Сегодня поговорим об единичной окружности 🧑🏫
Можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота?🤔
Ну, конечно, можно! Записывай и запоминай общую формулу для нахождения координат точки:
x=x0+r⋅cos δ
y=y0+r⋅sin δ
x0,y0 — координаты центра окружности;
r — радиус окружности;
δ —угол поворота радиуса вектора.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
Координаты точек на окружности
Единичная окружность
О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Единичная окружность в тригонометрии
Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.
Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.
Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.
Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.
Поясним, как единичная окружность связана с тригонометрией.
В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.
Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.
Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.
Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:
- Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
- Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
- В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
- В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.
Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:
Радиан — одна из мер для определения величины угла.
Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.
Число радиан для полной окружности — 360 градусов.
Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.
Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.
Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:
- 2π радиан = 360°
- 1 радиан = (360/2π) градусов
- 1 радиан = (180/π) градусов
- 360° = 2π радиан
- 1° = (2π/360) радиан
- 1° = (π/180) радиан
Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.
Уравнение единичной окружности
При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Декартовы координаты точек плоскости. Уравнение окружности
Числовая ось
Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление
указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.
Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .
Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .
Прямоугольная декартова система координат на плоскости
Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).
Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.
Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты – абсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).
Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .
Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).
Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .
Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).
Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.
Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .
Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.
Формула для расстояния между двумя точками координатной плоскости
Утверждение 1 . Расстояние между двумя точками координатной плоскости
вычисляется по формуле
Доказательство . Рассмотрим рисунок 6.
| A1A2| 2 = = ( x2 – x1) 2 + ( y2 – y1) 2 . |
(1) |
что и требовалось доказать.
Уравнение окружности на координатной плоскости
Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:
Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .
Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид
Единичная числовая окружность на координатной плоскости
п.1. Понятие тригонометрии
Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., — спроектирован с использованием тригонометрии.
Базовым объектом изучения в тригонометрии является угол.
Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.
п.2. Числовая окружность
Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.
Числовая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0). Точка с координатами (1;0) является началом отсчета , ей соответствует угол, равный 0. Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным ; по часовой стрелке – отрицательным . |
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90°, –120°, –180°. |
п.3. Градусная и радианная мера угла
Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).
В целом, более обоснованной и естественной для измерения углов является радианная мера.
Найдем радианную меру прямого угла ∠AOB=90°. Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr. Длина дуги AB: (l_=frac =frac =frac .) Тогда радианная мера угла: $$ angle AOB=frac =frac =frac $$ |
30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360° |
(frac ) | (frac ) | (frac ) | (frac ) | (frac ) | (frac ) | (frac ) | (pi) | (frac ) | (2pi) |
п.4. Свойства точки на числовой окружности
Построим числовую окружность. Обозначим O(0;0), A(1;0)
Каждому действительному числу t на числовой окружности соответствует точка Μ(t). При t=0, M(0)=A. При t>0 двигаемся по окружности против часовой стрелки, описывая дугу ⌒ AM=t. Точка M — искомая. При t Например: |
Отметим на числовой окружности точки, соответствующие (frac , frac , frac , frac , pi), а также (-frac , -frac , -frac , -frac , -pi) Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности. |
Отметим на числовой окружности точки, соответствующие (frac , frac , frac ), и (-frac ). Все четыре точки совпадают, т.к. begin Mleft(frac right)=Mleft(frac +2pi kright)\ frac -2pi=-frac \ frac +2pi=frac \ frac +4pi=frac end |
п.5. Интервалы и отрезки на числовой окружности
Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.
Числовой промежуток | Соответствующая дуга числовой окружности |
Отрезок | |
$$ -frac lt t lt frac $$ а также, с учетом периода $$ -frac +2pi klt tltfrac +2pi k $$ |
|
Интервал | |
$$ -frac leq t leq frac $$ а также, с учетом периода $$ -frac +2pi kleq tleqfrac +2pi k $$ |
|
Полуинтервал | |
$$ -frac leq t ltfrac $$ а также, с учетом периода $$ -frac +2pi kleq tltfrac +2pi k $$ |
п.6. Примеры
Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?
Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: begin BE=30^ =frac .\ EC=60^ =frac .\ AE=EC+CD=90^ +30^ =120^ =frac .\ ED=EC+CD=60^ +90^ =150^ =frac . end
Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: (-frac ; frac ; frac ; frac ).
Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. begin -frac =-90^ , frac =135^ \ frac =210^ , frac =315^ end |
Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: (-frac ; 5pi; frac ; frac ).
Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk — четное количество π), чтобы попасть в промежуток от 0 до 2π. Далее – действуем, как в примере 2. begin -frac =frac cdotpi=-6pi+frac rightarrow frac =90^ \ 5pi=4pi+pirightarrow pi=180^ \ frac =frac pi=3pi-frac rightarrow pi-frac =frac \ frac =frac pi=7pi-frac rightarrow pi-frac =frac end |
Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.
Сравниваем каждое число с границами четвертей: begin 0, fracpi2approxfrac =1,57, piapprox 3,14\ 3pi 3cdot 3,14\ frac approx frac =4,71, 2piapprox 6,28 end |
(fracpi2lt 2lt pi Rightarrow ) угол 2 радиана находится во 2-й четверти
(pilt 4lt frac Rightarrow ) угол 4 радиана находится в 3-й четверти
(frac lt 5lt 2pi Rightarrow ) угол 5 радиана находится в 4-й четверти
(7gt 2pi), отнимаем полный оборот: (0lt 7-2pilt fracpi2Rightarrow) угол 7 радиан находится в 1-й четверти.
Пример 5. Изобразите на числовой окружности множество точек ((kinmathbb )), запишите количество полученных базовых точек.
Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.
Как найти координаты точки?
О чем эта статья:
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
- Координатные оси — это прямые, образующие систему координат.
- Ось абсцисс Ox — горизонтальная ось.
- Ось ординат Oy — вертикальная ось.
- Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
- Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
- верхний правый угол — первая четверть I;
- верхний левый угол — вторая четверть II;
- нижний левый угол — третья четверть III;
- нижний правый угол — четвертая четверть IV;
- Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
- Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
- Если обе координаты отрицательны, то число находится в третьей четверти.
- Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
- Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси Ox, то ее ордината равна 0. Например,
точка F (3, 0). - Начало координат — точка O. Ее координаты равны нулю: O (0,0).
- Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
- Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
- Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
- Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
- Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
- Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
Способ второй. Как определить положение точки D (-4, 2):
- Сместить прямую по оси Ox влево на 4 единицы, так как у нас
перед 4 стоит знак минус. - Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Уравнение окружности.
Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.
В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.
Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.
Геометрическая интерпретация уравнения окружности – это линия окружности.
Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.
Окружность с центром в точке А и радиусом R поместим в координатную плоскость.
Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:
Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.
Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:
Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.
Примеры решения задач про уравнение окружности
Задача. Составить уравнение заданной окружности
Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.
Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2
Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3
Получаем:
(x – 2 ) 2 + (y – ( -3 )) 2 = 4 2
или
(x – 2 ) 2 + (y + 3 ) 2 = 16 .
Задача. Принадлежит ли точка уравнению окружности
Проверить, принадлежит ли точка A(2;3) уравнению окружности (x – 2) 2 + (y + 3) 2 = 16.
Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.
В уравнение ( x – 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3
Проверим истинность полученного равенства
( x – 2) 2 + ( y + 3) 2 = 16
( 2 – 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно
Таким образом, заданная точка не принадлежит заданному уравнению окружности.
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki
http://www.profmeter.com.ua/communication/learning/course/course7/chapter0552/?LESSON_PATH=456.552
[/spoiler]
Содержание:
Окружность:
Определение: Кривой второго порядка называется линия, описываемая уравнением
Замечание: Если коэффициенты
При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.
Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки называемой центром окружности, на расстояние R, которое называется радиусом окружности.
Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:
Рис. 27. Вывод уравнения окружности.
Из рисунка видно, что по теореме Пифагора которое определяет уравнение окружности (Рис. 28):
Рис. 28. Окружность.
Если то уравнение принимает вид который называется каноническим уравнением окружности.
Пример:
Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия является касательной к окружности.
Решение:
Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.
