Как найти корень арифметической прогрессии

Содержание:

Числовые последовательности

Термин «последовательность» используют, когда говорят о расположении учеников в шеренге, очередности дней недели, расположении команд в турнирной таблице и т. п. В этом параграфе мы выясним, что такое числовая последовательность, в частности, что такое арифметическая и геометрическая прогрессии, каковы их свойства, научимся использовать свойства упомянутых прогрессий при решении прикладных задач.

  • 1; 1; 2; 3; 5; 8;… — последовательность
  • 2; 5; 8; 11; 14;… — арифметическая прогрессия (каждое число, начиная со второго, на 3 больше предыдущего)
  • 2; 6; 18:54; 162:. . — геометрическая прогрессия (каждое число, начиная со второго, в три раза больше предыдущего)

Рассмотрим несколько примеров.

Пример:

Один подсолнух за лето «выпивает» в среднем 250 л воды. Сколько воды «выпьют» за лето 1 ,2 ,3 ,4 ,5 подсолнухов?

Числовые последовательности - определение и вычисление с примерами решения

Решение:

Во второй строке получили несколько чисел, записанных в определенном порядке, говорят, получим последовательность чисел: 250; 500; 750: 1000; 1250, в которой на первом месте стоит число 250, на втором — 500, на пятом — 1250. В этом примере каждому натуральному числу от 1 до 5 включительно соответствует одного число из указанной последовательности. Итак, имеем функцию, областью определения которой является множество чисел 1.2.3.4.5.

Пример:

3аписать в порядке возрастания натуральные числа запись которых оканчивается цифрой 2.

Решение:

Получим последовательность чисел 2; 12; 22; 32; 42; …. в которой на первом месте стоит число 2, на втором — 12. на третьем — 22 и т. д.

Числовые последовательности - определение и вычисление с примерами решения

В этом примере каждому натуральному числу Числовые последовательности - определение и вычисление с примерами решения соответствует одно чис­ло из указанной последовательности. Так, натуральному числу 6 соответствует число 52 этой последовательности, числу 7 — число 62 и т. д. Следовательно, имеем функцию, областью определения которой является множество всех натуральных чисел.

Определение:

Последовательностью называют функцию, заданную на множестве всех или первых Числовые последовательности - определение и вычисление с примерами решения натуральных чисел.

Числа образующие последовательность. называют членами последовательности. Если последовательность имеет конечное число членов, тогда ее называют конечной последовательностью (пример 1). Если последовательность имеет бесконечное число членов, то ее называют бесконечной последовательностью (пример 2), а в записи это показывают многоточием после последнего записанною члена последовательности.

Приведем еще примеры последовательностей:

  • 4; 8; 12; 16;… — последовательность натуральных чисел, кратных 4;
  • Числовые последовательности - определение и вычисление с примерами решения — последовательность правильных дробей с числителем 1;
  • -1: -2 ; -3 ; -4 ;… — последовательность отрицательных целых чисел;
  • 0.1; 1.1; 2.1: 3,1 — последовательность, состоящая из четырех членов;
  • 7 :7 ; 7 :7 :… — последовательность, все члены которой равны 7.
  • Четвертая последовательность конечная, остальные — бесконечные.

В общем случае члены последовательности, как правило, обозначают маленькими буквами с индексами внизу. Каждый индекс указывает порядковый номер члена последовательности. Например, первый член последовательности обозначают Числовые последовательности - определение и вычисление с примерами решения читают «а первое», второй — Числовые последовательности - определение и вычисление с примерами решения читают «а второе», член последовательности с номером Числовые последовательности - определение и вычисление с примерами решения обозначают Числовые последовательности - определение и вычисление с примерами решения, и читают «а энное». Саму последовательность обозначают Числовые последовательности - определение и вычисление с примерами решения и записывают: Числовые последовательности - определение и вычисление с примерами решения Член Числовые последовательности - определение и вычисление с примерами решения называют следующим за Числовые последовательности - определение и вычисление с примерами решения а член Числовые последовательности - определение и вычисление с примерами решения — предыдущим члену Числовые последовательности - определение и вычисление с примерами решения Например, рассмотрим последовательность Числовые последовательности - определение и вычисление с примерами решения 1: 3; 5;… — последовательность нечетных натуральных чисел. В ней Числовые последовательности - определение и вычисление с примерами решенияЧлен последовательности Числовые последовательности - определение и вычисление с примерами решения является предыдущим члену Числовые последовательности - определение и вычисление с примерами решения и последующим за членом Числовые последовательности - определение и вычисление с примерами решения

Способы задании последовательностей

Чтобы задать последовательность, нужно указать способ, при помощи которого можно найти любой ее член. Существуют различные способы задания последовательностей.

1. Последовательность можно задать описанием способа определения ее членов. Например, пусть задана последовательность, членами которой являются делители числа 15, записанные в порядке возрастания. Эту последовательность, описанную словами, можно записать так; 1 ; 3; 5: 15.

2. Конечную последовательность можно задать, перечислив ее члены. Например, Числовые последовательности - определение и вычисление с примерами решения

3. Последовательность можно задать таблицей, в которой напротив каждого члена последовательности указывают его порядковый номер. Например.

Числовые последовательности - определение и вычисление с примерами решения

4. Последовательность можно задать формулой, по которой можно найти любой член последовательности, зная его номер. Например, последова­тельность натуральных чисел, кратных 3, можно задать формулой Числовые последовательности - определение и вычисление с примерами решения последовательность чисел, обратных натуральным, — формулой Числовые последовательности - определение и вычисление с примерами решения Такие формулы называют еще формулами Числовые последовательности - определение и вычисление с примерами решения члена последовательности. Пусть последовательность Числовые последовательности - определение и вычисление с примерами решения задана формулой Числовые последовательности - определение и вычисление с примерами решения Подставляя вместо Числовые последовательности - определение и вычисление с примерами решения натуральные числа 1,2 ,3 …., получим: Числовые последовательности - определение и вычисление с примерами решения

Поэтому Числовые последовательности - определение и вычисление с примерами решения 2; 2; 0 ;….

5. Последовательность можно задать так: сначала указать первый или несколько первых членов последовательности, а потом — условие, по которому можно определить любой член последовательности, зная предыдущие. Такой способ задания последовательности называют рекуррентным. Например, найдем несколько членов последовательности Числовые последовательности - определение и вычисление с примерами решения первый член которой равен -1 , второй — -3 , а каждый последующий, начиная с третьего, равен произведению двух предыдущих. Получим: Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Условия, определяющие эту последовательность, можно записать так: Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения Формулу, при помощи которой любой член последовательности можно найти через предыдущие, называют рекуррентной формулой.

Рассмотренные выше последовательности являются числовыми последовательностями, так как их элементами являются числа. Существуют и другие последовательности. Например, последовательность передач на канале телевидения, последовательность футбольных команд в турнирной таблице и т. п.

В дальнейшем будем рассматривать только числовые последовательности.

Пример:

Записать шесть первых членов последовательности натуральных чисел, которые при делении на 3 дают остаток 2.

Решение:

Первым натуральным числом, которое при делении па 3 дает остаток 2, является число 2. Следующим является число 5 — оно на 3 больше 2, дальше 8 — на 3 больше 5 и т. д. Поэтому получим: 2; 5; 8; I I ; 14; 17.

Ответ. 2 ;5 ;8 ; 11; 14; 17

Пример:

Записать формулу Числовые последовательности - определение и вычисление с примерами решения-го члена последовательности Числовые последовательности - определение и вычисление с примерами решения натуральных чисел, которые больше 8 и при делении на 9 дают остаток 7.

Решение:

Первым натуральным числом, которое больше 8 и при делении на 9 дает остаток 7, является число 16. Его можно записать так: 16 = 9 •1 + 7 . Вторым будет число 25, которое можно записать гак: 25 = 9 • 2 + 7, третьим — 34 = 9 • 3 + 7 и т. д. Тогда формула Числовые последовательности - определение и вычисление с примерами решения-го члена искомой последовательности Числовые последовательности - определение и вычисление с примерами решения будет иметь вид: Числовые последовательности - определение и вычисление с примерами решения Ответ. Числовые последовательности - определение и вычисление с примерами решения

Пример:

Последовательность задана формулой Числовые последовательности - определение и вычисление с примерами решения Является ли членом этой последовательности число 6?

Решение:

Число 6 будет членом этой последовательности, если найдется такой номер Числовые последовательности - определение и вычисление с примерами решения что Числовые последовательности - определение и вычисление с примерами решения то есть Числовые последовательности - определение и вычисление с примерами решения Получаем уравнение: Числовые последовательности - определение и вычисление с примерами решения откуда Числовые последовательности - определение и вычисление с примерами решения Число Числовые последовательности - определение и вычисление с примерами решенияне является натуральным, а поэтому не может быть номером члена последовательности. Следовательно, число 6 яв­ляется третьим членом заданной последовательности.

Ответ. Да.

Пример:

Записать три первых члена последовательности Числовые последовательности - определение и вычисление с примерами решения если Числовые последовательности - определение и вычисление с примерами решения

Решение:

При Числовые последовательности - определение и вычисление с примерами решения = 1 по формуле Числовые последовательности - определение и вычисление с примерами решения получим: Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения При Числовые последовательности - определение и вычисление с примерами решения = 2 получим: Числовые последовательности - определение и вычисление с примерами решения Ответ. 2; 4; 10.

Арифметическая прогрессия и ее свойства

Среди числовых последовательностей важную роль играют последовательности, которые называют арифметической и геометрической прогрессиями.

Пример:

Группа туристов поднималась на гору в течение 4 ч. За первый час туристы прошли 2,5 км, а та каждый следующий — на 0,5 км меньше, чем за предыдущий. Какой путь проходили туристы за каждый час движения?

Решение:

За первый час туристы прошли 2.5 км. за второй — 2,5 – 0,5 = 2 (км), за третий — 2 – 0,5 = 1,5 (км), за четвертый — 1 км. Получили конечную последовательность чисел: 2,5; 2; 1,5; 1, в которой каждый последующий член, начиная со второю, равен предыдущему, сложенному с одним и тем же числом -0.5.

Пример:

3аписать последовательность натуральных чисел, которые при делении на 3 дают остаток 1.

Решение:

Получим: 1;4 ;7 ; 10; 13; 16; 19; 22 ;…. В этой последовательности любой член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом 3. Каждая из рассмотренных последовательностей является примером арифметической прогрессии.

Определение:

Арифметической прогрессией называют последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

Это число называют разностью арифметической прогрессии и обознача­ют буквой d (d — начальная буква латинского слова differentia — разность). Итак, если имеется арифметическая прогрессия Числовые последовательности - определение и вычисление с примерами решения то Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения то есть для любого натурального Числовые последовательности - определение и вычисление с примерами решения выполняется равенство

Числовые последовательности - определение и вычисление с примерами решения

Из определения арифметической прогрессии следует, что разность между любым ее членом, начиная со второго, и предыдущим членом равна одному и тому же числу — разности d, то есть Числовые последовательности - определение и вычисление с примерами решенияИтак, Числовые последовательности - определение и вычисление с примерами решения

Верно и наоборот: если в некоторой числовой последовательности разность между любым ее членом, начиная со второго, и предыдущим членом равна одному и тому же числу, то такая последовательность является арифметической прогрессией.

Арифметические прогрессии могут быть конечными (пример 1) и беско­нечными (пример 2).

Чтобы задать арифметическую прогрессию, достаточно указать ее первый член и разность. Тогда каждый последующий член можно вычислить по предыдущему по рекуррентной формуле Числовые последовательности - определение и вычисление с примерами решения В таблице приведены примеры арифметических прогрессий для некоторых значений Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Рассмотрим свойства арифметической прогрессии.

1. В арифметической прогрессии 1; 3; 5: 7; 9 ;… каждый член, начиная со второго, является средним арифметическим двух соседних с ним членов:

Числовые последовательности - определение и вычисление с примерами решения

Покажем, что такое свойство имеет любая арифметическая прогрессия. Пусть имеется арифметическая прогрессия Числовые последовательности - определение и вычисление с примерами решения с разностью d. Тогда для натуральных значений Числовые последовательности - определение и вычисление с примерами решения выполняются равенства: Числовые последовательности - определение и вычисление с примерами решения Отсюда: Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Свойство 1. Любой член арифметической прогрессии, начиная со второго, является средним арифметическим двух соседних с ним членов. С этим свойством арифметической прогрессии и связано ее название.

2. Рассмотрим конечную арифметическую прогрессию Числовые последовательности - определение и вычисление с примерами решения имеющую 7 членов: 3; 5; 7; 9; 11; 13; 15. Найдем сумму крайних членов прогрессии и суммы членов, равноотстоящих от крайних:

Числовые последовательности - определение и вычисление с примерами решения

Сумма любых двух членов арифметической прогрессии, равноотстоя­щих от ее крайних членов, равна сумме крайних членов.

