравнение прямой
,
зная, чтои точкалежит на этой прямой:
Найдём
координаты вершины
,
как точки пересечения прямыхи:⇒
т.
Точка
– середина отрезка,
поэтому.
Найдём
координаты точки
,
как конца отрезкас известными началоми серединой:.
Зная
координаты всех вершин треугольника
,
найдём уравнения его сторон, как прямых
проходящих через две точки.
Ответ:
Задача
№12:
Составить
уравнения сторон треугольника, зная
одну из его вершин
и уравнения биссектрис двух его углов:
Решение:
Очевидно,
что точка
не принадлежит заданным биссектрисами.
Найдём точку,
симметричную точкеотносительно биссектрисы.
Можно доказать, что точкапринадлежит прямой.
Опустим из т.перпендикуляр на биссектрисудо пересечения в точкеи отложим.
Т.к.
перпендикулярно,
то;
точкапринадлежит прямой,
поэтому её уравнение примет вид:
Координаты
точки
найдём как точки пересечения прямыхи:⇒
т.(;).
Найдём
координаты точки
,
как конца отрезкас известными началоми серединой:().
Аналогично
найдём точку
,
симметричную т.относительно биссектрисы.
Точкапринадлежит прямой,.
Тогда
уравнение стороны
примет вид:или.
Найдём
координаты точек
и,
как точек пересечения прямойи заданных биссектрис:();
Зная
координаты вершин треугольника
,
найдём уравнения его сторон.
Ответ:
Задача
№13:
Составить
уравнения биссектрис углов, образованных
двумя пересекающимися прямыми:
и.
Решение:
Известно
свойство: биссектриса есть геометрическое
место точек, равноудалённых от сторон
угла.
Пусть
– произвольная точка искомой биссектрисы,
тогда;
;
;
;.
Тогда
уравнения биссектрис примут вид:
.
Ответ:
.
Задача
№14:
Составить
уравнение биссектрисы угла между прямыми
,
в котором лежит точка
Решение:
Найдём
отклонение точки
отзаданных
прямых, для этого приведём их уравнения
к нормальному виду:;
нормирующий множитель+;+0.
Найдём
отклонение
1
т.от прямой, для этого в левую часть
нормального уравнения подставим
координаты т.:1
––0.
Аналогично
найдём отклонение
2
т.от второй прямой:20.
Отклонения имеют разные знаки, поэтому
при раскрытии модулей (см. решение
предыдущей задачи) справа ставим знак
«минус».
⇒
Уравнение
биссектрисы принимает вид:
Ответ:
.
Задача
№15:
На
прямой
найти точки, равноудалённые от прямыхи
Решение:
Точки
равноудалённые от прямых
и,
лежат на биссектрисах углов, образованных
этими прямыми. Аналогично решению
предыдущих задач найдём их:.
Тогда
искомые точки являются точками пересечения
этих биссектрис и прямой
,
поэтому найдём их, решая системы:и.
Ответ:
Задача
№16:
Составить
уравнения сторон треугольника, зная
одну из его вершин
и уравнения медианыи высоты,
проведённых из различных вершин.
Решение:
Убедимся,
что точка
не принадлежит заданным медиане и
высоте.
Найдём
уравнение стороны
,
зная, что.⇒
тогда уравнение примет вид:
,
зная координаты т.,
принадлежащей,
найдём,
тогда уравнение примет вид:.
Найдём
координаты т.,
как точки пересеченияи
медианы:⇒
.
Пусть
точка
имеет координатыи,
найдём их. Точка– середина,
поэтому
Точка
принадлежит медиане,
точкапринадлежит высоте,
поэтомуинайдём, решая систему:
Откуда
Зная координаты вершин треугольника,
найдём уравнения всех его сторон.
Ответ:
.
Задача
№17:
Через
точку
провести прямую так, чтобы её отрезок,
заключённый между прямыми,
делился бы в точкепополам.
Решение:
Обозначим
через
иточки пересечения заданных прямых и
искомой прямой и пустьтогдат.к.– середина отрезка.
Координатынайдём, составив систему уравнений:⇒
⇒.
Составим
уравнение искомой прямой, которая
проходит через две точки, например,
и:
Ответ:
Задача
№18:
Составить
уравнения сторон треугольника
,
зная одну из его вершина также уравнение высотыи биссектрисы,
проведённых из одной вершины. Решить
задачу, не вычисляя координат вершини.
Решение:
Можно
проверить, что т.не принадлежит ни высоте,
ни биссектрисе.
Найдём уравнение стороны,
поэтому;,
зная координаты т.,
найдём.
Итак,
уравнение
имеет вид:.
Рассмотрим
пучок с центром в т.:.
Пусть
,
тогда уравнение пучка примет вид:
.
(1)
–прямая
пучка, причём координаты т.известны, поэтому найдёмдля прямой:,
поэтому уравнениепримет вид:,
т.е..
Найдём
угол между прямыми
и:tg
1⇒
.
Тогда
угол
равен 90°, т.е.;
–.
С другой стороны найдёмиз уравнения (1):
Итак,
⇒
.
Найдём
уравнение стороны
зная, что она принадлежит пучку. Подставимв уравнение (1) и получим уравнение
стороны.
Ответ:
Образовательным
результатом после изучения данной темы
является сформированность компонент,
заявленных во введении, совокупности
компетенций (знать, уметь, владеть) на
двух уровнях: пороговый и продвинутый.
Пороговый уровень соответствует оценке
«удовлетворительно», продвинутый
уровень соответствует оценкам «хорошо»
или «отлично» в зависимости от результатов
защиты кейс-заданий.
Для
самостоятельной диагностики данных
компонент вам предлагаются следующие
задания.
Содержание:
Общее уравнение прямой:
Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.
Определение: Любое соотношение
Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.
Пример:
а) 2х + Зу-5 = 0 – линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) – ему не удовлетворяет;
б)
в) – линии второго порядка.
Рассмотрим другое определение линии:
Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 – уравнением линии.