В уравнении окружности таким образом оно имеет вид:
Пример:
Составить уравнение окружности, касающейся двух параллельных прямых причем одной из них в т. А (1; 2).
Решение:
Прежде всего определим, на какой из прямых или лежит точка A(1; 2). Для этого подставим ее координаты в уравнения прямых
следовательно, точка A(1; 2) принадлежит линии (в сокращенной форме это предложение пишут так: где значок означает “принадлежит”. Таким образом, диаметр окружности D равен расстоянию от точки A(1; 2) до прямой
а радиус окружности Найдём координаты центра окружности точки которая делит отрезок АВ пополам. Вначале составим уравнение прямой (АВ) и вычислим координаты точки перейдем от общего уравнения прямой к уравнению прямой с угловым коэффициентом Так как прямаято её угловой коэффициент Прямая (АВ) проходит через известную точку A(1;2), следовательно, Отсюда находим Таким образом,уравнение прямой (АВ):
Найдем координаты точки B, которая является пересечением прямых и (АВ), т.е. решим систему линейных алгебраических уравнений, составленную из уравнений прямых и (АВ): (В): Подставим выражение для переменной у из второго у равнения в первое, получим Подставив это значение во второе уравнение системы, найдем т.е.
Для вычисления координат точки О применим формулы деления отрезка пополам (О): в этой формуле (координаты точки О), (координаты точки А), (координаты точки В), следовательно, т.е. координаты точки О
Таким образом, уравнение искомой окружности имеет вид:
Окружность в высшей математике
Рассмотрим уравнение
которое получается из уравнения (I), если положить , .
Если в формулу, выражающую расстояние между двумя точками, подставить , , то получим Из уравнения (1) находим, что , т. е. . Это значит, что все точки , координаты которых удовлетворяют уравнению (1), находятся на расстоянии от начала координат. Следовательно, геометрическое место точек, координаты которых удовлетворяют уравнению (1), есть окружность радиуса с центром в начале координат. Аналогично получаем, что уравнение определяет окружность радиуса с центром в точке .
Пример:
Найдем уравнение окружности с центром в точке и радиусом, равным 10.
Решение:
Полагая, получим .
Разрешим это уравнение относительно , будем иметь
и
Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.
Центральный угол. Градусная мера дуги
Дуга окружности. Если отметить на окружности точки и , то окружность разделится на две дуги: большую дугу (мажорная дуга) и меньшую дугу (минорная дуга). Если точка является какой-либо точкой дуги , то . Если точки и являются концами диаметра, го каждая дуга является полуокружностью.
Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла:
Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна
Дуги окружности и их величины
Пример: минорная дуга:
мажорная дуга:
Конгруэнтные дуги
В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.
Если
Если
Длина дуги
Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.
Длина дуги в равна части длины окружности.
Длина дуги, соответствующей центральному углу с градусной мерой , составляет части длины окружности:
Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)
Пример №1
Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу .
Решение:
Так как центральный угол составляет часть полного угла, то длина искомой дуги:
Пример №2
Найдите длину дуги, соответствующей центральному углу в окружности радиусом 15 см.
Решение: подставляя значения в формулу длины дуги находим:
Окружность и хорда
Теорема о конгруэнтных хордах
Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.
Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.
1)Если , то
2)Если
Доказательство теоремы 1:
Теорема о серединном перпендикуляре хорд
Теорема 2.
Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.
Если
Доказательство теоремы 2.
Дано: – центральный угол,
Докажите:
Начертите радиусы и окружности.
Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.
Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.
Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если , то . Из по теореме Пифагора имеем:
Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности
Теорема 3.
Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.
Если , то
Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.
Доказательство теоремы 3
Дано: Окружность с центром
Докажите:
Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. и – серединные перпендикуляры конгруэнтных хорд и . , так как они являются половиной конгруэнтных хорд. Начертим радиусы окружности и : . Прямоугольные треугольники, и конгруэнтны (по катету и гипотенузе). Так как и являются соответствующими сторонами данных треугольников, то они конгруэнтны: . Теорема доказана.
Задача. Хорды и находятся на одинаковом расстоянии от центра окружности. . Если радиус окружности равен 41 единице, то найдите .