Используем эти соображения для произвольной конечной арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения с разностью Числовые последовательности - определение и вычисление с примерами решения Пусть Числовые последовательности - определение и вычисление с примерами решения Тогда:

Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Свойство 2. Сумма любых двух членов конечной арифметической прогрессии, равноотстоящих от ее крайних членов, равна сумме крайних членов этой прогрессии.

Пример:

Найти разность и третий член арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Решение:

В этой прогрессии Числовые последовательности - определение и вычисление с примерами решения Поэтому:

Числовые последовательности - определение и вычисление с примерами решения Ответ. 0.2; 1,4.

Пример:

Является ли последовательность чисел 3: 0: -3 : -6 ; -9 арифметической прогрессией?

Решение:

Обозначим члены заданной последовательности:

Числовые последовательности - определение и вычисление с примерами решения Найдем разность последующего и предыдущего членов последовательности:

Числовые последовательности - определение и вычисление с примерами решения

Так как полученные разности равны одному и тому же числу – 3, то эта последовательность является арифметической прогрессией.

Пример:

Между числами 7 и 15 вставить такое число, чтобы все три числа образовали арифметическую прогрессию.

Решение:

Пусть Числовые последовательности - определение и вычисление с примерами решения — искомое число, тогда последовательность 7; х; 15 — арифметическая прогрессия. Второй член арифметической прогрессии является средним арифметическим первого и третьего членов: Числовые последовательности - определение и вычисление с примерами решения Ответ. 11 .

Формула n-го члена арифметической прогрессии

Чтобы задать арифметическую прогрессию, достаточно указать ее первый член и разность, а последующие члены можно найти по формуле Числовые последовательности - определение и вычисление с примерами решения

Например, найдем несколько первых членов арифметической прогрессии, в которой Числовые последовательности - определение и вычисление с примерами решения Получим:

Числовые последовательности - определение и вычисление с примерами решения

Далее можно найти Числовые последовательности - определение и вычисление с примерами решения и т. д.

Чтобы найти член этой прогрессии с большим порядковым номером, например, Числовые последовательности - определение и вычисление с примерами решения нужно выполнить много вычислений. Поэтому вычисление членов арифметической прогрессии но формуле Числовые последовательности - определение и вычисление с примерами решениячасто является неудобным. Найдем более краткий путь вычисления n-го члена арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения

По определению арифметической прогрессии получим:

Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Замечаем, что в этих формулах коэффициент при d на 1 меньше поряд­кового номера искомого члена прогрессии. Так, Числовые последовательности - определение и вычисление с примерами решения Итак, можем записать:

Числовые последовательности - определение и вычисление с примерами решения

Полученную формулу называют формулой Числовые последовательности - определение и вычисление с примерами решения члена арифметической прогрессии.

Пример:

Найти девятый член арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения

Решение:

Имеем: Числовые последовательности - определение и вычисление с примерами решения Найдем разность прогрессии: Числовые последовательности - определение и вычисление с примерами решения Тогда Числовые последовательности - определение и вычисление с примерами решения Ответ. -1,4.

Пример:

Найти первый член арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решения

Решение:

Используя формулу Числовые последовательности - определение и вычисление с примерами решения-го члена арифметической прогрессии при Числовые последовательности - определение и вычисление с примерами решения = 8, получим: Числовые последовательности - определение и вычисление с примерами решения Отсюда Числовые последовательности - определение и вычисление с примерами решения Ответ. 107.

Пример:

Является ли число 181 членом арифметической прогрессии, в которой Числовые последовательности - определение и вычисление с примерами решения

Решение:

Число 181 будет членом прогрессии, если существует такое натуральное число Числовые последовательности - определение и вычисление с примерами решения— порядковый номер члена прогрессии, что Числовые последовательности - определение и вычисление с примерами решения Так как Числовые последовательности - определение и вычисление с примерами решения Решим полученное уравнение: Числовые последовательности - определение и вычисление с примерами решения Число 36.6 не является натуральным, поэтому число 181 не является членом данной арифметической прогрессии. Ответ. Нет.

Пример:

Найти первый член и разность арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения если сумма второго и пятого ее членов равна 20, а разность девятого и третьего членов равна 18.

Решение:

По условию имеем: Числовые последовательности - определение и вычисление с примерами решения Записав члены Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения по формуле Числовые последовательности - определение и вычисление с примерами решения-го члена арифметической прогрессии, получим систему уравнений:

Числовые последовательности - определение и вычисление с примерами решения Откуда Числовые последовательности - определение и вычисление с примерами решения

Ответ. 2.5;3 .

Формула суммы первых п членов арифметической прогрессии

Пример:

Найти сумму натуральных чисел от 1 до 100 включительно.

Решение:

Запишем суму Числовые последовательности - определение и вычисление с примерами решения данных чисел двумя способами: в порядке возрастания и в порядке убывания слагаемых и почленно сложим полученные равенства:

Числовые последовательности - определение и вычисление с примерами решения

Суммы пар чисел, расположенных друг под другом в правых частях этих равенств, равны одному и тому же числу 101; таких нар 100. Поэтому

Числовые последовательности - определение и вычисление с примерами решения

Отсюда Числовые последовательности - определение и вычисление с примерами решения

Итак, сумма всех натуральных чисел от 1 до 100 включительно равна 5050. Отметим, что последовательность натуральных чисел I; 2; …; 99: 100 является арифметической прогрессией Числовые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решения Используем рассмотренный способ для вывода формулы суммы Числовые последовательности - определение и вычисление с примерами решения первых Числовые последовательности - определение и вычисление с примерами решения членов любой арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения Запишем:

Числовые последовательности - определение и вычисление с примерами решения

Сложим почленно эта равенства, получим:

Числовые последовательности - определение и вычисление с примерами решения

По свойству 2 арифметической прогрессии сумма каждых двух членов, взятых в скобки, равна Числовые последовательности - определение и вычисление с примерами решения Таких сум есть Числовые последовательности - определение и вычисление с примерами решения поэтому:

Числовые последовательности - определение и вычисление с примерами решения

Отсюда Числовые последовательности - определение и вычисление с примерами решения

Если в этой формуле вместо Числовые последовательности - определение и вычисление с примерами решения подставить выражение Числовые последовательности - определение и вычисление с примерами решения то получим:

Числовые последовательности - определение и вычисление с примерами решения

Итак,

Числовые последовательности - определение и вычисление с примерами решения

Формулы (1) и (2) называют формулами суммы первых Числовые последовательности - определение и вычисление с примерами решения членов арифметической прогрессии.

Пример:

Найти сумму первых девяти членов арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Решение:

1-й способ. Имеем: Числовые последовательности - определение и вычисление с примерами решения Найдем Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения По формуле (1) находим:

Числовые последовательности - определение и вычисление с примерами решения

2-й способ. Зная, что Числовые последовательности - определение и вычисление с примерами решения по формуле (2) находим:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 171.

Пример:

Найти сумму нечетных натуральных чисел, не превышающих 71.

Решение:

Нечетные натуральные числа образуют арифметическую прогрессию 1; 3: 5;……. в которой Числовые последовательности - определение и вычисление с примерами решенияНайдем, какой порядковый номер имеет член 71 этой прогрессии:Числовые последовательности - определение и вычисление с примерами решения Следовательно, нужно искать сумму первых тридцати шести членов прогрессии. Имеем:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 1296.

Пример:

Найти сумму натуральных чисел не больше 105, которые при делении на 9 дают остаток 1.

Решение:

Натуральные числа, которые при делении на 9 дают остаток 1, образуют арифметическую прогрессию Числовые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения Найдем, сколько членов этой прогрессии не превышают 105. Для этого решим неравенство Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Следовательно, нужно искать сумму первых двенадцати членов про­грессии. Имеем: Числовые последовательности - определение и вычисление с примерами решения Ответ. 606.

Пример:

Найти первый член арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения если сумма второго и двенадцатого ее членов равна 20.4, а сумма первых одиннадцати— 121.

Решение:

По условию имеем: Числовые последовательности - определение и вычисление с примерами решения Используя формулы Числовые последовательности - определение и вычисление с примерами решения-по члена и суммы первых Числовые последовательности - определение и вычисление с примерами решения членов арифметической прогрессии, получим систему уравнений Числовые последовательности - определение и вычисление с примерами решения Отсюда:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 15.

Пример:

Сколько нужно взять первых членов арифметическом прогрессии Числовые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решения чтобы их сумма равнялась 90?

Решение:

Используя формулу суммы первых Числовые последовательности - определение и вычисление с примерами решения членов арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения получим: Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения Корень Числовые последовательности - определение и вычисление с примерами решения не удовлетворяет условию задачи. Следовательно, Числовые последовательности - определение и вычисление с примерами решения = 12. Ответ. 12.

Геометрическая прогрессия и ее свойства

В благоприятных условиях некоторые бактерии размножаются так, что их количество удваивайся каждые 30 минут. Поэтому, если первоначально была одна бактерия, то их будет:

  • через 0,5 ч 2
  • через I ч 4
  • через 1,5 ч 8
  • через 2 ч 16
  • …………………..

Во втором столбце получили последовательность чисел: 2: 4; 8; 16; каждый член которой, начиная со второго, равен предыдущему, умноженному на число 2. Такая последовательность является примером геометрической прогрессии.

Определение:

Геометрической прогрессией называют последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

Это число называют знаменателем геометрической прогрессии и обо­значают буквой q (начальная буква французского слова qwoti — частное). Итак, если имеем геометрическую прогрессию Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения то сеть для любого натурального Числовые последовательности - определение и вычисление с примерами решения выполняется равенство Числовые последовательности - определение и вычисление с примерами решения

Из определения геометрической прогрессии следует, что частное от деления любого ее члена, начиная со второго, на предыдущий член равно одному и тому же числу – знаменателю то есть: Числовые последовательности - определение и вычисление с примерами решения Итак, Числовые последовательности - определение и вычисление с примерами решения Верно и наоборот: если в некоторой последовательности частное от деления любого ее члена, начиная со второго, на предыдущий член равно одному и тому же числу, то такая последовательность является геометрической прогрессией. Геометрические прогрессии, как и арифметические, мотут быть конечными и бесконечными.

Чтобы задать геометрическую прогрессию, достаточно указать ее первый член и знаменатель. Тогда каждый последующий член по предыдущему можно вычислить по рекуррентной формуле Числовые последовательности - определение и вычисление с примерами решения

В таблице прицелены примеры геометрических прогрессий для некоторых значений Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Рассмотрим свойства геометрической прогрессии.

1. В геометрической прогрессии 1; 3: 9, 27; 81;… квадрат каждого члена, начиная со второго, равен произведению двух соседних с ним членов:

Покажем, что такое свойство имеет любая геометрическая прогрессия. Пусть имеется геометрическая прогрессия Числовые последовательности - определение и вычисление с примерами решения со знаменателем q. Тогда при Числовые последовательности - определение и вычисление с примерами решения выполняются равенства: Числовые последовательности - определение и вычисление с примерами решения Отсюда Числовые последовательности - определение и вычисление с примерами решения Числовые последовательности - определение и вычисление с примерами решения

Свойство 1

Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух сосед­них с ним членов.

Если все члены геометрической прогрсссии являются положительными числами, то из равенства Числовые последовательности - определение и вычисление с примерами решения следует, что Числовые последовательности - определение и вычисление с примерами решения Следовательно, каждый член такой прогрессии, начиная со второго, является средним геометрическим .двух соседних с ним членов. С этим свойством геометрической профессии и связано ее название.

2. Рассмотрим конечную геометрическую прогрессию Числовые последовательности - определение и вычисление с примерами решения содержащую шесть членов: -1:2; 4; 8; -16:32. Найдем произведение крайних членов этой прогрессии и произведение членов, равноотстоящих от крайних:

Числовые последовательности - определение и вычисление с примерами решения

Видим, что произведения членов профессии, равноотстоящих от ее крайних членов, одинаковы и равны произведению крайних членов.

Используем эти соображения для произвольной конечной геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения Пусть Числовые последовательности - определение и вычисление с примерами решения Тогда:

Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Свойство 2

Произведение любых двух членов конечной геометрической прогрессии, равноотстоящих от ее крайних членов, равно произведению крайних членов.

Пример:

Найти знаменатель и третий член геометрической npoгpеcсии Числовые последовательности - определение и вычисление с примерами решения

Решение:

В этой прогрессии Числовые последовательности - определение и вычисление с примерами решения Поэтому:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 1,5; 2,25.

Пример:

Доказать, что последовательность Числовые последовательности - определение и вычисление с примерами решения является геометрической профессией.