Определение: Общим уравнением прямой называется уравнение первого порядка вида
Рассмотрим частные случаи этого уравнения:
а) С = 0; – прямая проходит начало системы координат (Рис. 20):
Рис. 20. Прямая, проходящая через начало координат.
б) 5 = 0; Ах+С=0 – прямая проходит параллельно оси ординат Оу (Рис. 21):
Рис. 21. Прямая, проходящая параллельно оси ординат Оу.
в) А = 0; Ву+С=0 – прямая проходит параллельно оси абсцисс Ох (Рис. 22):
Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.
Виды уравнений прямой
1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой в котором коэффициент Разрешим общее уравнение прямой относительно переменной Обозначим через тогда уравнение примет вид которое называется уравнением прямой с угловым коэффициентом. Выясним геометрический смысл параметров При х = 0, у = b, т.е. параметр b показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета. При т.е. прямая отсекает на оси абсцисс отрезок к (Рис. 23, для определенности принято, что ):
Рис. 23. Отрезки, отсекаемые прямой на координатных осях.
Из рисунка видно, что т.е. угловой коэффициент k определяет тангенс угла наклона прямой к положительному направлению оси абсцисс Ох.
2. Уравнение прямой в отрезках.
Пусть в общем уравнении прямой параметр Выполним следующие преобразования
Обозначим через тогда последнее равенство перепишется в виде . которое называется уравнением прямой в отрезках. Выясним геометрический смысл величин m и n (Рис. 24). При х=0, у=n, т.е. параметр n показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета.
Рис. 24. Отрезки, отсекаемые прямой на координатных осях.
При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки:
3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки Так как точки лежат на прямой, то их координаты удовлетворяют общему уравнению прямой, т.е. выполняются равенства Вычтем первое из этих равенств из общего уравнения прямой и из второго равенства:
Пусть тогда полученные равенства можно преобразовать к виду Отсюда находим, что или Полученное уравнение называется уравнением прямой, проходящей через две заданные точки и
4. Уравнение прямой, проходящей через заданную точку параллельно заданному вектору (каноническое уравнение прямой). Пусть прямая проходит через заданную точку параллельно вектору
Определение: Вектор называется направляющим вектором прямой. Возьмем на прямой произвольную точку и создадим вектор (Рис. 25):
Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.
В силу того, что вектора коллинеарны, то воспользуемся первым условием коллинеарности: отношения соответствующих проекций равны между собой
Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.
5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой
Основные задачи о прямой на плоскости
1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями Требуется найти координаты точки пересечения этих прямых. Для того чтобы вычислить координаты точки пересечения М(х; у), необходимо решить вышеприведенную систему линейных алгебраических уравнений, так как координаты точки М(х; у) должны одновременно удовлетворять уравнениям прямых
2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами
Требуется найти угол между этими прямыми (Рис. 26):
Рис. 26. Угол между двумя прямыми.
Из рисунка видно, что Вычислим
Наименьший угол между пересекающимися прямыми определим формулой Из полученной формулы видно:
Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением
Пример:
Определить угол между прямыми
Решение:
В силу того, что что прямые параллельны, следовательно,
Пример:
Выяснить взаимное расположение прямых
Решение:
Так как угловые коэффициенты и связаны между собой соотношением то прямые взаимно перпендикулярны.
3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки на прямую Если прямая задана общим уравнением, то расстояние от точки до прямой определяется формулой:
Если прямая задана уравнением прямой с угловым коэффициентом, то расстояние от точки до прямой определяется формулой:
Прямая линия на плоскости и в пространстве. Системы координат на плоскости
Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка . Точку О будем называть началом координат; ее собственная координата равна нулю. Так вводятся координаты на прямой.
Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая – второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси – координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую – осью ординат, обозначаемую Оу.
Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно .
Координатами точки М в заданной системе называются числа , обозначающие величину отрезка оси абсцисс и величину отрезка оси ординат, где х – первая координата, а у- вторая координата точки М (рис.7.1). Символически это записывается в виде М(х, у).
Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у – М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.
На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3).
Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:
Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.
Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.
Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3).
Каждая точка М в полярной системе координат задается парой координат .
Декартова прямоугольная система координат связана с полярной системой формулами:
Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точкамии . Числа могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 7.4 все числа выбраны положительными. Проведем через точку горизонтальную прямую, а через точку – вертикальную. Пусть R -точка их пересечения. Тогда по теореме Пифагора
или (7.1.1)
Это и есть формула для вычисления расстояния между двумя точками.
Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки . Например, если точка расположена ниже точки и справа от нес, как на рис. 7.5, то отрезок можно считать равныму .
Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как . Заметим, что, так как величина в этом случае отрицательна, то разность больше, чем
Если обозначить через угол, образованный положительным направлением оси абсцисс и отрезком , то формулы
выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:
позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u – произвольная ось, а – угол наклона отрезка к этой оси, то проекция отрезка на ось равна его длине, умноженной на косинус угла наклона к этой оси:
.
Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая – второй. Обозначим их в заданном порядке через . Проведем через данные точки ось u. Пусть М- еще одна точка оси и, расположенная на ней как угодно, но не совпадает с точкой .
Определение 7.1.1. Число определяемое равенством где – величины направленных отрезков оси u, называется отношением, в котором точка М делит направленный отрезок .
Число не зависит от направления оси и от масштаба, т.к. при изменении этих параметров будут одновременно меняться величины . Кроме того, будет положительно, если Мнаходится между точками если же М вне отрезка , то -отрицательное.
Задача о делении отрезка в данном отношении формулируется следующим образом:
Считая известными координаты двух точек и и отношение в котором некоторая неизвестная точка М делит отрезок , найти координаты точки М.
Решение задачи определяется следующей теоремой.
Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок в отношении то координаты этой точки выражаются формулами:
Доказательство:
Спроектируем точки на ось Ох и обозначим их проекции соответственно через (рис. 7.6). На основании теоремы о пропорциональности отрезков прямых, заключенных между параллельными прямыми (Если две прямые пересечь тремя параллельными прямыми, то отношение двух отрезков, получившихся на одной прямой, равно отношению двух соответствующих отрезков другой прямой), имеем:
Подставив в (7.1.4) величины отрезков и
, получим
Разрешая это уравнение относительно х, находим:
Вторая формула (7.1.3) получается аналогично.