Решение: Так как хорды и находятся на одинаковом расстоянии от центра, то они конгруэнтны: Соединим точки и с точкой В прямоугольном треугольнике ; ; ;
Так как
Угол, вписанный в окружность
Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.
является углом вписанным в окружность с центром , а дуга, на которую опирается этот угол. Ниже показаны три разных угла, вписанных в окружность.
Угол, вписанный в окружность:
Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается.
Доказательство (текстовое): и радиусы окружности и равнобедренный треугольник. Значит, Так как является внешним углом , Если примем, что , то Так как градусные меры центрального угла и опирающейся на него дуги равны, то Следовательно, .
Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.
Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.
Конгруэнтные углы, вписанные в окружность
Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. , .
Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если , то .
Касательная к окружности
Касательная. Признак касательной
Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Прямая является касательной к окружности. Значит, Обратная теорема (признак касательной): Прямая, проходящая через точку окружности и перпендикулярная радиусу, проведенному в эту точку, является касательной окружности.
Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.
Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.
Доказательство теоремы 1. Если прямая – касательная к окружности, значит, она имеет единственную общую точку с окружностью. Допустим, что прямая не перпендикулярна радиусу Проведем и на прямой выделим отрезок Тогда так как Значит, точка также находится на окружности. То есть прямая имеет с окружностью две общие точки, что противоречит условию. Значит,
Свойства касательных, проведенных к окружности из одной точки
Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.
и касательные, проведенные из точки к окружности с центром
Углы, образованные секущими и касательными
Прямая, имеющая две общие точки с окружностью, называется секущей окружности.
Углы между двумя секущими
Вершина угла находится внутри окружности
Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному.
Углы между касательной и секущей
Вершина угла находится на окружности
Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.
Углы, образованные касательной и секущей
Вершина угла находится вне окружности
Теорема 1.
Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.
Отрезки секущих и касательных
Длина отрезков, секущих окружность
Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.
Теорема 2. Если из точки провести две прямые, пересекающие окружность соответственно в точках и , и то верно равенство
Теорема 3. Если из точки проведены прямая, которая пересекает окружность в точках и и касательная к окружности в точке то верно равенство:
Уравнение окружности
Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом и с центром в начале координат. Расстояние между центром окружности и ее любой точкой равно радиусу окружности.
Расстояние между двумя точками
Упрощение
Возведение обеих частей в квадрат
Уравнение окружности с центром в начале координат и радиусом :
Например, уравнение окружности с центром в начале координат и радиусом 2 имеет вид:
По формуле расстояния между центром окружности и точки на окружности радиуса имеем Возведя в квадрат обе части, получаем уравнение окружности с центром в точке и радиусом
Например, уравнение окружности с центром в точке и радиусом 4 имеет вид:
Пример №3
Постройте на координатной плоскости окружность, заданную уравнением
Решение: Напишем уравнение в виде Как видно,
Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, Проведем окружность через эти точки.
Пример №4
Точка находится на окружности, центром которой является начало координат. Напишите уравнение этой окружности.
Решение: Записав координаты точки в уравнении , получим: Уравнение этой окружности:
Пример №5
Найдем центр и радиус окружности, заданной уравнением
Решение:
Центр окружности точка Радиус
Пример №6
Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках На координатной плоскости 1 единица равна расстоянию в 100 км. Передающая станция должна быть расположена в точке, находящейся на одинаковом расстоянии от этих городов. Напишите координаты этой точки и уравнение соответствующей окружности.
Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка Эта точка, являясь центром окружности, показывает месторасположение станции. Расстояние между центром и любой из заданных точек является радиусом окружности,
Уравнение окружности:
Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.
Координаты точек, находящихся на окружности, и тригонометрические отношения
Если точка при повороте радиуса вокруг точки против движения часовой стрелки на угол преобразуется в точку то
Для координат точки соответствующей углу поворота на окружности, верны формулы В этих формулах – угол, отсчитываемый от положительной оси против движения часовой стрелки. Если точка не находится на оси ординат, то .
Синусы смежных углов равны, а косинусы взаимно противоположны.