Решение:

Обозначим члены последовательности: Числовые последовательности - определение и вычисление с примерами решения Найдем частные от деления последующего члена последовательности на предыдущий:

Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Так как полученные частные равны одному и тому же числу Числовые последовательности - определение и вычисление с примерами решения то данная последовательность является геометрической прогрессией со знаменателем Числовые последовательности - определение и вычисление с примерами решения

Пример:

Найти второй член геометрической прогрессии: Числовые последовательности - определение и вычисление с примерами решения

Решение:

Согласно свойству 1 геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения Отсюда Числовые последовательности - определение и вычисление с примерами решения – 10 или Числовые последовательности - определение и вычисление с примерами решения = -10. Ответ 10 или-10.

Формула n-го члена геометрической прогрессии

Чтобы задать геометричсскую прогрессию Числовые последовательности - определение и вычисление с примерами решения достаточно указать ее первый член и знаменатель, а следующие члены можно найти по формуле Числовые последовательности - определение и вычисление с примерами решения Например, запишем несколько первых членов геометрической прогрессии, в которой Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Далее можно найти Числовые последовательности - определение и вычисление с примерами решения и т. д. Чтобы найти член этой прогрессии с большим порядковых! номером, на­пример, Числовые последовательности - определение и вычисление с примерами решения нужно выполнить мною вычислений. Поэтому вычисление членов геометрической прогрессии по формуле Числовые последовательности - определение и вычисление с примерами решения часто является неудобным. Найдем более краткий путь вычисления Числовые последовательности - определение и вычисление с примерами решения-го члена геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения со знаменателем q. По определению геометрической прогрессии имеем:

Числовые последовательности - определение и вычисление с примерами решения

Замечаем, что в этих формулах показатель степени числа q на единицу меньше порядкового номера искомого члена прогрессии. Так, Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения Итак, можем записать:

Числовые последовательности - определение и вычисление с примерами решения Полученную формулу называют формулой Числовые последовательности - определение и вычисление с примерами решения-го члена геометрической прогрессии.

Пример:

Найти шестой член геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Решение:

Имеем: Числовые последовательности - определение и вычисление с примерами решения Тогда Числовые последовательности - определение и вычисление с примерами решения Ответ. 6250.

Пример:

Найти первый член геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения если Числовые последовательности - определение и вычисление с примерами решения

Решение:

Используя формулу Числовые последовательности - определение и вычисление с примерами решенияпри Числовые последовательности - определение и вычисление с примерами решения = 7, получим:

Числовые последовательности - определение и вычисление с примерами решения Ответ. 0,5

Пример:

Найти знаменатель геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения в кото­рой Числовые последовательности - определение и вычисление с примерами решения

Решение:

Используя формулу Числовые последовательности - определение и вычисление с примерами решения-го члена геометрической прогрессии, получим: Числовые последовательности - определение и вычисление с примерами решения Отсюда:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. -3 или 3.

Формула суммы первых n членов геометрической прогрессии

Пусть Числовые последовательности - определение и вычисление с примерами решения — геометрическая прогрессия, знаменатель которой равен Числовые последовательности - определение и вычисление с примерами решения Обозначим через Числовые последовательности - определение и вычисление с примерами решения сумму первых Числовые последовательности - определение и вычисление с примерами решения членов этой профессии. то есть

Числовые последовательности - определение и вычисление с примерами решения (1)

Умножив обе части этого равенства на q получим:

Числовые последовательности - определение и вычисление с примерами решения

Пo определению геометрической прогрессии: Числовые последовательности - определение и вычисление с примерами решения Числовые последовательности - определение и вычисление с примерами решения Тогда:

Числовые последовательности - определение и вычисление с примерами решения (2)

Вычтем почленно из равенства (1) равенство (2), получим:

Числовые последовательности - определение и вычисление с примерами решения

Если Числовые последовательности - определение и вычисление с примерами решения, то

Числовые последовательности - определение и вычисление с примерами решения (3)

Учитывая, что Числовые последовательности - определение и вычисление с примерами решения получим Числовые последовательности - определение и вычисление с примерами решения Итак,

Числовые последовательности - определение и вычисление с примерами решения (4)

Формулы (3) и (4) называют формулами суммы первых Числовые последовательности - определение и вычисление с примерами решения членов геометрической прогрессии. При Числовые последовательности - определение и вычисление с примерами решения каждый член геометрической прогрессии равен Числовые последовательности - определение и вычисление с примерами решения поэтому Числовые последовательности - определение и вычисление с примерами решения

Пример:

Найти сумму восьми первых членов геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Решение:

Имеем : Числовые последовательности - определение и вычисление с примерами решенияТогда но формуле Числовые последовательности - определение и вычисление с примерами решения находим: Числовые последовательности - определение и вычисление с примерами решения

Ответ. -255.

Пример:

Найти первый член геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения если четвертый ее член в три раза больше третьего, а сумма первых пяти членов равна -12,1.

Решение:

Так как Числовые последовательности - определение и вычисление с примерами решения По условию Числовые последовательности - определение и вычисление с примерами решения поэтому:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. -0,1.

Сумма бесконечной геометрической прогрессии, в которой [q] меньше 1

Сумма бесконечной геометрической прогрессии, в которой Числовые последовательности - определение и вычисление с примерами решения

Пусть стороны прямоугольника Числовые последовательности - определение и вычисление с примерами решения равны I см и 4 см (рис. 74). Его площадь равна Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Найдем площадь этою прямоугольника иначе. Отрезком MN. соединяющим середины противоположных сторон ВС и Числовые последовательности - определение и вычисление с примерами решения прямоугольника, разделим его пополам. Площади образованных прямоугольников Числовые последовательности - определение и вычисление с примерами решенияи Числовые последовательности - определение и вычисление с примерами решения равны по Числовые последовательности - определение и вычисление с примерами решения каждая. Образованный справа прямоугольник снова разделим пополам, соединив середины Числовые последовательности - определение и вычисление с примерами решения противоположных сторон. Площади образованных прямоугольников NMKP и PKCD равны по 1 см2 каждая. Аналогично образованный прямоугольник Числовые последовательности - определение и вычисление с примерами решения снова разделим пополам отрезком Числовые последовательности - определение и вычисление с примерами решения на два прямоугольника с площадями по Числовые последовательности - определение и вычисление с примерами решения и т.д.

Найдем сумму площадей прямоугольников Числовые последовательности - определение и вычисление с примерами решения и т.д. Числовое значение суммы площадей этих прямоугольников равно суме чисел Числовые последовательности - определение и вычисление с примерами решения Последовательность Числовые последовательности - определение и вычисление с примерами решения является бесконечной геометриче­ской профессией, первый член которой равен 2, а знаменатель — Числовые последовательности - определение и вычисление с примерами решения Найдем сумму первых Числовые последовательности - определение и вычисление с примерами решения членов этой прогрессии:

Числовые последовательности - определение и вычисление с примерами решения

Если число Числовые последовательности - определение и вычисление с примерами решения слагаемых суммы Числовые последовательности - определение и вычисление с примерами решения неограниченно увеличивается, то значение дроби Числовые последовательности - определение и вычисление с примерами решения приближается к нулю, а разность Числовые последовательности - определение и вычисление с примерами решения приближается к числу 4, говорят: стремится к числу 4. Число 4 называют суммой бесконечной геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения и записывают Числовые последовательности - определение и вычисление с примерами решения

Итак, сумма площадей прямоугольников ABMN, NMKP, PKTS и т. д. равна 4 см2, то есть равна площади прямоугольника ABCD. Обобщим рассмотренный пример. Пусть Числовые последовательности - определение и вычисление с примерами решения. — любая бесконечная геометрическая прогрессия, в которой Числовые последовательности - определение и вычисление с примерами решения Сумму первых Числовые последовательности - определение и вычисление с примерами решения членов этой прогрессии вычисляют по формуле Числовые последовательности - определение и вычисление с примерами решения Преобразуем выражение в правой части последнего равенства: Числовые последовательности - определение и вычисление с примерами решения Так как Числовые последовательности - определение и вычисление с примерами решениято при неограниченном увеличении Числовые последовательности - определение и вычисление с примерами решения множитель Числовые последовательности - определение и вычисление с примерами решения стремится к нулю, а значит, к нулю стремится и произведение Числовые последовательности - определение и вычисление с примерами решения Тогда сумма Числовые последовательности - определение и вычисление с примерами решения, стремится к числу Числовые последовательности - определение и вычисление с примерами решения Число Числовые последовательности - определение и вычисление с примерами решения называют суммой бесконечной геометрической прогрессии со знаменателем Числовые последовательности - определение и вычисление с примерами решения и записывают: Числовые последовательности - определение и вычисление с примерами решенияОбозначим эту сумму через S. Тогда

Числовые последовательности - определение и вычисление с примерами решения

Полученную формулу называют формулой суммы бесконечной геометрической прогрессии, в которой Числовые последовательности - определение и вычисление с примерами решения

Пример:

Найти сумму бесконечной геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения6: – 2 ; ..

Решение:

По условию Числовые последовательности - определение и вычисление с примерами решенияТогда Числовые последовательности - определение и вычисление с примерами решенияИмеем геометрическую прогрессию, в которой Числовые последовательности - определение и вычисление с примерами решения По формуле Числовые последовательности - определение и вычисление с примерами решения находим:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 4,5.

Решение задач, связанных с арифметической и геометрической прогрессиями

Вычисление сумм

Изучая арифметическую и геометрическую прогрессии, мы вычисляли суммы первых Числовые последовательности - определение и вычисление с примерами решения их членов. Известно также, как найти сумму бесконечной геометрической прогрессии со знаменателем Числовые последовательности - определение и вычисление с примерами решения Однако существуют задачи, решая которые приходится искать суммы чисел, не об­разующих ни арифметическую, ни геометрическую прогрессии. Такие суммы иногда можно найти, преобразовав определенным образом их слагаемые.

Пример 1. Найти сумму Числовые последовательности - определение и вычисление с примерами решения

Решение:

Обозначим эту сумму через Числовые последовательности - определение и вычисление с примерами решения и запишем ее так:

Числовые последовательности - определение и вычисление с примерами решения

В первых скобках записана сумма членов арифметической прогрессииЧисловые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решения Найдем, каким но счету членом этой прогрессии является число 13:

Числовые последовательности - определение и вычисление с примерами решения

Итак, в первых скобках записана сумма первых семи членов арифметической прогрессии. Во вторых скобках записана сумма первых семи членов геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решения Используя формулы суммы первых Числовые последовательности - определение и вычисление с примерами решения членов арифметической и геометрической прогрессий, находим:

Числовые последовательности - определение и вычисление с примерами решения

Ответ: Числовые последовательности - определение и вычисление с примерами решения

Обращение бесконечных периодических десятичных дробей в обыкновенную дробь

Рассмотрим пример.

Пример:

Записать число 0,(7) в виде обыкновенной дроби.

Решение:

Бесконечную десятичную дробь 0,(7) = 0,777… запишем в виде такой суммы: 0,(7) = 0.7 + 0,07 + 0,007 + …. Слагаемые 0,7; 0,07; 0.007;… — члены бесконечной геометрической прогрессии с первым членом 0,7 и знаменателем Числовые последовательности - определение и вычисление с примерами решения Числовые последовательности - определение и вычисление с примерами решения Сумма этой прогрессии: Числовые последовательности - определение и вычисление с примерами решения Поэтому Числовые последовательности - определение и вычисление с примерами решения

Ответ: Числовые последовательности - определение и вычисление с примерами решения

Решение уравнении

Рассмотрим пример.

Пример:

Решить уравнениеЧисловые последовательности - определение и вычисление с примерами решенияв котором коэффициенты 4 ,7 . …, 25 образуют арифметическую прогрессию.

Решение:

Запишем уравнение так:

Числовые последовательности - определение и вычисление с примерами решения

В скобках записана сумма первых членов арифметической прогрессии. в которой Числовые последовательности - определение и вычисление с примерами решения Найдем количество членов. Пусть число 25 является ее Числовые последовательности - определение и вычисление с примерами решения-м членом. По формуле Числовые последовательности - определение и вычисление с примерами решения-го члена 25 = 4 + (Числовые последовательности - определение и вычисление с примерами решения -1 )-3, откуда получим:

Числовые последовательности - определение и вычисление с примерами решения

Итак, в скобках записана сумма первых 8 членов арифметической прогрессии. Тогда получим:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 2,5.

Пример:

Записать число 3.1(23) в виде обыкновенной дроби.