Если – две произвольные точки и М(х,y) –
середина отрезка , то . Эти формулы
получаются из (7.1.3) при .
Основная теорема о прямой линии на плоскости
Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.
Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора одной и той же прямой коллинеарны между собой, т.е.
, .
Для всех направляющих векторов данной прямой, не параллельной оси ординат, отношение ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.
Действительно, если – два направляющих вектора данной прямой /, то векторы коллинеарны, т.е.
их координаты пропорциональны: а значит
Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.
Справедлива следующая теорема.
Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.
Доказательство: Пусть В = (О,b}- точка пересечения прямой L с осью у, а Р = (х,у) – любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р – прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.
Так как треугольники BSQ и BRP подобны, то или после упрощения
Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.
Таким образом, уравнение любой прямой можно записать в виде:
(не вертикальная прямая) , (7.2.2), х = а (вертикальная прямая) (7.2.3).
В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).
Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:
Ах+Ву+С=0. (7.2.4)
Если , мы можем записать уравнение (7.2.4) в виде
т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению
А х = —С,
или , т.е. к уравнению вида (7.2.3).
Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую.
Уравнение (7.2.4) называется общим уравнением прямой. Так
как , то вектор является направляющим вектором прямой (7.2.4). Вектор перпендикулярен прямой (7.2.4) и называется нормальным вектором. Возможны частные случаи:
1. или у =b, где , -это уравнсние прямой, параллельной оси Ох.
2. или х = а, где , – это уравнение прямой, параллельной оси Оу.
3. – это уравнение прямой, проходящей через начало координат.
4. А=0; С=0; Ву-0 или у = 0 – это уравнение оси абсцисс Ох.
5. В=0;С=0; Ах=0 или х = 0 – это уравнение оси ординат Оу.
Различные виды уравнений прямой на плоскости
Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.
Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:
где -длины отрезков, отсекаемых прямой l на осях координат, взятые с соответствующими знаками (в зависимости от того, положительные или отрицательные полуоси координат пересекает прямая l).
Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки . Тогда вектор является направляющим вектором этой прямой l.
Геометрическое место концов всевозможных векторов вида где пробегает все вещественные числовые значения, определяет прямую l. Уравнение (7.3.2) называется уравнением прямой в векторной форме (векторным уравнением прямой). Записав векторное уравнение (7.3.2) в координатной форме и воспользовавшись определением равенства векторов, получим параметрические уравнения прямой:
где – координаты направляющего вектора.
Система (7.3.3) равносильна уравнению
называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение
которое называется уравнением прямой, проходящей через две данные точки
Если абсциссы точек одинаковы, т. е. то прямая параллельна оси ординат и ее уравнение имеет вид: х=а.
Если ординаты точек одинаковы, т. е. , то прямая параллельна оси абсцисс и ее уравнение имеет вид: у=b. Уравнение (7.3.5) можно преобразовать к виду:
или
где
угловой коэффициент прямой.
Уравнение (7.3.6) называется уравнением прямой, проходящей через точку и имеющей угловой коэффициент k.
Пример:
Составить уравнение прямой, проходящей через две точки
Решение:
I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек , получим искомое уравнение прямой:
II способ. Зная координаты точек по формуле (7.3.7) можно найти угловой коэффициент искомой прямой:
Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: .
Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения
.
Взаимное расположение двух прямых на плоскости
Пусть на плоскости заданы две прямые общими уравнениями . Угол между ними можно вычислить как угол между направляющими векторами
этих прямых:
Если прямые параллельны, то их нормальные векторы коллинеарны, а это значит, что их соответствующих координаты пропорциональны:
И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:
Теорема 7.4.1. Две прямые параллельны тогда и только тогда, когда в их уравнениях коэффициенты при соответствующих переменных х и у пропорциональны.
Например, прямые параллельны,
т. к..
Если прямые перпендикулярны , то их нормальные векторы тоже перпендикулярны, а это значит, что скалярное произведение этих векторов равно нулю: , или в координатной форме
Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.
Теорема 7.4.2. Две прямые перпендикулярны тогда и только тогда, когда коэффициенты при переменных х и у удовлетворяют равенству .
Например, прямые перпендикулярны, так как
.
Если прямые заданы уравнениями вида и , то угол между ними находится по формуле:
Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство
(7.4.5)
а для их перпендикулярности необходимо и достаточно, чтобы
(7.4.6)
Пример:
Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).
Решение:
Проекция точки Р на прямую АВ – это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.
Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:
Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку ,то из равенства находим угловой коэффициент перпендикуляра . Подставляя найденное значение углового коэффициента и координаты точки Р (2, 3) в уравнение (7.3.6), получаем:
.
Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра
найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.
Пример:
Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .
Решение:
Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:
Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:
(млн. дсн. ед)
Пример:
Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.
Решение:
Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: . Найдём точку безубыточности. т.е. значение x, при котором доход фирмы равен затратам: D=K, т.е. 10x = 6x + 300. Решив это уравнение, получим значение объёма производства, при котором фирма работает без убытка: х=75. Следовательно, если объём производства то фирма будет работать с прибылью.
Прямая линия в пространстве
Системы координат в пространстве
В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).
Пусть задано пространство. Важнейшим понятием пространственной аналитической геометрии является понятие уравнения поверхности. Всякая же линия рассматривается как пересечение двух поверхностей. Мы остановимся на изучении поверхности первого порядка – плоскости и прямой линии.
Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки и вектора параллельного этой прямой.
Вектор , параллельный прямой, называется направляющим вектором этой прямой.
Итак, пусть прямая L проходит через точку , лежащую на прямой, параллельно вектору (см. рис. 7.9).
Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор параллельный (коллинеарный) вектору . Поскольку векторы коллинеарны, то найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки М на прямой.