Из этих формул при почленным делением получаем:
С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.
Сектор и сегмент
Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.
Например, часть круга, соответствующая центральному углу , составляет часть всего круга. Так как площадь круга , то площадь этого сектора будет Сегмент часть круга, ограниченная хордой и соответствующей дугой.
Площадь сектора
Площадь сектора:
Площадь сегмента:
Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь
- Эллипс
- Гипербола
- Парабола
- Многогранник
- Сфера в геометрии
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
I’m having a bit of a mind blank on this at the moment.
I’ve got a problem where I need to calculate the position of points around a central point, assuming they’re all equidistant from the center and from each other.
The number of points is variable so it’s DrawCirclePoints(int x)
I’m sure there’s a simple solution, but for the life of me, I just can’t see it 🙂
asked Mar 14, 2011 at 15:45
1
Given a radius length r and an angle t in radians and a circle’s center (h,k), you can calculate the coordinates of a point on the circumference as follows (this is pseudo-code, you’ll have to adapt it to your language):
float x = r*cos(t) + h;
float y = r*sin(t) + k;
Deduplicator
44.4k7 gold badges65 silver badges115 bronze badges
answered Mar 14, 2011 at 15:50
Brian DriscollBrian Driscoll
19.3k3 gold badges44 silver badges63 bronze badges
0
A point at angle theta on the circle whose centre is (x0,y0)
and whose radius is r
is (x0 + r cos theta, y0 + r sin theta)
. Now choose theta
values evenly spaced between 0 and 2pi.
Gewure
1,19817 silver badges30 bronze badges
answered Mar 14, 2011 at 15:48
Gareth McCaughanGareth McCaughan
19.8k1 gold badge41 silver badges62 bronze badges
3
Here’s a solution using C#:
void DrawCirclePoints(int points, double radius, Point center)
{
double slice = 2 * Math.PI / points;
for (int i = 0; i < points; i++)
{
double angle = slice * i;
int newX = (int)(center.X + radius * Math.Cos(angle));
int newY = (int)(center.Y + radius * Math.Sin(angle));
Point p = new Point(newX, newY);
Console.WriteLine(p);
}
}
Sample output from DrawCirclePoints(8, 10, new Point(0,0));
:
{X=10,Y=0}
{X=7,Y=7}
{X=0,Y=10}
{X=-7,Y=7}
{X=-10,Y=0}
{X=-7,Y=-7}
{X=0,Y=-10}
{X=7,Y=-7}
Good luck!
Deduplicator
44.4k7 gold badges65 silver badges115 bronze badges
answered Mar 14, 2011 at 15:54
Daniel LidströmDaniel Lidström
9,8021 gold badge27 silver badges35 bronze badges
3
Placing a number in a circular path
// variable
let number = 12; // how many number to be placed
let size = 260; // size of circle i.e. w = h = 260
let cx= size/2; // center of x(in a circle)
let cy = size/2; // center of y(in a circle)
let r = size/2; // radius of a circle
for(let i=1; i<=number; i++) {
let ang = i*(Math.PI/(number/2));
let left = cx + (r*Math.cos(ang));
let top = cy + (r*Math.sin(ang));
console.log("top: ", top, ", left: ", left);
}
shreyasm-dev
2,6835 gold badges16 silver badges34 bronze badges
answered Nov 22, 2018 at 7:44
maSC0d3RmaSC0d3R
3391 gold badge4 silver badges6 bronze badges
Using one of the above answers as a base, here’s the Java/Android example:
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
RectF bounds = new RectF(canvas.getClipBounds());
float centerX = bounds.centerX();
float centerY = bounds.centerY();
float angleDeg = 90f;
float radius = 20f
float xPos = radius * (float)Math.cos(Math.toRadians(angleDeg)) + centerX;
float yPos = radius * (float)Math.sin(Math.toRadians(angleDeg)) + centerY;
//draw my point at xPos/yPos
}
Deduplicator
44.4k7 gold badges65 silver badges115 bronze badges
answered Jul 2, 2014 at 19:24
scottyabscottyab
23.4k16 gold badges94 silver badges105 bronze badges
For the sake of completion, what you describe as “position of points around a central point(assuming they’re all equidistant from the center)” is nothing but “Polar Coordinates”. And you are asking for way to Convert between polar and Cartesian coordinates which is given as x = r*cos(t)
, y = r*sin(t)
.