Решение:

Число 3.1(23) = 3,12323… запишем в виде такой суммы:

Числовые последовательности - определение и вычисление с примерами решения Слагаемые 0,023; 0,00023; … — члены бесконечной геометрической прогрессии с первым членом 0,023 и знаменателем Числовые последовательности - определение и вычисление с примерами решения Сумма этой прогрессии равна: Числовые последовательности - определение и вычисление с примерами решения Поэтому

Числовые последовательности - определение и вычисление с примерами решения

Ответ: Числовые последовательности - определение и вычисление с примерами решения

Пример:

Решить уравнение:

Числовые последовательности - определение и вычисление с примерами решения

Решение:

Запишем уравнение в виде:

Числовые последовательности - определение и вычисление с примерами решения Во вторых скобках записана сумма первых Числовые последовательности - определение и вычисление с примерами решения членов арифметической про­грессии. в которой Числовые последовательности - определение и вычисление с примерами решенияНайдем Числовые последовательности - определение и вычисление с примерами решения Пусть число 71 является ее Числовые последовательности - определение и вычисление с примерами решения-м членом. По формуле -го члена Числовые последовательности - определение и вычисление с примерами решения откуда Числовые последовательности - определение и вычисление с примерами решения = 36. Учитывая, что в первых скобках записана сумма тридцати шести слагаемых, каждый из которых равен Числовые последовательности - определение и вычисление с примерами решения получим:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 1; 35.

Пример:

Найти сумму Числовые последовательности - определение и вычисление с примерами решения

Решение:

Обозначим данную сумму через S. Записав слагаемые в виде Числовые последовательности - определение и вычисление с примерами решенияи т. д., получим:

Числовые последовательности - определение и вычисление с примерами решения

В скобках записана сумма первых Числовые последовательности - определение и вычисление с примерами решения членов геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения в которой Числовые последовательности - определение и вычисление с примерами решения Поэтому:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. Числовые последовательности - определение и вычисление с примерами решения

ИНТЕРЕСНО ЗНАТЬ

Слово «прогрессия» происходит от латинского слона «prcigrcssio» и значит «движение вперед» (как и слово «прогресс»). Впервые этот термин встре­чается в работах римского ученого Боэция (V -V I в.). Прогрессии как частные виды числовых последовательностей встречаются в папирусах II тысячелетия до н. э. Первые задачи на прогрессии, дошедшие до нас, связаны с хозяйственной деятельностью, а именно — с рас­пределением продуктов, разделом наследства и т. п. Древнейшей задачей на прогрессии считают задачу из египетского папируса Ахмеса Райнда о распределении 100 мер хлеба между пятью людьми так, чтобы второй получил на столько больше первого, на сколько третий получил больше второго и т. д. В этой задаче речь идет об арифметической прогрессии, сумма первых пяти членов которой равна 100. В одной из задач этого папируса представлена формула первого члена арифметической прогрессии, которую в современной символике записывают так:

Числовые последовательности - определение и вычисление с примерами решения

где а — первый член, Числовые последовательности - определение и вычисление с примерами решения — число членов, S — сума первых Числовые последовательности - определение и вычисление с примерами решения членов, d — разность прогрессии. Убедитесь, что эта формула верна. С вычислением суммы членов арифметической прогрессии связана такая интересная история. У известною немецкого математика Карла Гаусса (1777-1875) еще в школе обнаружились блестящие математические способности. Как-то учитель предложил ученикам найти сумму первых ста натуральных чисел. Едва он успел прочитать условие задачи, как маленький Гаусс поднял руку: «Готово». Весь класс был поражен скоростью, с которой он провел подсчет. Как считал Гаусс? Издавна большой популярностью пользуется задача-легенда, которая относится к началу нашей эры. Индийский царь Шерам позвал к себе изобретателя игры в шахматы, своего подданного Сету, чтобы наградить его за изобретение. Когда изобретателю предложили самому выбрать награду, он попросил за первую клетку шахматной доски дать ему 1 зерно пшеницы, за вторую — 2 зерна, за третью — 4 и т.д . Оказалось, что царь не смог выполнить просьбу Сеты. За последнюю, 64-ю, клетку шахматной доски пришлось бы отдать Числовые последовательности - определение и вычисление с примерами решения зерен пшеницы, а за все клетки количество зерен, равное сумме членов геометрической прогрессии: Числовые последовательности - определение и вычисление с примерами решения Эта сумма равна Числовые последовательности - определение и вычисление с примерами решенияТакое количество зерен пшеницы можно собрать с плошали, приблизительно в 2000 раз больше площади всей поверхности Земли.

———–

Числовые последовательности

♦ Множество чисел в котором каждое число имеет свой номер Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения называется числовом последовательностью. То есть, числовая последовательность это функция определенная во множестве натуральных чисел. Например Числовые последовательности - определение и вычисление с примерами решения

♦ Числа, образующие последовательность, называются соответственно первым, вторым, третьим, четвертым и т.д. членами последовательности. Члены последовательности, обычно обозначаются буквами, индекс буквы показывает порядковый номер члена. Например, первый член Числовые последовательности - определение и вычисление с примерами решения второй член Числовые последовательности - определение и вычисление с примерами решения-ый член Числовые последовательности - определение и вычисление с примерами решения и т.д. Сама последовательность обозначается: Числовые последовательности - определение и вычисление с примерами решения и т.д.

♦ Последовательности бывают конечные и бесконечные. Например, множество двузначных чисел может быть примером конечной последовательности. А последовательность натуральных чисел – бесконечна.

♦ Обычно последовательность задают с помощью формулы определящей функцию Числовые последовательности - определение и вычисление с примерами решения-ro члена последовательности от номера Числовые последовательности - определение и вычисление с примерами решения. Такую формулу называют формулой Числовые последовательности - определение и вычисление с примерами решения-го члена последовательности.

Например: Числовые последовательности - определение и вычисление с примерами решения – последовательность четных чисел.Любой член этой последовательности можно найти по формуле Числовые последовательности - определение и вычисление с примерами решения 10-ый член последовательности: Числовые последовательности - определение и вычисление с примерами решения

Наблюдается взаимосвязь многих природных явлений с последовательностью Фибоначчи.

Фибоначчи родился в итальянском городе Пиза: Его произведение “Книга вычислений” (Liber Abaci) оказала огромное влияние на распространение математических знаний в Европе, служила учебником – справочником европейских ученых. Особенно неоценима его роль в быстром распространении в Европе индийско-арабской десятичной системы. В то время в Европе при записи и вычислениях пользовались Римскими цифрами. В этом произведении Фибоначчи также уделил большое внимание задаче о размножении кроликов, которая дает последовательность чисел 1,1, 2, 3, 5, 8, 13, 21,… Для членов этого ряда (при Числовые последовательности - определение и вычисление с примерами решения) верно Числовые последовательности - определение и вычисление с примерами решения Продолжите ряд Фибоначчи для последующих трех шагов.

Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения

Рекуррентный и экспилитический способы задания последовательности

Формула, выражающая любой член последовательности, начиная с некоторого, через один или несколько предыдущих членов называется рекуррентной формулой, (от латинского слова recirro – возвращаться). Например, в последовательности Числовые последовательности - определение и вычисление с примерами решенияпри Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения – рекуррентная формула и по этой формуле можно продолжить последовательность. Во многих случаях последовательность задается формулой, выражающей Числовые последовательности - определение и вычисление с примерами решения-ый член номером этого члена. Способ задания последовательности формулой Числовые последовательности - определение и вычисление с примерами решения-го члена называется экспилитическим способом.

Например, Числовые последовательности - определение и вычисление с примерами решения

Арифметическая прогрессия, рекуррентное правило

Определение. Числовая последовательность, в которой каждый член, начиная со второго равен предыдущему, сложенному с одним и тем же для данной последовательности числом называется арифметической прогрессией. То есть арифметическая прогрессия – это такая последовательность, в которой Числовые последовательности - определение и вычисление с примерами решения Здесь Числовые последовательности - определение и вычисление с примерами решения – постоянная для данной последовательности число. Число Числовые последовательности - определение и вычисление с примерами решения называют разностью арифметической прогрессии. Из определения следует, что равенство Числовые последовательности - определение и вычисление с примерами решения справедливо для любого натурального числа Числовые последовательности - определение и вычисление с примерами решения. В частных случаях, Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения Арифметическая прогрессия с Числовые последовательности - определение и вычисление с примерами решения-ым членом Числовые последовательности - определение и вычисление с примерами решения символически обозначается Числовые последовательности - определение и вычисление с примерами решения. Для того чтобы задать арифметическую прогрессию, достаточно показать его первый член и разность. Арифметическая прогрессия задается с рекуррентным соотношением Числовые последовательности - определение и вычисление с примерами решения

Пример 1. Определите, какие из последовательностей являются арифметической прогрессией.

а) Числовые последовательности - определение и вычисление с примерами решения последовательность – арифметическая прогрессия, потому что разность между двумя соседними членами остается постоянной

b) Числовые последовательности - определение и вычисление с примерами решенияпоследовательность не является арифметической прогрессией, потому что разность между двумя соседними членами меняется

Разность арифметической прогрессии может быть положительным, отрицательным числом или нулем. При Числовые последовательности - определение и вычисление с примерами решения начиная со второго каждый член будет больше предыдущего (возрастающая последовательность), а при Числовые последовательности - определение и вычисление с примерами решения – меньше предыдущего (убывающая последовательность)

Пример 2. а) При Числовые последовательности - определение и вычисление с примерами решения соответствующая арифметическая прогрессия будет : 2; 5; 8; 11; 14; 17; … Рекуррентная формула этой прогрессии будет: Числовые последовательности - определение и вычисление с примерами решения

b) При условии Числовые последовательности - определение и вычисление с примерами решения арифметическая прогрессия будет: 11; 7; 3; 1; 5; … Рекуррентная формула этой прогрессии будет: Числовые последовательности - определение и вычисление с примерами решения

При Числовые последовательности - определение и вычисление с примерами решения все члены будучи равными одному числу (1-му члену) образуют стационарную последовательность. Например, 5; 5; 5; …

Формула n-го члена арифметической прогрессии

Каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же для данной последовательности числом. Согласно этому правилу: Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

По этому правилу можно записать: Числовые последовательности - определение и вычисление с примерами решения

Формула Числовые последовательности - определение и вычисление с примерами решения является формулой Числовые последовательности - определение и вычисление с примерами решения-го члена арифметической прогрессии.

Пример 1. В арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения найдем Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Отметим, что Числовые последовательности - определение и вычисление с примерами решения можно было бы вычислить и нижеуказанным способом: Числовые последовательности - определение и вычисление с примерами решения

Вообще, Числовые последовательности - определение и вычисление с примерами решения, то есть верно равенство, Числовые последовательности - определение и вычисление с примерами решения

Отсюда, получаем формулу для разности прогресии: Числовые последовательности - определение и вычисление с примерами решения

Пример 2. В арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Решение: Числовые последовательности - определение и вычисление с примерами решения

Замечание. Переписав формулу Числовые последовательности - определение и вычисление с примерами решения в виде Числовые последовательности - определение и вычисление с примерами решенияможно сделать вывод: любая прогрессия задается формулой Числовые последовательности - определение и вычисление с примерами решения здесь Числовые последовательности - определение и вычисление с примерами решения любые числа.

Арифметическая прогрессия и среднее арифметическое

Свойство. Любой член арифметической прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов.

Действительно, из Числовые последовательности - определение и вычисление с примерами решения получается Числовые последовательности - определение и вычисление с примерами решения

Так как в общем случае, Числовые последовательности - определение и вычисление с примерами решения то верно равенство:

Числовые последовательности - определение и вычисление с примерами решения

Это свойство можно обобщить таким образом. Каждый член арифметической прогрессии (начиная со второго) равен среднему арифметическому равноудаленных от него членов: Числовые последовательности - определение и вычисление с примерами решения

Это свойство поясняет причину названия арифметической прогрессии. Верно и обратное. Если любой член последовательности, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией.

В конечной арифметической прогрессии сумма членов, расположенных на одинаковом расстоянии от концов, равна сумме крайних членов.

Числовые последовательности - определение и вычисление с примерами решения

В общем, если Числовые последовательности - определение и вычисление с примерами решения

Сумма n-первых членов арифметической прогрессии

Обозначим через Числовые последовательности - определение и вычисление с примерами решения сумму Числовые последовательности - определение и вычисление с примерами решения-первых членов любой арифметической прогрессии.

Числовые последовательности - определение и вычисление с примерами решения

Попарные суммы Числовые последовательности - определение и вычисление с примерами решения и т.д равны между собой, гак как в конечной арифметической прогрессии сумма членов, расположенных на одинаковом расстоянии от концов, равна сумме крайних членов. Всего таких пар Числовые последовательности - определение и вычисление с примерами решения, поэтому Числовые последовательности - определение и вычисление с примерами решения а отсюда получим: Числовые последовательности - определение и вычисление с примерами решения

Сумма Числовые последовательности - определение и вычисление с примерами решения-первых членов конечной арифметической прогрессии равна произведению полусуммы крайних членов на число членов этой прогрессии. Так как: Числовые последовательности - определение и вычисление с примерами решения Тогда формулу суммы членов арифметической прогрессии можно написать в виде:

Числовые последовательности - определение и вычисление с примерами решения

Пример 1. Найдите сумму 12-ти первых членов арифметической прогрессии заданной формулой Числовые последовательности - определение и вычисление с примерами решения.