Уравнение (7.5.1) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки M, лежащей на прямой. Это уравнение можно записать в виде: (см. рис. 7.9). Запишем это уравнение в координатной форме. Подставив координаты векторов в уравнение (7.5.1) и воспользовавшись определением алгебраических операций над векторами и равенством векторов, получим уравнения:
Полученные уравнения называются параметрическими уравнениями прямой.
При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.
Разрешив уравнения (7.5.2) относительно t
и приравняв найденные значенияt получим канонические уравнения прямой:
Если прямая L в пространстве задается двумя своими точками ,то вектор
можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения
где . (7.5.4)- это уравнение прямой, проходящей через две заданные точки
Пример:
Составить параметрические уравнения прямой, проходящей через точку, перпендикулярно плоскости Oxz.
Решение:
В качестве направляющего вектора искомой прямой можно взять единичный вектор оси Оу: • Подставив значения координат точки и значения координат направляющего вектора в уравнения (7.5.2), получаем: .
Пример:
Записать уравнения прямой в параметрическом виде.
Обозначим. Тогда ,
, откуда следует, что .
Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор
прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид
Исключая из уравнений параметр t, получим уравнения прямой в виде
Однако и в этом случае формально можно записывать канонические уравнения прямой в виде . Таким образом, если в знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.
Аналогично, канонические уравнения
определяют прямую перпендикулярную осям О х и О у или параллельную оси О z.
Пример:
Составить канонические и параметрические уравнения прямой, проходящей через точку параллельно вектору
Решение:
Подставив координаты точки , и вектора в (7.5.2) и (7.5.3), находим искомые канонические уравнения:
.и параметрические уравнения:
Пример:
Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно
а) прямой ;
б) оси Ох;
в) оси Оу;
г) оси Oz.
Решение:
а) Поскольку направляющий вектор заданной прямой
является направляющим вектором искомой прямой, то
подставив координаты точки М(2; -1; 4) и вектора в (7.5.3) получим уравнение искомой прямой:
б) Поскольку единичный вектор оси О х: будет направляющим вектором искомой прямой, то подставив в уравнение
(7.5.3) координаты точки М(2; -1; 4 ) и вектора , получаем:
в) В качестве направляющего вектора искомой прямой можно взять единичный вектор оси Оу: . В соответствии с уравнением (7.5.3), получаем или .
г) Единичный вектор оси Oz : будет направляющим вектором искомой прямой. В соответствии с уравнением (7.5.3), получаем
Пример:
Составить уравнение прямой, проходящей через две заданные точки
Решение:
Подставив координаты точек в уравнение
(7.5.4), получим:
Взаимное расположение двух прямых в пространстве
Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:
Очевидно, что за угол между прямыми можно принять угол между их направляющими векторами и
, косинус которого находится по формуле:
Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов:
Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:
т.е. параллельна тогда и только тогда, когда параллелен
.
Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю:
Пример:
Найти угол между прямыми и
Решение:
Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов и
. Тогда , откуда или.
Вычисление уравнения прямой
Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол , образованный полупрямой M0Q, лежащей выше оси М0х’ или совпадающей с ней, называется углом между данной прямой и осью Ох.
Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.
1) Пусть сначала . Тогда прямая PQ пересекает ось Оу в некоторой точке В (0, b), которую можно принять за начальную.
Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:
из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь
при х > 0.
Таким образом,
при х > 0.
Нетрудно проверить, что формула (3) остается справедливой также и при х < 0.
Мы доказали, что координаты любой точки М (х, у) прямой PQ удовлетворяют уравнению (3). Легко убедиться в обратном: если координаты какой-нибудь точки Ml удовлетворяют уравнению (3), то точка Мх обязательно лежит на прямой PQ. Следовательно, уравнение (3) представляет собой уравнение прямой линии PQ (так называемое уравнение прямой с угловым коэффициентом). Постоянные величины (параметры) имеют следующие значения: b = ОБ — начальный отрезок (точнее, начальная ордината), k = tg ф — угловой коэффициент. Заметим, что если точка В расположена выше оси Ох, то , а если ниже, то b < 0. При 6 = 0 прямая проходит через начало координат и уравнение такой прямой есть
При k = 0 получаем уравнение прямой, параллельной оси Ох:
2) Если , то с помощью аналогичных рассуждений мы также приходим к уравнению (3).
3) Если , т. е. прямая АВ перпендикулярна оси Ох, то ее уравнение есть
где а — абсцисса следа этой прямой на оси Ох (т. е. ее точки пересечения с осью Ох).
Замечание. Как частные случаи получаем уравнения осей координат:
Прямую легко построить по ее уравнению.
Пример:
Построить прямую, заданную уравнением
Решение:
Известно, что две точки вполне определяют положение прямой. Поэтому достаточно найти две точки, через которые проходит наша прямая. В данном уравнении b = -4. Следовательно, прямая проходит через точку В (0, -4). С другой стороны, координаты х и у любой точки, лежащей на нашей прямой, связаны заданным уравнением. Поэтому, задав абсциссу некоторой точки, лежащей на прямой, мы из уравнения прямой найдем ее ординату. Положим, например, х = 2; из уравнения прямой получим у = -1. Таким образом, наша прямая проходит через точки А (2, -1) и В (0, -4). Построив эти точки по их координатам и проведя через них прямую (рис. 24), мы получим искомую прямую.
Из предыдущего видно, что для произвольной прямой на плоскости можно составить ее уравнение; обратно, зная уравнение некоторой прямой, можно построить эту прямую. Таким образом, уравнение прямой полностью характеризует положение ее на плоскости.
Из формул (3) и (5) видно, что уравнение прямой есть уравнение первой степени относительно текущих координат х и у. Справедливо и обратное утверждение.
Теорема: Всякое невырожденное уравнение первой степени
представляет собой уравнение некоторой прямой линии на плоскости Оху (общее уравнение прямой линии).