martineau
118k25 gold badges164 silver badges294 bronze badges
answered Jan 29, 2014 at 14:46
AdarshaAdarsha
2,24722 silver badges28 bronze badges
PHP Solution:
class point{
private $x = 0;
private $y = 0;
public function setX($xpos){
$this->x = $xpos;
}
public function setY($ypos){
$this->y = $ypos;
}
public function getX(){
return $this->x;
}
public function getY(){
return $this->y;
}
public function printX(){
echo $this->x;
}
public function printY(){
echo $this->y;
}
}
function drawCirclePoints($points, $radius, &$center){
$pointarray = array();
$slice = (2*pi())/$points;
for($i=0;$i<$points;$i++){
$angle = $slice*$i;
$newx = (int)($center->getX() + ($radius * cos($angle)));
$newy = (int)($center->getY() + ($radius * sin($angle)));
$point = new point();
$point->setX($newx);
$point->setY($newy);
array_push($pointarray,$point);
}
return $pointarray;
}
answered Jan 26, 2014 at 21:19
bitmousbitmous
4003 silver badges6 bronze badges
1
Here is how I found out a point on a circle with javascript, calculating the angle (degree) from the top of the circle.
const centreX = 50; // centre x of circle
const centreY = 50; // centre y of circle
const r = 20; // radius
const angleDeg = 45; // degree in angle from top
const radians = angleDeg * (Math.PI/180);
const pointY = centreY - (Math.cos(radians) * r); // specific point y on the circle for the angle
const pointX = centreX + (Math.sin(radians) * r); // specific point x on the circle for the angle
answered Mar 5, 2020 at 11:58
Noby FujiokaNoby Fujioka
1,6591 gold badge10 silver badges15 bronze badges
I had to do this on the web, so here’s a coffeescript version of @scottyab’s answer above:
points = 8
radius = 10
center = {x: 0, y: 0}
drawCirclePoints = (points, radius, center) ->
slice = 2 * Math.PI / points
for i in [0...points]
angle = slice * i
newX = center.x + radius * Math.cos(angle)
newY = center.y + radius * Math.sin(angle)
point = {x: newX, y: newY}
console.log point
drawCirclePoints(points, radius, center)
answered Dec 2, 2015 at 4:00
PirijanPirijan
3,3403 gold badges19 silver badges29 bronze badges
Here is an R
version based on the @Pirijan answer above.
points <- 8
radius <- 10
center_x <- 5
center_y <- 5
drawCirclePoints <- function(points, radius, center_x, center_y) {
slice <- 2 * pi / points
angle <- slice * seq(0, points, by = 1)
newX <- center_x + radius * cos(angle)
newY <- center_y + radius * sin(angle)
plot(newX, newY)
}
drawCirclePoints(points, radius, center_x, center_y)
mal
1,0006 silver badges13 bronze badges
answered Jun 16, 2017 at 16:20
jstajsta
3,13625 silver badges35 bronze badges
The angle between each of your points is going to be 2Pi/x
so you can say that for points n= 0 to x-1
the angle from a defined 0 point is 2nPi/x
.