Решение: Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Пример 2. Найдите сумму 10-ти первых членов арифметической прогрессии 3; 5; 13;… .

Решение. Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Пример 3. В зале заседаний 30 рядов. В первом ряду 24 места, а в каждом следующем ряду на одно место больше, чем в предыдущем. Сколько всего мест в зале?

Решение: Числовые последовательности - определение и вычисление с примерами решения

В последнем ряду: Числовые последовательности - определение и вычисление с примерами решения места. Всего в 30-ти рядах: Числовые последовательности - определение и вычисление с примерами решения

Пример 4. Сколько членов арифметической прогрессии 5; 7; 9… нужно сложить, чтобы получить 320 ?

Решение: Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Так как количество членов не может быть отрицательным, то сумма 16-ти первых членов этой прогрессии равна 320. Перепишем сумму первых Числовые последовательности - определение и вычисление с примерами решения членов арифметической прогрессии в следующем виде:Числовые последовательности - определение и вычисление с примерами решения, обозначая Числовые последовательности - определение и вычисление с примерами решенияполучаем, что сумму Числовые последовательности - определение и вычисление с примерами решения-первых членов любой арифметической прогрессии можно также записать в виде: Числовые последовательности - определение и вычисление с примерами решения Можно считать арифметическую прогрессию заданной, если известна Числовые последовательности - определение и вычисление с примерами решения

Пример 5. Найдем первый член и разность арифметической прогрессии, сумма Числовые последовательности - определение и вычисление с примерами решения-первых членов которой задана формулой Числовые последовательности - определение и вычисление с примерами решения

Решение: Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Внимание! При решении некоторых задач для определения Числовые последовательности - определение и вычисление с примерами решения пользуются формулой Числовые последовательности - определение и вычисление с примерами решения.

Члены геометрической прогрессии, рекуррентное правило

Определение. Геометрической прогрессией называется числовая последовательность, члены которой отличны от нуля, а каждый член, начиная со второго, равен предыдущего члену, умноженному на одно и то же, не равное нулю, число. То есть если для любого натурального числа Числовые последовательности - определение и вычисление с примерами решения будет выполнено условие: Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения то последовательность Числовые последовательности - определение и вычисление с примерами решения будет геометрической прогрессией. Число Числовые последовательности - определение и вычисление с примерами решения называется знаменателем геометрической прогрессии. Геометрическая прогрессия символически обозначается Числовые последовательности - определение и вычисление с примерами решения. Формула Числовые последовательности - определение и вычисление с примерами решения является представлением геометрической прогрессии по рекуррентному правилу. Из определения следует, что для любого натурального числа Числовые последовательности - определение и вычисление с примерами решения справедливо равенство: Числовые последовательности - определение и вычисление с примерами решения. В частности, Числовые последовательности - определение и вычисление с примерами решения

Пример 1. а) Если Числовые последовательности - определение и вычисление с примерами решения, то получится геометрическая прогрессия 2, 6, 18, 54, 162,…; b) Если Числовые последовательности - определение и вычисление с примерами решения, то получится геометрическая прогрессия 3, 6, 12, 24,48,… . При Числовые последовательности - определение и вычисление с примерами решения члены геометрической прогрессии имеют одинаковый знак. При Числовые последовательности - определение и вычисление с примерами решения знаки членов прогрессии чередуются. При Числовые последовательности - определение и вычисление с примерами решения получается стационарная последовательность.

Пример 2. Какая из данных числовых последовательностей геометрическая прогрессия?

а) 4, 12, 22, 34, 48; b) 625, 125, 25, 5, 1.

Отношение каждого члена геометрической прогрессии на предыдущий всегда остается постоянной. Проверим это условие для обеих прогрессий.

а)Числовые последовательности - определение и вычисление с примерами решения Условие не выполняется, последовательность не является геометрической прогрессией.

b)Числовые последовательности - определение и вычисление с примерами решения Условие выполняется, это последовательность – геометрическая прогрессия.

Формула n-го члена геометрической прогрессии

Вообще, чтобы в геометрической прогрессии найти Числовые последовательности - определение и вычисление с примерами решения нужно перемножить Числовые последовательности - определение и вычисление с примерами решения то есть Числовые последовательности - определение и вычисление с примерами решения

Это выражение называется формулой Числовые последовательности - определение и вычисление с примерами решения-го члена геометрической прогрессии. Для того чтобы задать геометрическую прогрессию, достаточно знать его первый член и знаменатель.

Пример 1. Если в геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения найдем Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения

Указание. Можно было бы вычислить следующем способом Числовые последовательности - определение и вычисление с примерами решения

Вообще, справедливо равенство, Числовые последовательности - определение и вычисление с примерами решения

Пример 2. Найдем Числовые последовательности - определение и вычисление с примерами решения если в геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Решение: Числовые последовательности - определение и вычисление с примерами решения отсюда Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения

Заключение: Если известны какие-либо два члена, то можно задать геометрическую прогрессию, Числовые последовательности - определение и вычисление с примерами решения-ый член геометрической прогрессии можно найти другим путем. По определению:

Числовые последовательности - определение и вычисление с примерами решения

Если перемножить почленно эти Числовые последовательности - определение и вычисление с примерами решения равенства, получим:

Числовые последовательности - определение и вычисление с примерами решения

Сократив одинаковые члены в левой и правой частях, получим формулу Числовые последовательности - определение и вычисление с примерами решения

Заключение: Записав Числовые последовательности - определение и вычисление с примерами решения и обозначив Числовые последовательности - определение и вычисление с примерами решения становится ясным, что любую геометрическую прогрессию можно задать формулой Числовые последовательности - определение и вычисление с примерами решения(Здесь Числовые последовательности - определение и вычисление с примерами решения-какое-либо число отличное от нуля, Числовые последовательности - определение и вычисление с примерами решения– знаменатель прогрессии).

Члены геометрической прогрессии и среднее геометрическое

В геометрической профессии с положительными членами, начиная со второго, каждый член равен среднему геометрическому соседних с ним членов. Это свойство поясняет причину названия геометрической прогрессии. Например, в последовательности, 2, 6, 18, 54, 162,… число 18 является средним геометрическим 6 и 54. Среднее геометрическое-можно ясно увидеть, записывая отношения, выражающие знаменатель профессии. Из определения геометрической прогрессии получатся равенства:

Числовые последовательности - определение и вычисление с примерами решения.

Взяв попарно эти равенства, получим: Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения Это свойство можно задать в более общем виде. В геометрической прогрессии, начиная со второго, квадрат любого члена равен произведению равноудаленных членов последовательности, то есть Числовые последовательности - определение и вычисление с примерами решения Для геометрической прогрессии с положительными членами это свойство можно записать в виде:

Числовые последовательности - определение и вычисление с примерами решения

Еще одно свойство членов геометрической профессии: Если Числовые последовательности - определение и вычисление с примерами решения то верно равенство Числовые последовательности - определение и вычисление с примерами решения

Сумма n-первых членов геометрической прогрессии

Обозначим через Числовые последовательности - определение и вычисление с примерами решения сумму Числовые последовательности - определение и вычисление с примерами решения-первых членов геометрической прогрессии:

Числовые последовательности - определение и вычисление с примерами решения

При Числовые последовательности - определение и вычисление с примерами решения, все члены равны Числовые последовательности - определение и вычисление с примерами решения Рассмотрим случай когда Числовые последовательности - определение и вычисление с примерами решения.

Умножим обе части (1 )-го равенства на Числовые последовательности - определение и вычисление с примерами решения:

Числовые последовательности - определение и вычисление с примерами решения

Отнимем от (2)-го равенства (1)-е. Получим: Числовые последовательности - определение и вычисление с примерами решения

Отсюда SЧисловые последовательности - определение и вычисление с примерами решения

(3)-я формула называется формулой Числовые последовательности - определение и вычисление с примерами решения-первых членов геометрической прогрессии. Так как Числовые последовательности - определение и вычисление с примерами решения, то для Числовые последовательности - определение и вычисление с примерами решения можно записать:

Числовые последовательности - определение и вычисление с примерами решения

Пример. В геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения Найдите сумму первых шести членов.

Решение. Числовые последовательности - определение и вычисление с примерами решения Отсюда Числовые последовательности - определение и вычисление с примерами решения

Из формулы Числовые последовательности - определение и вычисление с примерами решения выразим Числовые последовательности - определение и вычисление с примерами решения

Тогда Числовые последовательности - определение и вычисление с примерами решения

Сумма бесконечной геометрической прогрессии при Числовые последовательности - определение и вычисление с примерами решения

Если число членов геометрической прогрессии бесконечно, то ее называют бесконечной геометрической профессией. Преобразуем формулу суммы Числовые последовательности - определение и вычисление с примерами решения– первых членов геометрической прогрессии следующим образом.

Числовые последовательности - определение и вычисление с примерами решения

ЕслиЧисловые последовательности - определение и вычисление с примерами решения, то с бесконечным ростом Числовые последовательности - определение и вычисление с примерами решения множитель Числовые последовательности - определение и вычисление с примерами решения, а значит и Числовые последовательности - определение и вычисление с примерами решения приближаются к нулю. Поэтому с ростом Числовые последовательности - определение и вычисление с примерами решения до бесконечности сумма Числовые последовательности - определение и вычисление с примерами решения приближается к числу Числовые последовательности - определение и вычисление с примерами решения. Число Числовые последовательности - определение и вычисление с примерами решения при Числовые последовательности - определение и вычисление с примерами решения называется суммой бесконечной геометрической прогрессии.

Если обозначить эту сумму через Числовые последовательности - определение и вычисление с примерами решения то получим: Числовые последовательности - определение и вычисление с примерами решения.

Пример. Примените формулу суммы бесконечной геометрической профессии в преобразовании периодической дроби Числовые последовательности - определение и вычисление с примерами решения в обыкновенную.

Числовые последовательности - определение и вычисление с примерами решения

Так как Числовые последовательности - определение и вычисление с примерами решения то по формуле суммы бесконечной геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения

Геометрические преобразования. Движение

Параллельный перенос

Числовые последовательности - определение и вычисление с примерами решения

При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и тоже расстояние и фигура переходит в фигуру конгруэнтную себе. Треугольник Числовые последовательности - определение и вычисление с примерами решения изображенный на рисунке получен параллельным переносом из треугольника Числовые последовательности - определение и вычисление с примерами решения. Здесь Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

В координатной плоскости каждая точка данного треугольника Числовые последовательности - определение и вычисление с примерами решения перемещена на 4 единицы направо, и на 5 единиц вниз.

Числовые последовательности - определение и вычисление с примерами решения

Применяя формулу расстояния между двумя точками, получим: Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения По признаку конгруэнтности Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

При параллельном переносе фигуры произвольная точка Числовые последовательности - определение и вычисление с примерами решения переходит в точку Числовые последовательности - определение и вычисление с примерами решения и между координатами этих точек справедливо равенство:Числовые последовательности - определение и вычисление с примерами решения

На координатной плоскости при параллельном переносе перемещение по осям координат направо и наверх выражаегся положительными, налево и вниз отрицательными единицами. Это определяется числами Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения. При параллельном переносе расстояние между двумя точками не меняется.

Действительно, при параллельном переносе произвольные точки Числовые последовательности - определение и вычисление с примерами решения переходят в точки Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения Отсюда Числовые последовательности - определение и вычисление с примерами решения Значит, при параллельном переносе сохраняется расстояние.

Координаты середины отрезка Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

Координаты середины отрезка Числовые последовательности - определение и вычисление с примерами решения будут такими же (проверьте сами).

Значит, диагонали четырехугольника Числовые последовательности - определение и вычисление с примерами решения пересекаются и точкой пересечения делятся пополам. То есть, этот четырехугольник параллелограмм. А у параллелограмма противоположные стороны параллельны. При параллельном переносе прямая переходит в параллельную прямую (или в саму себя). Если при переходе одной фигуры в другую расстояния между точками сохраняются, то такое преобразование называется движением. Параллельный перенос это движение.