Доказательство: 1) Пусть сначала В ^ 0. Тогда уравнение (7) можно представить в виде
Сравнивая с (3), мы получим, что это есть уравнение прямой с угловым коэффициентом k = -А/В и начальной ординатой
2) Пусть теперь В = 0; тогда А 0. Имеем Ах + С = 0 и
х = -С/А.
Уравнение (9) представляет собой уравнение прямой, параллельной оси Оу и отсекающей на оси Ох отрезок a = -С/А.
Так как все возможные случаи исчерпаны, то теорема доказана.
- Заказать решение задач по высшей математике
Угол между двумя прямыми
Рассмотрим две прямые (не параллельные оси Оу)у заданные их уравнениями с угловыми коэффициентами (рис. 25):
Требуется определить угол 9 между ними. Точнее, под углом 0 мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой (0 < 0 < я). Этот угол 9 (рис. 25) равен углу АСВ треугольника ABC. Далее, из элементарной геометрии известно, что внешний угол треугольника равен сумме внутренних, с ним не смежных. Поэтому ф’ = ф + 0, или
0 = ф’ – ф;
отсюда на основании известной формулы тригонометрии получаем
Заменяя tg ф и tg ф’ соответственно на к и k окончательно будем иметь
Формула (3) дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.
Выведем теперь условия параллельности и перпендикулярности двух прямых.
Если прямые (1) и (2) параллельны, то ф’ = ф и, следовательно,
k’ = к. (4)
Обратно, если выполнено условие (4), то, учитывая, что ф’ и ф заключаются в пределах от 0 до я, получаем
Ф’ – ф, (5)
и, следовательно, рассматриваемые прямые или параллельны, или сливаются (параллельность в широком смысле).
Правило 1. Прямые на плоскости параллельны (в широком смысле) тогда и только тогдау когда их угловые коэффициенты равны между собой.
Если прямые перпендикулярны, то и, следовательно,
отсюда 1 + kk’ = 0 и
k’ = -l/k.
Справедливо также и обратное утверждение.
Правило 2. Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.
Пусть теперь уравнения прямых заданы в общем виде:
Ах + By + С = 0 (7)
и
А’х + В’у + С’ = 0. (8)
Отсюда, предполагая, что , получаем
Следовательно, угловые коэффициенты этих прямых есть
Из формулы (3), производя несложные выкладки, находим тангенс угла между этими прямыми:
Отсюда получаем:
1) условие параллельности прямых (0 = 0)
2) условие перпендикулярности прямых
Отметим, в частности, что прямые
взаимно перпендикулярны.
Для прямых, параллельных осям Ох и Оу, условно полагают и
Пример:
Определить угол между прямыми у = х и у = 1,001 + 10. Здесь угловые коэффициенты прямых есть k = 1 и k’ = 1,001.
Решение:
По формуле (3) получаем
Так как для малых углов 0 справедливо приближенное равенство , то
Уравнение прямой, проходящей через данную точку в данном направлении
Пусть прямая РМ образует угол ф с положительным направлением оси Ох (рис. 26) и проходит через заданную точку Р . Выведем уравнение этой прямой, предполагая сначала, что прямая не параллельна оси Оу.
В этом случае, как мы видели, уравнение прямой имеет вид
у = kx + b, (1)
где k = tg ф — угловой коэффициент прямой, а Ь — длина отрезка, отсекаемого нашей прямой на оси Оу. Так как точка Р лежит на прямой РМ, то ее координаты хг и ух должны удовлетворять уравнению (1), т. е.
ух = kxt+ b. (2)
Вычитая из равенства (1) равенство (2), получим
Это и есть уравнение искомой прямой.
Если прямая, проходящая через точку Р параллельна оси Оу, то ее уравнение, очевидно, будет
Если k — заданное число, то уравнение (3) представляет вполне определенную прямую. Если же k — переменный параметр, то это уравнение определит пучок прямых у проходящих через точку Р (рис. 27); при этом k называется параметром пучка.
Пример:
Написать уравнение прямой, проходящей через точку Р (3, 2) и параллельной прямой:
Решение:
Так как искомая прямая параллельна данной прямой, то ее угловой коэффициент k = 4/3. Следовательно, на основании формулы (3) уравнение этой прямой имеет вид , или
Пример:
Написать уравнение прямой, проходящей через точку Р (4, 5) и перпендикулярной к прямой:
Решение:
Так как искомая прямая перпендикулярна прямой с угловым коэффициентом k = -2/3, то ее угловой коэффициент k’ = -l/k = 3/2. Следовательно, на основании формулы (3) уравнение этой прямой таково:
, или окончательно
Уравнение прямой, проходящей через две данные точки
Известно, что через две не совпадающие между собой точки можно провести прямую, и притом только одну. Отыщем уравнение прямой, проходящей через точки –
Предположим сначала, что , т. е. прямая PQ не параллельна оси Оу, Поскольку прямая PQ проходит через точку то ее уравнение имеет вид
где k — неизвестный нам угловой коэффициент этой прямой. Однако так как наша прямая проходит также через точку Q , то координаты этой последней точки должны удовлетворять уравнению (1). Отсюда
=
и, следовательно, при имеем
Подставляя выражение (2) для углового коэффициента k в уравнение (1), получим уравнение прямой PQ:
Это уравнение при можно записать также в виде пропорции:
Если , т. е. прямая, проходящая через точки и , параллельна оси Оу, то уравнение этой прямой, очевидно, будет
Пример:
Написать уравнение прямой, проходящей через точки Р(4, -2) и Q(3, -1).
Решение:
На основании уравнения (3) имеем
Уравнение прямой в «отрезках»
Выведем теперь уравнение прямой, положение которой на плоскости задано ненулевыми отрезками, отсекаемыми ею на осях координат. Предположим, например, что прямая АВ отсекает на оси Ох отрезок OA = а, а на оси Оу — отрезок О В = b (рис. 28), причем ясно, что тем самым положение прямой вполне определено.
Для вывода уравнения прямой АВ заметим, что эта прямая проходит через точки А (а, 0) и Б поэтому уравнение ее легко получается из уравнения (3′), если положить в нем . Имеем
Отсюда
и окончательно
Это и есть так называемое уравнение прямой в «отрезках». Здесь х и у, как обычно, — координаты произвольной точки М (х, у), лежащей на прямой АВ (рис. 28).