Assuming your first point is at (r,0)
(where r is the distance from the centre point) then the positions relative to the central point will be:
rCos(2nPi/x),rSin(2nPi/x)
answered Mar 14, 2011 at 15:49
ChrisChris
27.1k6 gold badges71 silver badges92 bronze badges
Working Solution in Java:
import java.awt.event.*;
import java.awt.Robot;
public class CircleMouse {
/* circle stuff */
final static int RADIUS = 100;
final static int XSTART = 500;
final static int YSTART = 500;
final static int DELAYMS = 1;
final static int ROUNDS = 5;
public static void main(String args[]) {
long startT = System.currentTimeMillis();
Robot bot = null;
try {
bot = new Robot();
} catch (Exception failed) {
System.err.println("Failed instantiating Robot: " + failed);
}
int mask = InputEvent.BUTTON1_DOWN_MASK;
int howMany = 360 * ROUNDS;
while (howMany > 0) {
int x = getX(howMany);
int y = getY(howMany);
bot.mouseMove(x, y);
bot.delay(DELAYMS);
System.out.println("x:" + x + " y:" + y);
howMany--;
}
long endT = System.currentTimeMillis();
System.out.println("Duration: " + (endT - startT));
}
/**
*
* @param angle
* in degree
* @return
*/
private static int getX(int angle) {
double radians = Math.toRadians(angle);
Double x = RADIUS * Math.cos(radians) + XSTART;
int result = x.intValue();
return result;
}
/**
*
* @param angle
* in degree
* @return
*/
private static int getY(int angle) {
double radians = Math.toRadians(angle);
Double y = RADIUS * Math.sin(radians) + YSTART;
int result = y.intValue();
return result;
}
}
answered Jan 9, 2017 at 13:03
GewureGewure
1,19817 silver badges30 bronze badges
Based on the answer above from Daniel, here’s my take using Python3.
import numpy
def circlepoints(points,radius,center):
shape = []
slice = 2 * 3.14 / points
for i in range(points):
angle = slice * i
new_x = center[0] + radius*numpy.cos(angle)
new_y = center[1] + radius*numpy.sin(angle)
p = (new_x,new_y)
shape.append(p)
return shape
print(circlepoints(100,20,[0,0]))
answered Jul 19, 2018 at 11:16
Как найти координаты точки в окружности
Под окружностью понимают фигуру, которая состоит из множества точек плоскости, равноудаленных от ее центра. Расстояние от центра до точек окружности называется радиусом.
Вам понадобится
- – простой карандаш;
- – тетрадь;
- – транспортир;
- – циркуль;
- – ручка.
Инструкция
Прежде чем найти координаты той либо иной точки окружности, постройте заданную окружность. При ее построении вам могут встретиться множество новых понятий. Так хорда – это отрезок, который соединяет две точки окружности, причем хорда, проходящая через центр окружности – максимальная (она носит название диаметра). Кроме того, к окружности может быть проведена касательная, которая представляет собой прямую, перпендикулярно расположенную к радиусу окружности, который проведен к точке пересечения касательной и рассматриваемой геометрической фигуры.
Если по условию задания известно, что построенную вами окружность пересекает другая окружность (она меньше по размерам), изобразите это графически: на рисунке должно быть изображено, что две эти окружности пересекаются, то есть имеют ряд общих точек. Центр первой окружности обозначьте точкой 1 (ее координаты (X1,Y1)), а ее радиус – R1. Таким образом, центр второй окружности должен быть обозначен точкой 2 (координаты этой точки (X2,Y2)), а радиус – R2. В точках пересечения фигур поставьте точки 3 (X3,Y3) и 4 (X4,Y4). Центральная точка пересечения должна быть обозначена 0: ее координаты (X,Y).
Для того чтобы найти координаты пресечения данных окружностей, а следовательно и точку, принадлежащую и первой, и второй из них, вам придется решить квадратное уравнение. Рассмотрите два образовавшихся треугольника (?103 и ?203) и проанализируйте их показатели. Гипотенузы этих треугольников – R1 и R2 соответственно. Зная значение гипотенуз, найдите отрезок D, соединяющий центр первой окружности с центром второй. Выбранный метод расчета напрямую зависит от того, какими получились анализируемые вами треугольники. Если они прямоугольные, то квадрат длины гипотенузы каждого из них будет равен сумме квадратов катетов данного треугольника. К тому же, длину катета можно найти по формуле: a = ccos ?, где с – длина гипотенузы, а cos? – косинус прилежащего угла. Найдя значение катетов, определите координаты интересующей вас точки.
Видео по теме
Обратите внимание
Будьте внимательны, рассчитывая значения катетов: не допустите ошибку.
Полезный совет
Не забудьте: один из углов прямоугольного треугольника прямой, то есть равен 90о.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.