  • Заказать решение задач по высшей математике

Параллельный перенос и векторы

Каждый параллельный перенос определяет один вектор. То есть при параллельном переносе перемещение всех точек фигуры выполняется по одному вектору. Выражение параллельного переноса вектором упрощает запись. Компоненты вектора Числовые последовательности - определение и вычисление с примерами решения показывают изменения координат точек относительно осей Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решения

На картине изображен параллельный перенос Числовые последовательности - определение и вычисление с примерами решения на вектор Числовые последовательности - определение и вычисление с примерами решения. Воспользуясь компонентами вектора, можно определить перемещение фигуры. Все точки треугольника Числовые последовательности - определение и вычисление с примерами решения перемещаясь на длину вектора Числовые последовательности - определение и вычисление с примерами решения переходят в точки треугольника Числовые последовательности - определение и вычисление с примерами решения

Длина вектора Числовые последовательности - определение и вычисление с примерами решения

Движение и конгруэнтные фигуры

Пусть каждой точке фигуры Числовые последовательности - определение и вычисление с примерами решения противопоставлена определенная точка плоскости. Множество таких точек образует фигуру Числовые последовательности - определение и вычисление с примерами решения. В этом случае говорят, что фигура Числовые последовательности - определение и вычисление с примерами решения получена преобразованием фигуры Числовые последовательности - определение и вычисление с примерами решения. Плоскость так же является геометрической фигурой. При преобразовании плоскости произвольная точка переходит в точку этой же плоскости и причем каждая точка преобразуется в определенную точку. Если при преобразовании одной фигуры в другую расстояние между точками сохраняется, то все геометрические свойства фигуры сохраняются и фигура преобразуется в конгруэнтную фигуру. Такие преобразования называются движением. Результат последовательных движений также является движением.

Теорема. При движении отрезок преобразуется в отрезок.

Числовые последовательности - определение и вычисление с примерами решения

Доказательство. Пусть при движении концы отрезка Числовые последовательности - определение и вычисление с примерами решения переходят соответственно в точки Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения. Докажем, что отрезок Числовые последовательности - определение и вычисление с примерами решения переходит в отрезок Числовые последовательности - определение и вычисление с примерами решения. На отрезке Числовые последовательности - определение и вычисление с примерами решения берем произвольную точку Числовые последовательности - определение и вычисление с примерами решения Пусть точка Числовые последовательности - определение и вычисление с примерами решения преобразуется в точку Числовые последовательности - определение и вычисление с примерами решения. Так как при движении расстояния между точками сохраняются Числовые последовательности - определение и вычисление с примерами решения Отсюда Числовые последовательности - определение и вычисление с примерами решения А это значит, что точка Числовые последовательности - определение и вычисление с примерами решения находится на отрезке Числовые последовательности - определение и вычисление с примерами решения, то есть точка Числовые последовательности - определение и вычисление с примерами решения отрезка Числовые последовательности - определение и вычисление с примерами решения переходит в точку отрезка Числовые последовательности - определение и вычисление с примерами решения, и наоборот в точку Числовые последовательности - определение и вычисление с примерами решения переходит точка Числовые последовательности - определение и вычисление с примерами решения отрезка Числовые последовательности - определение и вычисление с примерами решения, удовлетворяющее условию Числовые последовательности - определение и вычисление с примерами решения Теорема доказана.

Следствие. При движении каждая сторона треугольника переходит в конгруэнтный отрезок, и поэтому по признаку Числовые последовательности - определение и вычисление с примерами решения треугольник преобразуется в конгруэнтный треугольник. При движении прямая переходит в прямую, отрезок в отрезок и угол между полупрямыми сохраняется. При таких преобразованиях как параллельный перенос, центральная симметрия, осевая симметрия, поворот, фигура переходит в конгруэнтную фигуру. Исследуем это при помощи оси симметрии (отражения).

Теорема. Осевая симметрия (отражение) есть движение.

На рисунке изображено отражение отрезка Числовые последовательности - определение и вычисление с примерами решения относительно прямой Числовые последовательности - определение и вычисление с примерами решения. По расположению отрезка Числовые последовательности - определение и вычисление с примерами решения и прямой Числовые последовательности - определение и вычисление с примерами решения возможны 4 различных случая.

Числовые последовательности - определение и вычисление с примерами решения

Докажем теорему для первого случая:

Текстовое доказательство

В этом случае точки Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения лежат по одну сторону от прямой Числовые последовательности - определение и вычисление с примерами решения.

Числовые последовательности - определение и вычисление с примерами решения

Из определения отражения следует, что, так как отрезок Числовые последовательности - определение и вычисление с примерами решения– серединный перпендикулярный отрезков Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения Тогда по признаку Числовые последовательности - определение и вычисление с примерами решения Так как у конгруэнтных треугольников соответственные стороны конгруэнтны, то Числовые последовательности - определение и вычисление с примерами решения Теорема доказана.

——

Числовые последовательности

В этой лекции вы:

Пример №356

Запишем в порядке возрастания четные натуральные числа: 2; 4; 6; 8; 10; … .

Получим последовательность четных натуральных чисел. На первом месте в ней число 2, на втором – число 4, на пятом – 10. Если и далее записывать четные натуральные числа, то, например, на десятом месте окажется число 20, на сотом – число 200. Вообще, для любого натурального числа Числовые последовательности - определение и вычисление с примерами решения можно указать натуральное четное число, стоящее на Числовые последовательности - определение и вычисление с примерами решения месте. Этим числом будет Числовые последовательности - определение и вычисление с примерами решения.

Числа, образующие последовательность, называют соответственно первым, вторым, третьим, четвертым и т. д. членами последовательности. Члены последовательности принято обозначать буквами с индексами, указывающими порядковый номер члена последовательности. Например: Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, … (читают: «Числовые последовательности - определение и вычисление с примерами решения первое, Числовые последовательности - определение и вычисление с примерами решения второе, Числовые последовательности - определение и вычисление с примерами решения третье, Числовые последовательности - определение и вычисление с примерами решения четвертое» и т. д.). В нашем примере Числовые последовательности - определение и вычисление с примерами решения, … . Член последовательности с номером Числовые последовательности - определение и вычисление с примерами решения называют Числовые последовательности - определение и вычисление с примерами решения членом последовательности и обозначают Числовые последовательности - определение и вычисление с примерами решения. Саму последовательность принято обозначать Числовые последовательности - определение и вычисление с примерами решения.

Рассмотрим два соседних члена последовательности с номерами Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения, а именно Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения. Член Числовые последовательности - определение и вычисление с примерами решения называют следующим за Числовые последовательности - определение и вычисление с примерами решения, а член Числовые последовательности - определение и вычисление с примерами решенияпредыдущим к Числовые последовательности - определение и вычисление с примерами решения.

Поскольку в последовательности четных натуральных чисел на Числовые последовательности - определение и вычисление с примерами решения месте стоит число Числовые последовательности - определение и вычисление с примерами решения, то можем записать, что Числовые последовательности - определение и вычисление с примерами решения. Таким образом, имеем формулу Числовые последовательности - определение и вычисление с примерами решения члена последовательности четных натуральных чисел.

Эта последовательность содержит бесконечное число членов. Такую последовательность называют бесконечной. В записи бесконечной последовательности после перечисления нескольких ее первых членов ставят многоточие. Если же последовательность содержит конечное число членов, то ее называют конечной.

Пример №357

Последовательность двузначных натуральных чисел 10; 11; 12; …; 98; 99 является конечной. Она содержит 90 членов и может быть задана формулой Числовые последовательности - определение и вычисление с примерами решения члена: Числовые последовательности - определение и вычисление с примерами решения.

Зная формулу Числовые последовательности - определение и вычисление с примерами решения члена последовательности, можем найти любой ее член.

Пример №358

Последовательность задана формулой Числовые последовательности - определение и вычисление с примерами решения. Найдем несколько ее членов: Числовые последовательности - определение и вычисление с примерами решения – первый член, Числовые последовательности - определение и вычисление с примерами решения – седьмой, Числовые последовательности - определение и вычисление с примерами решения – двадцатый, Числовые последовательности - определение и вычисление с примерами решения – сотый.

Формула Числовые последовательности - определение и вычисление с примерами решения члена является достаточно удобным, но не единственным способом задания последовательности.

Пример №359

Конечную последовательность можно задать перечислением ее членов. Например, Числовые последовательности - определение и вычисление с примерами решения.

Пример №360

Последовательность можно задать описанием ее членов. Например, последовательность натуральных делителей числа 18, записанных в порядке возрастания, выглядит так: 1; 2; 3; 6; 9; 18.

Пример №361

Конечную последовательность можно задать и в виде таблицы. Например:

Числовые последовательности - определение и вычисление с примерами решения

Последовательность можно задавать, указав первый или несколько первых членов последовательности, а затем – формулу, позволяющую найти остальные члены последовательности через предыдущие. Такую формулу называют рекуррентной, а способ задания последовательности – рекуррентным.

Пример №362

Пусть первый член последовательности Числовые последовательности - определение и вычисление с примерами решения равен 2, а каждый следующий равен квадрату предыдущего, то есть Числовые последовательности - определение и вычисление с примерами решения. Тогда по известному первому члену можно найти второй: Числовые последовательности - определение и вычисление с примерами решения, по известному второму можно найти третий: Числовые последовательности - определение и вычисление с примерами решения и так далее.

Получим последовательность: 2; 4; 16; 256; 65 536; … .

Пример №363

Найдем третий, четвертый и пятый члены последовательности Числовые последовательности - определение и вычисление с примерами решения, заданной рекуррентно: Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения.

Получим:

Числовые последовательности - определение и вычисление с примерами решения

Последовательности, рассмотренные выше, являются числовыми последовательностями, так как состоят из чисел. Иногда рассматривают последовательности, членами которых являются выражения, функции и т. п. В дальнейшем будем рассматривать только числовые последовательности.

Числовые последовательности - определение и вычисление с примерами решенияМатематики уже очень давно занимаются изучением числовых последовательностей. Понятие числовой последовательности возникло и развилось задолго до создания учения о функции. Вот примеры бесконечных числовых последовательностей, известных еще в древности:

  1. 1, 2, 3, 4, 5,… – последовательность натуральных чисел;
  2. 2, 4, 6, 8, 10,… – последовательность четных чисел;
  3. 1, 3, 5, 7, 9,… – последовательность нечетных чисел;
  4. 1,4,9,16,25,… – последовательность квадратов натуральных чисел;
  5. 2, 3, 5, 7, 11,… – последовательность простых чисел;
  6. Числовые последовательности - определение и вычисление с примерами решения – последовательность чисел, обратных натуральным.

Для всех этих последовательностей, кроме пятой, можно записать формулу Числовые последовательности - определение и вычисление с примерами решения члена. Для последовательности простых чисел формула Числовые последовательности - определение и вычисление с примерами решения члена не была известна древним математикам… Нет ее и поныне!

Одной из наиболее известных является числовая последовательность, которую называют последовательностью Фибоначчи в честь итальянца Л. Пизанского (Фибоначчи) (ок. 1170 – ок. 1250). Он первым рассмотрел последовательность чисел, два первых члена которой – единицы и каждый член которой, начиная с третьего, равен сумме двух предыдущих:

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144 ….

Лишь несколько веков спустя была найдена формула Числовые последовательности - определение и вычисление с примерами решения члена последовательности Фибоначчи:

Числовые последовательности - определение и вычисление с примерами решения

Арифметическая прогрессия, ее свойства. формула n-го члена арифметической прогрессии

Рассмотрим числовую последовательность, первый член которой равен 4, а каждый следующий, начиная со второго, равен предыдущему, сложенному с числом 3:

Числовые последовательности - определение и вычисление с примерами решения

Такую последовательность называют арифметической прогрессией.

Последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом, называют арифметической прогрессией.

Это число называют разностью арифметической прогрессии и обозначают буквой Числовые последовательности - определение и вычисление с примерами решения (от начальной буквы латинского слова differentia – разность). Значит, если Числовые последовательности - определение и вычисление с примерами решения – арифметическая прогрессия, то имеют место равенства:

Числовые последовательности - определение и вычисление с примерами решения

Таким образом, для любого натурального Числовые последовательности - определение и вычисление с примерами решения получим равенство: Числовые последовательности - определение и вычисление с примерами решения

Тогда: Числовые последовательности - определение и вычисление с примерами решениято есть

разность арифметической прогрессии можно найти, если от любого члена прогрессии, начиная со второго, отнять предыдущий.

Пусть первый член арифметической прогрессии равен Числовые последовательности - определение и вычисление с примерами решения, а ее разность равна Числовые последовательности - определение и вычисление с примерами решения. Тогда:

Числовые последовательности - определение и вычисление с примерами решения

Заметим, что в каждой из полученных формул коэффициент у разности Числовые последовательности - определение и вычисление с примерами решения на 1 меньше порядкового номера члена прогрессии, для которого записана эта формула. Действительно, чтобы найти Числовые последовательности - определение и вычисление с примерами решения, имея Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения, нужно Числовые последовательности - определение и вычисление с примерами решения раз прибавить к Числовые последовательности - определение и вычисление с примерами решения число Числовые последовательности - определение и вычисление с примерами решения, то есть к Числовые последовательности - определение и вычисление с примерами решения прибавить Числовые последовательности - определение и вычисление с примерами решения. Таким образом:

Числовые последовательности - определение и вычисление с примерами решения Получили формулу Числовые последовательности - определение и вычисление с примерами решения члена арифметической прогрессии.