Пример:
Написать уравнение прямой АВ, отсекающей на оси Ох отрезок OA = 5, а на оси Оу отрезок ОВ = -4.
Полагая в уравнении (1) а = 5 и b = -4, получим , или
Примечание. Уравнение прямой, проходящей через начало координат или параллельной одной из осей координат, не может быть записано как уравнение прямой в «отрезках».
Точка пересечения двух прямых
Пусть имеем две прямые
Точка пересечения этих прямых лежит как на первой прямой, так и на второй. Поэтому координаты точки пересечения должны удовлетворять как уравнению первой, так и уравнению второй прямой. Следовательно, для того чтобы найти координаты точки пересечения двух данных прямых, достаточно решить совместно систему уравнений этих прямых.
Последовательно исключая из уравнений (1) и (2) неизвестные у и х, будем иметь
Отсюда если , то для координат точки пересечения прямых получаем такие выражения: или, введя определители второго порядка, имеем
Для прямых (1) и (2) возможны следующие три случая.
На основании прямые не параллельны. Координаты их единственной точки пересечения определяются из формул (6).
Прямые параллельны и точки пересечения нет. Аналитически это видно из того, что по меньшей мере одно из уравнений (3) или (4) противоречиво и, значит, система (1) и (2) несовместна.
Прямые (1) и (2) сливаются, и, таким образом, существует бесчисленное множество точек пересечения. В этом случае левые части уравнений (1) и (2) отличаются только на постоянный множитель и, следовательно, система этих уравнений допускает бесконечно много решений.
Пример:
Решая совместно систему уравнений прямых
получаем х = 2 и у = 1. Следовательно, эти прямые пересекаются в точке N(2,1).
Расстояние от точки до прямой
Рассмотрим прямую KL, заданную общим уравнением
и некоторую точку М. Под расстоянием от точки М до прямой KL понимается длина перпендикуляра d = , опущенного из точки М на прямую KL (рис. 29).
Уравнение перпендикуляра MN можно записать в виде
Отсюда для основания перпендикуляра N(x2, у2) будем иметь
и, следовательно,
где t — коэффициент пропорциональности. Поэтому
С другой стороны, учитывая, что точка N(*2, i/2) лежит на прямой KL, причем из (4) имеем получаем
Следовательно,
Таким образом, в силу формулы (5) имеем
В частности, полагая , получаем расстояние от начала координат до прямой
Замечание. Разделив обе части уравнения прямой (1) на , получим уравнение
свободный член которого численно равен расстоянию от
начала координат до прямой. Такое уравнение прямой будем называть нормированным.
Из формулы (7) получаем правило:
чтобы определить расстояние от точки до прямой, нужно в левую часть нормированного уравнения этой прямой подставить координаты данной точки и взять модуль полученного результата.
Пример:
Определить расстояние от точки М (-2, 7) до прямой
Решение:
Нормируя уравнение этой прямой, будем иметь
Отсюда искомое расстояние есть
- Плоскость в трехмерном пространстве
- Функция одной переменной
- Производная функции одной переменной
- Приложения производной функции одной переменной
- Обратная матрица – определение и нахождение
- Ранг матрицы – определение и вычисление
- Определители второго и третьего порядков и их свойства
- Метод Гаусса – определение и вычисление
Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.
Уравнение прямой, проходящей через две заданные точки на плоскости
Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.
Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой. Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.
Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a, проходящей через две несовпадающие точки M1(x1, y1) и M2(x2, y2), находящиеся в декартовой системе координат.
В каноническом уравнении прямой на плоскости, имеющего вид x-x1ax=y-y1ay, задается прямоугольная система координат Оху с прямой, которая пересекается с ней в точке с координатами M1(x1, y1) с направляющим вектором a→=(ax, ay).
Необходимо составить каноническое уравнение прямой a, которая пройдет через две точки с координатами M1(x1, y1) и M2(x2, y2).
Прямая а имеет направляющий вектор M1M2→ с координатами(x2-x1, y2-y1), так как пересекает точки М1 и М2. Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение с координатами направляющего вектора M1M2→=(x2-x1, y2-y1) и координатами лежащих на них точках M1(x1, y1) и M2(x2, y2). Получим уравнение вида x-x1x2-x1=y-y1y2-y1 или x-x2x2-x1=y-y2y2-y1.
Рассмотрим рисунок, приведенный ниже.
Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M1(x1, y1) и M2(x2, y2). Получим уравнение вида x=x1+(x2-x1)·λy=y1+(y2-y1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λ.
Рассмотрим подробней на решении нескольких примеров.
Записать уравнение прямой, проходящей через 2 заданные точки с координатами M1-5, 23, M21, -16.
Решение
Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x1, y1 и x2, y2 принимает вид x-x1x2-x1=y-y1y2-y1. По условию задачи имеем, что x1=-5, y1=23, x2=1, y2=-16. Необходимо подставить числовые значения в уравнение x-x1x2-x1=y-y1y2-y1. Отсюда получим, что каноническое уравнение примет вид x-(-5)1-(-5)=y-23-16-23⇔x+56=y-23-56.
Ответ: x+56=y-23-56.
При необходимости решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.
Составить общее уравнение прямой, проходящей через точки с координатами M1(1, 1) и M2(4, 2) в системе координат Оху.
Решение
Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x-14-1=y-12-1⇔x-13=y-11.
Приведем каноническое уравнение к искомому виду, тогда получим:
x-13=y-11⇔1·x-1=3·y-1⇔x-3y+2=0
Ответ: x-3y+2=0.
Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y=kx+b. Если необходимо найти значение углового коэффициента k и числа b, при которых уравнение y=kx+b определяет линию в системе Оху, которая проходит через точки M1(x1, y1) и M2(x2, y2), где x1≠x2. Когда x1=x2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М1М2 определена общим неполным уравнением вида x-x1=0.
Потому как точки М1 и М2 находятся на прямой, тогда их координаты удовлетворяют уравнению y1=kx1+bи y2=kx2+b. Следует решить систему уравнений y1=kx1+by2=kx2+b относительно k и b.
Для этого найдем k=y2-y1x2-x1b=y1-y2-y1x2-x1·x1 или k=y2-y1x2-x1b=y2-y2-y1x2-x1·x2.
С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x1 или y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x2.
Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.
Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M2(2, 1) и y=kx+b.
Решение
Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y=kx+b. Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M1(-7, -5) и M2(2, 1).
Точки М1 и М2 располагаются на прямой, тогда их координаты должны обращать уравнение y=kx+b верное равенство. Отсюда получаем, что -5=k·(-7)+b и 1=k·2+b. Объединим уравнение в систему -5=k·-7+b1=k·2+bи решим.
При подстановке получаем, что
-5=k·-7+b1=k·2+b⇔b=-5+7k2k+b=1⇔b=-5+7k2k-5+7k=1⇔⇔b=-5+7kk=23⇔b=-5+7·23k=23⇔b=-13k=23
Теперь значения k=23 и b=-13 подвергаются подстановке в уравнение y=kx+b. Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y=23x-13.
Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.
Запишем каноническое уравнение прямой, проходящей через M2(2, 1) и M1(-7, -5), имеющее вид x-(-7)2-(-7)=y-(-5)1-(-5)⇔x+79=y+56.
Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x+79=y+56⇔6·(x+7)=9·(y+5)⇔y=23x-13.
Ответ: y=23x-13.
Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве
Если в трехмерном пространстве имеется прямоугольная система координат Охуz с двумя заданными несовпадающими точками с координатами M1(x1, y1, z1) и M2(x2, y2, z2), проходящая через них прямая M1M2, необходимо получить уравнение этой прямой.
Имеем, что канонические уравнения вида x-x1ax=y-y1ay=z-z1az и параметрические вида x=x1+ax·λy=y1+ay·λz=z1+az·λспособны задать линию в системе координат Охуz, проходящую через точки, имеющие координаты (x1, y1, z1) с направляющим вектором a→=(ax, ay, az).
Прямая M1M2 имеет направляющий вектор вида M1M2→=(x2-x1, y2-y1, z2-z1), где прямая проходит через точку M1(x1, y1, z1) и M2(x2, y2, z2), отсюда каноническое уравнение может быть вида x-x1x2-x1=y-y1y2-y1=z-z1z2-z1 или x-x2x2-x1=y-y2y2-y1=z-z2z2-z1, в свою очередь параметрические x=x1+(x2-x1)·λy=y1+(y2-y1)·λz=z1+(z2-z1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λz=z2+(z2-z1)·λ.
Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве и уравнение прямой.
Написать уравнение прямой, определенной в прямоугольной системе координат Охуz трехмерного пространства, проходящей через заданные две точки с координатами M1(2, -3, 0) и M2(1, -3, -5).
Решение
Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x-x1x2-x1=y-y1y2-y1=z-z1z2-z1.
По условию имеем, что x1=2, y1=-3, z1=0, x2=1, y2=-3, z2=-5. Отсюда следует, что необходимые уравнения запишутся таким образом:
x-21-2=y-(-3)-3-(-3)=z-0-5-0⇔x-2-1=y+30=z-5
Ответ: x-2-1=y+30=z-5.
210
-3), M5(3; -1), M6(-2; 1) лежат
на прямой и какие на ней не лежат.
P2, P3, P4, P5 расположены
на прямой ; их абсциссы соответственно равны
числам 4; 0; 2; -2; -6. Определить ординаты этих точек.
Q2, Q3, Q4, Q5 расположены
на прямой ; их ординаты соответственно равны
числам 1; 0; 2; -1, 3. Определить абсциссы этих точек.
пересечения прямой с координатными
осями и построить эту прямую на чертеже.
пересечения двух прямых , .
треугольника АВС даны соответственно
уравнениями , , . Определить
координаты его вершин.
сторон параллелограмма , и уравнение одной из
его диагоналей .
Определить координаты вершин
этого параллелограмма.
треугольника лежат на прямых , , . Вычислить его площадь S.
треугольника S=8, две его вершины суть точки А(1; -2),
В(2; 3), а третья вершина С лежит на прямой . Определить координаты вершины С.
треугольника S=1,5, две его вершины суть точки А(2;
-3), В(3; -2), центр масс этого треугольника лежит на
прямой .
Определить координаты третьей
вершины С.
уравнение прямой и построить прямую на чертеже,
зная ее угловой коэффициент k и отрезок b,
отсекаемый ею на оси Oy:
коэффициент k и отрезок b, отсекаемый на оси Oy, для
каждой из прямых:
прямой:
данной прямой;
данной прямой.
проходящей через точку М0(2; 1):
прямой;
данной прямой.
сторон прямоугольника , и одна из его вершин
А(2; -3). Составить уравнения двух других сторон
этого прямоугольника.
сторон прямоугольника , и уравнение одной из
его диагоналей .
Найти вершины прямоугольника.
точке Р(-5; 13) относительно прямой .
симметричную точке Р(-5; 13) относительно прямой .
следующих случаев составить уравнение прямой,
параллельной двум данным прямым и проходящей
посередине между ними:
коэффициент k прямой, проходящей через две данные
точки:
-5), M2(3; 2);
уравнения прямых, проходящих через вершины
треугольника A(5; -4), B(-1; 3), C(-3; -2) параллельно
противоположным сторонам.
сторон треугольника M1(2; 1), M2(5;
3), M3(3; -4). Составить
уравнение его сторон.
Q(-1; 0). Составить уравнение прямой, проходящей
через точку Q перпендикулярно к отрезку .
уравнение прямой, если точка P(2; 3) служит
основанием перпендикуляра, опущенного из начала
координат на эту прямую.
треугольника M1(2; 1), M2(-1; -1),
M3(3; 2). Составить уравнения
его высот.
треугольника даны уравнениями , , . Определить точку пересечения его
высот.