Рассмотрим несколько примеров применения этой формулы.

Пример №364

Последовательность Числовые последовательности - определение и вычисление с примерами решения – арифметическая прогрессия, Числовые последовательности - определение и вычисление с примерами решения. Найти двадцатый член этой последовательности .

Решение:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 25,2.

Пример №365

Принадлежит ли арифметической прогрессии 7; 10; 13; … число: 1) 82; 2) 102?

Решение:

В данной прогрессии Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, тогда Числовые последовательности - определение и вычисление с примерами решения. Запишем формулу Числовые последовательности - определение и вычисление с примерами решения члена этой прогрессии: Числовые последовательности - определение и вычисление с примерами решения, то есть Числовые последовательности - определение и вычисление с примерами решения.

1) Допустим, число 82 является членом прогрессии Числовые последовательности - определение и вычисление с примерами решения. Тогда существует такое натуральное число Числовые последовательности - определение и вычисление с примерами решения, что Числовые последовательности - определение и вычисление с примерами решения, то есть Числовые последовательности - определение и вычисление с примерами решения. Имеем уравнение: Числовые последовательности - определение и вычисление с примерами решения, откуда получим, что Числовые последовательности - определение и вычисление с примерами решения.

Следовательно, число 82 является двадцать шестым членом арифметической прогрессии, то есть Числовые последовательности - определение и вычисление с примерами решения.

2) Рассуждая аналогично, имеем: Числовые последовательности - определение и вычисление с примерами решения, откуда Числовые последовательности - определение и вычисление с примерами решения.

Полученное число Числовые последовательности - определение и вычисление с примерами решения не является натуральным, а значит, арифметическая прогрессия числа 102 не содержит.

Ответ. 1) Да; 2) нет.

Пример №366

Кубики сложены рядами так, что в верхнем ряду 4 кубика, а в каждом следующем ниже ряду – на одно и то же количество кубиков больше, чем в предыдущем. Известно, что в шестом ряду 14 кубиков. Сколько кубиков в третьем ряду?

Решение:

Так как в каждом следующем ряду на одно и то же количество кубиков больше, чем в предыдущем, то числа, равные количеству кубиков в рядах, образуют арифметическую прогрессию, в которой Числовые последовательности - определение и вычисление с примерами решения, следовательно, нам нужно найти Числовые последовательности - определение и вычисление с примерами решения.

Для начала найдем разность Числовые последовательности - определение и вычисление с примерами решения этой прогрессии. Из формулы Числовые последовательности - определение и вычисление с примерами решения члена Числовые последовательности - определение и вычисление с примерами решения получим уравнение: Числовые последовательности - определение и вычисление с примерами решения, откуда Числовые последовательности - определение и вычисление с примерами решения.

Теперь, зная значение Числовые последовательности - определение и вычисление с примерами решения, найдем Числовые последовательности - определение и вычисление с примерами решения:

Числовые последовательности - определение и вычисление с примерами решения

Следовательно, в третьем ряду 8 кубиков.

Заметим, что найти Числовые последовательности - определение и вычисление с примерами решения можно было и без использования уравнения, например выразив Числовые последовательности - определение и вычисление с примерами решения из формулы 6-го члена прогрессии. Действительно, поскольку Числовые последовательности - определение и вычисление с примерами решения, то

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 8 кубиков.

Докажем несколько важных свойств арифметической прогрессии.

1. Любой член арифметической прогрессии, начиная со второго, является средним арифметическим двух соседних с ним членов, то есть

Числовые последовательности - определение и вычисление с примерами решения

Доказательство: Используем формулу Числовые последовательности - определение и вычисление с примерами решения члена арифметической прогрессии, тогда:

Числовые последовательности - определение и вычисление с примерами решения

По одной из версий именно с этим свойством арифметической прогрессии связано ее название.

2. Любой член арифметической прогрессии, начиная со второго, является средним арифметическим двух равноудаленных от него членов, то есть

Числовые последовательности - определение и вычисление с примерами решения

Свойство доказывается аналогично предыдущему свойству.

3. Если Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения — натуральные числа и Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения.

Доказательство: Используем формулу Числовые последовательности - определение и вычисление с примерами решения члена, тогда: Числовые последовательности - определение и вычисление с примерами решения

Но Числовые последовательности - определение и вычисление с примерами решения, поэтому Числовые последовательности - определение и вычисление с примерами решения, то есть Числовые последовательности - определение и вычисление с примерами решения.

4. Любую арифметическую прогрессию можно задать формулой Числовые последовательности - определение и вычисление с примерами решения, где Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения — некоторые числа.

Доказательство: По формуле Числовые последовательности - определение и вычисление с примерами решения члена имеем:

Числовые последовательности - определение и вычисление с примерами решения

Обозначив Числовые последовательности - определение и вычисление с примерами решения, получим: Числовые последовательности - определение и вычисление с примерами решения.

5. Последовательность Числовые последовательности - определение и вычисление с примерами решения, заданная формулой вида Числовые последовательности - определение и вычисление с примерами решения, где Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения — некоторые числа, является арифметической прогрессией.

Доказательство: Рассмотрим разность Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения членов этой последовательности:Числовые последовательности - определение и вычисление с примерами решенияПолучим, что для любого Числовые последовательности - определение и вычисление с примерами решения имеет место равенство Числовые последовательности - определение и вычисление с примерами решения. Следовательно, последовательность (Числовые последовательности - определение и вычисление с примерами решения) является арифметической прогрессией, разность которой равна Числовые последовательности - определение и вычисление с примерами решения.

Числовые последовательности - определение и вычисление с примерами решенияПервые представления об арифметической прогрессии появились еще до нашей эры. В древнеегипетском папирусе Ахмеса (II тыс. до н. э.) есть такая задача: «Тебе сказано: раздели 10 мер ячменя между 10 людьми, разность же между каждым человеком и его соседом равна Числовые последовательности - определение и вычисление с примерами решения меры». Решение задачи сводится к нахождению десяти членов арифметической прогрессии: Числовые последовательности - определение и вычисление с примерами решения, сумма которых равна 10.

Задачи на арифметические прогрессии есть и в древнекитайском трактате «Математика в девяти книгах».

Первые из дошедших до нас задач на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т. п.

У древних греков теория арифметических прогрессий была связана с так называемой непрерывной арифметической пропорцией:

Числовые последовательности - определение и вычисление с примерами решения

Здесь числа Числовые последовательности - определение и вычисление с примерами решения образуют арифметическую прогрессию с разностью Числовые последовательности - определение и вычисление с примерами решения Таким образом, прогрессии рассматривались как бы продолжениями пропорций, вот почему эпитет арифметическая был перенесен с пропорций на прогрессии. Это еще одна из версий, почему эта прогрессия получила именно такое название.

Сумма n первых членов арифметической прогрессии

Рассмотрим Числовые последовательности - определение и вычисление с примерами решения первых членов арифметической прогрессии Числовые последовательности - определение и вычисление с примерами решения. Обозначим через Числовые последовательности - определение и вычисление с примерами решения их сумму:

Числовые последовательности - определение и вычисление с примерами решения

Найдем формулу для вычисления этой суммы. Запишем эту сумму дважды, разместив в первом случае слагаемые в порядке возрастания их номеров, а во втором – в порядке убывания:

Числовые последовательности - определение и вычисление с примерами решения

Теперь сложим эти равенства почленно и получим: Числовые последовательности - определение и вычисление с примерами решения

Но по свойству 3 из предыдущего параграфа: Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения, то есть каждая сумма в скобках равенства Числовые последовательности - определение и вычисление с примерами решения равна Числовые последовательности - определение и вычисление с примерами решения, так как Числовые последовательности - определение и вычисление с примерами решенияЧисловые последовательности - определение и вычисление с примерами решения. Тогда правая часть равенства Числовые последовательности - определение и вычисление с примерами решения состоит из Числовые последовательности - определение и вычисление с примерами решения слагаемых, каждое из которых равно Числовые последовательности - определение и вычисление с примерами решения. Следовательно, Числовые последовательности - определение и вычисление с примерами решения

Разделив обе части этого равенства на 2, получим формулу суммы Числовые последовательности - определение и вычисление с примерами решения первых членов арифметической прогрессии:

Числовые последовательности - определение и вычисление с примерами решения

Если в формуле Числовые последовательности - определение и вычисление с примерами решения по формуле Числовые последовательности - определение и вычисление с примерами решения члена заменить Числовые последовательности - определение и вычисление с примерами решения выражением Числовые последовательности - определение и вычисление с примерами решения, получим:

Числовые последовательности - определение и вычисление с примерами решения

или

Числовые последовательности - определение и вычисление с примерами решения

Получили еще одну формулу для вычисления суммы п первых членов арифметической прогрессии, которой удобно пользоваться, если известны первый член и разность прогрессии.

Применим формулы Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения для решения примеров.

Пример №367

Найти сумму тридцати первых членов арифметической прогрессии 4; 7; 10; … .

Решение:

1-й способ. Так как Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения.

Тогда по формуле Числовые последовательности - определение и вычисление с примерами решения: Числовые последовательности - определение и вычисление с примерами решения

2-й способ. Так как Числовые последовательности - определение и вычисление с примерами решения, и легко найти, что Числовые последовательности - определение и вычисление с примерами решения, используем формулу Числовые последовательности - определение и вычисление с примерами решения: Числовые последовательности - определение и вычисление с примерами решения

Ответ. 1425.

Пример №368

Найти сумму восемнадцати первых членов последовательности Числовые последовательности - определение и вычисление с примерами решения заданной формулой Числовые последовательности - определение и вычисление с примерами решения.

Решение:

Поскольку последовательность задана формулой Числовые последовательности - определение и вычисление с примерами решения, где Числовые последовательности - определение и вычисление с примерами решения, то она является арифметической прогрессией (по свойству 5 из предыдущего параграфа).

Имеем: Числовые последовательности - определение и вычисление с примерами решения

Найдем Числовые последовательности - определение и вычисление с примерами решения: Числовые последовательности - определение и вычисление с примерами решения

Ответ. -216.

Пример №369

Найти сумму всех натуральных чисел, кратных числу 7 и не превышающих 999.

Решение:

Натуральные числа, кратные числу 7, образуют арифметическую прогрессию: 7; 14; 21; 28; …, которую можно задать формулой Числовые последовательности - определение и вычисление с примерами решения.

Найдем, сколько членов этой прогрессии не превышают числа 999. Для этого решим неравенство Числовые последовательности - определение и вычисление с примерами решения и получим,

что Числовые последовательности - определение и вычисление с примерами решения.

Следовательно, 142 члена прогрессии не превышают 999. Найдем их сумму, то есть Числовые последовательности - определение и вычисление с примерами решения

Имеем: Числовые последовательности - определение и вычисление с примерами решения. Тогда: Числовые последовательности - определение и вычисление с примерами решения

Ответ. 71 071.

Пример №370

Из двух точек, расстояние между которыми 100 м, одновременно навстречу друг другу начинают двигаться два объекта. Первый движется равномерно со скоростью 9 м/с, а второй за первую секунду проходит 7 м, а за каждую следующую на 2 м больше, чем за предыдущую. Через сколько секунд они встретятся?

Решение:

Пусть объекты встретятся через Числовые последовательности - определение и вычисление с примерами решения секунд. Первый за это время преодолеет Числовые последовательности - определение и вычисление с примерами решения м. Расстояния, которые преодолеет второй объект за первую, вторую, третью и следующие секунды, образуют арифметическую прогрессию, у которой Числовые последовательности - определение и вычисление с примерами решения. Тогда за Числовые последовательности - определение и вычисление с примерами решения секунд второй объект преодолеет расстояние Sn> которое можно вычислить по формуле:

Числовые последовательности - определение и вычисление с примерами решения

По условию Числовые последовательности - определение и вычисление с примерами решения, тогда Числовые последовательности - определение и вычисление с примерами решения, откуда Числовые последовательности - определение и вычисление с примерами решения. Второй корень не удовлетворяет задаче. Следовательно, Числовые последовательности - определение и вычисление с примерами решения, то есть встреча произойдет через 5 с.

Ответ. 5 с.

Числовые последовательности - определение и вычисление с примерами решенияУже в V в. до н. э. греки знали несколько прогрессий и их суммы, в частности:

1) Числовые последовательности - определение и вычисление с примерами решения

2) Числовые последовательности - определение и вычисление с примерами решения

3) Числовые последовательности - определение и вычисление с примерами решения и другие.