треугольника A(1; -1), B(-2; 1), C(3; 5). Составить
уравнение перпендикуляра, опущенного из вершины
А на медиану, проведенную из вершины В.
треугольника A(2; -2), B(3; -5), C(5; 7). Составить
уравнение перпендикуляра, опущенного из вершины
С на биссектрису внутреннего угла при вершине А.
уравнения сторон и медиан треугольника с
вершинами A(3; 2), B(5; -2), C(1; 0).
прямая. Определить точки пересечения этой прямой
с осями координат.
Доказать,
что условие, при котором три точки M1(x1,
y1), M2(x2, y2), M3(x3,
y3) лежат на одной прямой,
может быть записано в следующем виде:
Доказать,
что уравнение прямой, проходящей через две
данные точки M1(x1, y1),
M2(x2, y2), может
быть записано в следующем виде:
последовательные вершины выпуклого
четырехугольника A(-3; 1), B(3; 9), C(7; 6), D(-2; -6).
Определить точку пересечения его диагоналей.
вершины A(-3; -1), B(2; 2) параллелограмма ABCD и точка Q(3;
0) пересечения его диагоналей. Составить
уравнения сторон этого параллелограмма.
сторон прямоугольника , и уравнение его
диагонали . Составить уравнения остальных
сторон и второй диагонали этого прямоугольника.
треугольника A(1; -2), B(5; 4), C(-2; 0). Составить
уравнения биссектрис его внутреннего и внешнего
углов при вершине А.
уравнение прямой, проходящей через точку P(3; 5) на
одинаковых расстояниях от точек A(-7; 3) и B(11; -15).
точки P(-8; 12) на прямую, проходящую через точки A(2;
-3), B(-5; 1).
-9) относительно прямой,
проходящей через точки А(3; -4), B(-1; -2).
найти такую точку P, чтобы сумма ее расстояний до
точек M(1; 2), N(3; 4) была наименьшей.
найти такую точку P, чтобы сумма ее расстояний до
точек M(-3; 2), N(2; 5) была наибольшей.
расстояний которой до точек A(-7; 1), B(-5; 5) была бы
наименьшей.
расстояний которой до точек A(4; 1), B(0; 4) была бы
наибольшей.
проходящей через точку M0(2; 1) под углом 450 к данной прямой.
является вершиной квадрата, диагональ которого
лежит на прямой . Составить
уравнения сторон и второй диагонали этого
квадрата.
противоположные вершины квадрата A(-1; 3), C(6; 2).
Составить уравнения его сторон.
центром квадрата, одна из сторон которого лежит
на прямой . Составить уравнения
прямых, на которых лежат остальные стороны этого
квадрата.
Ox направлен луч света. Известно, что . Дойдя
до оси Ox, луч от нее отразился. Составить
уравнения прямых, на которых лежат падающий и
отраженный лучи.
по прямой , луч от нее отразился.
Составить уравнение прямой, на которой лежит
отраженный луч.
сторон треугольника , , . Доказать, что этот треугольник
равнобедренный. Решить задачу при помощи
сравнения углов треугольника.
уравнение прямой, проходящей через точку M1(x1; y1) параллельно
прямой , может быть записано в виде .
уравнение прямой, проходящей через точку М1(2: -3) параллельно
прямой:
условие перпендикулярности прямых ; может быть записано
в следующем виде: .
из следующих пар прямых перпендикулярны. Решить
задачу, не вычисляя угловых коэффициентов данных
прямых.
Доказать,
что формула для определения угла между
прямыми , может
быть записана в следующей форме:
задачу, не вычисляя угловых коэффициентов данных
прямых.
треугольника M1(-10; 2), M2(6; 4);
его высоты пересекаются в точке
N(5; 2). Определить координаты третьей вершины M3.
-1), B(5; 7) треугольника ABC и точка N(4; -1) пересечения
его высот. Составить уравнения сторон этого
треугольника.
даны: уравнение стороны АВ: , уравнения
высот АМ: и BN: . Составить уравнения двух
других сторон и третьей высоты этого
треугольника.
уравнения сторон треугольника АВС, если даны
одна из его вершина А(1; 3) и уравнения двух медиан , .
уравнения сторон треугольника, сли даны одна из
его вершин B(-4; -5) и уравнения двух высот , .
уравнения сторон треугольника, зная одну из его
вершин A(4; -1) и уравнения двух биссектрис , .
уравнения сторон треугольника, зная одну из его
вершин B(2; 6), а также уравнения высоты и
биссектрисы , проведенных из одной вершины.
уравнения сторон треугольника, зная одну его
вершину B(2; -1), а также уравнения высоты и биссектрисы , проведенных из
различных вершин.
уравнения сторон треугольника, зная одну его
вершину C(4; -1), а также уравнения высоты и медианы , проведенной из
одной вершины.
уравнения сторон треугольника, зная одну его
вершину B(2; -7), а также уравнения высоты и медианы , проведенных из
различных вершин.
уравнения сторон треугольника, зная одну его
вершину C(4; 3), а также уравнения биссектрисы и медианы , проведенных из
одной вершины.
уравнения сторон треугольника, зная одну его
вершину A(3; -1), а также уравнения биссектрисы и медианы , проведенных из
различных вершин.
уравнение прямой, которая проходит черезначало
координат и вместе с прямыми , образует
треугольник с площадью, равной 1,5.
проходящих через точку P(3; 0), найти такую, отрезок
которой, заключенный между прямыми , , делится в точке Р
пополам.
проведены всевозможные прямые. Доказать, что
отрезок каждой из них, заключенный между прямыми , , делится
в точке Р пополам.
проведены всевозможные прямые. Доказать, что
среди них нет прямой, отрезок которой,
заключенный между прямыми , , делился бы в точке Р
пополам.
уравнение прямой, проходящей через начало
координат, зная, что длина ее отрезка,
заключенного между прямыми , , равна .
уравнение прямой, проходящей через точку С(-5; 4),
зная, что длина ее отрезка, заключенного между
прямыми , , равна 5.