С вычислением суммы арифметической прогрессии связана интересная история, произошедшая с выдающимся немецким математиком Карлом Гауссом (1777-1855), который, еще учась в школе, проявил чрезвычайные математические способности. Однажды учитель предложил ученикам найти сумму ста первых натуральных чисел. Юный Гаусс мгновенно получил результат. Он заметил, что значения сумм 1 + 100, 2 + 99, 3 + 98, … одинаковы, а количество таких сумм равно 50:

Числовые последовательности - определение и вычисление с примерами решения

Геометрическая прогрессия, ее свойства. формула n-го члена геометрической прогрессии

Рассмотрим числовую последовательность, первый член которой равен 3, а каждый следующий, начиная со второго, равен предыдущему, умноженному на число 2:

Числовые последовательности - определение и вычисление с примерами решения

Такую последовательность называют геометрической прогрессией.

Геометрической прогрессией называют последовательность отличных от нуля чисел, каждое из которых, начиная со второго, равно предыдущему, умноженному на одно и то же число.

Это число называют знаменателем геометрической прогрессии и обозначают буквой Числовые последовательности - определение и вычисление с примерами решения (от первой буквы французского слова quotient – частное). Поэтому если Числовые последовательности - определение и вычисление с примерами решения – геометрическая прогрессия, то верны следующие равенства:

Числовые последовательности - определение и вычисление с примерами решения

Следовательно, для любого натурального Числовые последовательности - определение и вычисление с примерами решения получим:

Числовые последовательности - определение и вычисление с примерами решения

Тогда Числовые последовательности - определение и вычисление с примерами решениято есть

знаменатель геометрической прогрессии можно найти, ли любой член прогрессии, начиная со второго, разделить на предыдущий.

Заметим, что поскольку члены геометрической прогрессии отличны от нуля, то и знаменатель Числовые последовательности - определение и вычисление с примерами решения не может быть равным нулю, то есть Числовые последовательности - определение и вычисление с примерами решения.

Если Числовые последовательности - определение и вычисление с примерами решения, то геометрическая прогрессия будет состоять из одинаковых чисел. Например, если Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения, то получим геометрическую прогрессию:

Числовые последовательности - определение и вычисление с примерами решения

Заметим, что полученную последовательность можно также считать и арифметической прогрессией, первый член которой равен -5, а разность равна нулю.

Пусть первый член геометрической прогрессии равен Числовые последовательности - определение и вычисление с примерами решения, а знаменатель равен Числовые последовательности - определение и вычисление с примерами решения. Тогда

Числовые последовательности - определение и вычисление с примерами решения

Заметим, что в каждой из полученных формул показатель степени числа Числовые последовательности - определение и вычисление с примерами решения на 1 меньше порядкового номера члена прогрессии, для которого записана эта формула. Действительно, чтобы найти Числовые последовательности - определение и вычисление с примерами решения, имея Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения, нужно Числовые последовательности - определение и вычисление с примерами решения раз умножить Числовые последовательности - определение и вычисление с примерами решения на Числовые последовательности - определение и вычисление с примерами решения, то есть Числовые последовательности - определение и вычисление с примерами решения умножить на Числовые последовательности - определение и вычисление с примерами решения. Имеем:

Числовые последовательности - определение и вычисление с примерами решения

Получили формулу Числовые последовательности - определение и вычисление с примерами решения члена геометрической прогрессии.

Рассмотрим несколько примеров применения этой формулы.

Пример №371

Последовательность Числовые последовательности - определение и вычисление с примерами решения – геометрическая прогрессия, Числовые последовательности - определение и вычисление с примерами решения. Найти Числовые последовательности - определение и вычисление с примерами решения.

Решение:

Числовые последовательности - определение и вычисление с примерами решения.

Ответ. Числовые последовательности - определение и вычисление с примерами решения.

Пример №372

Найти знаменатель Числовые последовательности - определение и вычисление с примерами решения геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения, если Числовые последовательности - определение и вычисление с примерами решения.

Решение:

1-й способ. Числовые последовательности - определение и вычисление с примерами решения. Тогда Числовые последовательности - определение и вычисление с примерами решения

При этомЧисловые последовательности - определение и вычисление с примерами решения, то есть Числовые последовательности - определение и вычисление с примерами решения, откуда Числовые последовательности - определение и вычисление с примерами решения или Числовые последовательности - определение и вычисление с примерами решения.

2-й способ. Числовые последовательности - определение и вычисление с примерами решения.

Так как Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения, откудаЧисловые последовательности - определение и вычисление с примерами решения или Числовые последовательности - определение и вычисление с примерами решения.

Ответ. Числовые последовательности - определение и вычисление с примерами решения или Числовые последовательности - определение и вычисление с примерами решения.

Пример №373

Дан равносторонний треугольник со стороной 8 см. Середины его сторон являются вершинами второго треугольника, а середины сторон второго являются вершинами третьего и т. д. (рис. 75). Найти площадь пятого треугольника, построенного по тому же принципу.

Числовые последовательности - определение и вычисление с примерами решения

Решение:

Пусть Числовые последовательности - определение и вычисление с примерами решения – площади первого, второго, третьего и т. д. треугольников. Найдем Числовые последовательности - определение и вычисление с примерами решения:

Числовые последовательности - определение и вычисление с примерами решения

Поскольку стороны каждого следующего треугольника являются средними линиями предыдущего, то длина стороны каждого следующего треугольника будет вдвое меньше длины стороны предыдущего. Тогда сторона второго треугольника равна 4 см, а его площадь Числовые последовательности - определение и вычисление с примерами решения. Сторона третьего треугольника равна 2 см, тогда Числовые последовательности - определение и вычисление с примерами решения. Очевидно, что Числовые последовательности - определение и вычисление с примерами решения в 4 раза меньше, чем Числовые последовательности - определение и вычисление с примерами решения, a Числовые последовательности - определение и вычисление с примерами решения в 4 раза меньше, чем Числовые последовательности - определение и вычисление с примерами решения, то есть приходим к выводу, что площадь каждого следующего треугольника в 4 раза меньше площади предыдущего, и поэтому найденные числовые значения площадей Числовые последовательности - определение и вычисление с примерами решения являются последовательными членами геометрической прогрессии со знаменателем Числовые последовательности - определение и вычисление с примерами решения, первый член которой равен Числовые последовательности - определение и вычисление с примерами решения. Тогда числовое значение площади пятого треугольника является соответственно пятым членом этой прогрессии. Значит,

Числовые последовательности - определение и вычисление с примерами решения

Ответ. Числовые последовательности - определение и вычисление с примерами решения

Докажем некоторые важные свойства геометрической прогрессии.

1. Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух соседних с ним членов, то есть

Числовые последовательности - определение и вычисление с примерами решения

Доказательство. Воспользуемся формулой Числовые последовательности - определение и вычисление с примерами решения члена геометрической прогрессии. Тогда:

Числовые последовательности - определение и вычисление с примерами решения

Если все члены геометрической прогрессии являются положительными числами, то Числовые последовательности - определение и вычисление с примерами решения, то есть каждый член геометрической прогрессии, начиная со второго, является средним геометрическим двух соседних с ним членов.

По одной из версий именно с этим свойством геометрической прогрессии и связано ее название.

2. Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух равноудаленных от него членов, то есть

Числовые последовательности - определение и вычисление с примерами решения

Свойство доказывается аналогично предыдущему свойству.

3. Если Числовые последовательности - определение и вычисление с примерами решения — натуральные числа и Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения.

Доказательство: Воспользуемся формулой Числовые последовательности - определение и вычисление с примерами решения члена геометрической прогрессии:

Числовые последовательности - определение и вычисление с примерами решения

Нo Числовые последовательности - определение и вычисление с примерами решения, поэтому Числовые последовательности - определение и вычисление с примерами решения. Следовательно, Числовые последовательности - определение и вычисление с примерами решения

Числовые последовательности - определение и вычисление с примерами решенияВ уже неоднократно здесь упоминавшемся папирусе Ахмеса содержится следующая задача, в которой необходимо найти сумму Числовые последовательности - определение и вычисление с примерами решения членов геометрической прогрессии: «У семи человек по семи кошек, каждая кошка съедает по 1 мышей, каждая мышь съедает по 7 колосьев, из каждого колоса может вырасти по 7 мер ячменя. Как велики числа этого ряда и их сумма?».

В своей работе «Псаммит» Архимед впервые сопоставил арифметическую и геометрическую прогрессии:

Числовые последовательности - определение и вычисление с примерами решения

и указал на связь между ними, например: Числовые последовательности - определение и вычисление с примерами решения, то есть для умножения двух членов геометрической прогрессии достаточно сложить соответствующие члены арифметической прогрессии и взять полученную сумму в качестве показателя 10.

У древних греков теория геометрических прогрессий была связана с так называемой непрерывной геометрической пропорцией:

Числовые последовательности - определение и вычисление с примерами решения в которой числа Числовые последовательности - определение и вычисление с примерами решения образуют геометрическую прогрессию со знаменателем Числовые последовательности - определение и вычисление с примерами решения Этой связью и объясняется одна из версий названия прогрессии – геометрическая.

Формула сложных процентов

Бухгалтерам и работникам банков часто приходится решать задачи на проценты. Рассмотрим задачу о начислении процентного дохода. С экономической точки зрения процентный доход можно считать вознаграждением, которое платит лицо или учреждение (заемщик) за пользование в течение определенного времени определенной суммой средств, полученных от другого лица или учреждения (кредитора). Размер этого вознаграждения зависит от суммы средств и срока пользования ими.

Пример №374

Вкладчик открыл в банке депозит в размере 10 ООО грн под 11 % годовых (то есть банк обязан выплатить процентный доход в размере 11 % в год от начальной суммы вклада). Какой процентный доход получит вкладчик через год?

Решение:

11 % = 0,11, поэтому вкладчик получит Числовые последовательности - определение и вычисление с примерами решения (грн) процентного дохода.

Ответ. 1100 грн.

Если вкладчик решил держать средства в банке более года, не добавляя новых средств и не забирая вложенных, то определить сумму средств на счету вкладчика через несколько лет можно с помощью формулы сложных процентов.

Пусть вкладчик положил в банк Числовые последовательности - определение и вычисление с примерами решения грн под Числовые последовательности - определение и вычисление с примерами решения % годовых, Числовые последовательности - определение и вычисление с примерами решения еще называют начальным капиталом. Через год банк начислит вкладчику Числовые последовательности - определение и вычисление с примерами решения грн процентного дохода. Поэтому на счету вкладчика через год будет Числовые последовательности - определение и вычисление с примерами решения грн – наращенный капитал. Обозначим Числовые последовательности - определение и вычисление с примерами решения. За второй год вкладчику будет начислено Числовые последовательности - определение и вычисление с примерами решения грн процентного дохода (ведь теперь банк начисляет Числовые последовательности - определение и вычисление с примерами решения % годовых от числа Числовые последовательности - определение и вычисление с примерами решения), и его вклад будет равен:

Числовые последовательности - определение и вычисление с примерами решения

Рассуждая аналогично и применяя формулу Числовые последовательности - определение и вычисление с примерами решения члена геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения, гдеЧисловые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения придем к выводу, что через Числовые последовательности - определение и вычисление с примерами решения лет наращенный капитал будет равен:

Числовые последовательности - определение и вычисление с примерами решения

Таким образом,

начальный капитал Числовые последовательности - определение и вычисление с примерами решения, вложенный в банк под Числовые последовательности - определение и вычисление с примерами решения % годовых, через Числовые последовательности - определение и вычисление с примерами решения лет станет наращенным капиталом Числовые последовательности - определение и вычисление с примерами решения, размер которого определяется но формуле:

Числовые последовательности - определение и вычисление с примерами решения

которую называют формулой сложных процентов.

Пример №375

Вкладчик открыл в банке депозит на 5000 грн под 12 % годовых. Сколько средств будет на счету вкладчика через 3 года? Какой процентный доход получит вкладчик через 3 года?

Решение:

Числовые последовательности - определение и вычисление с примерами решения. Тогда:

Числовые последовательности - определение и вычисление с примерами решения

Процентный доход можно найти как разность Числовые последовательности - определение и вычисление с примерами решения

Таким образом, Числовые последовательности - определение и вычисление с примерами решения.

Ответ. 7024,64 грн, 2024,64 грн.

По формуле сложных процентов можно решать и другие задачи, не связанные с наращиванием капитала.

Пример №376

Население города составляет 30 000 жителей. Каждый год количество населения уменьшается на 0,2 %. Сколько жителей будет в этом городе через 10 лет?

Решение:

Так как население города ежегодно уменьшается на один и тот же процент, и это процент от количества населения каждого предыдущего года, а не от начального количества жителей, то можно воспользоваться формулой сложных процентов.

Имеем, Числовые последовательности - определение и вычисление с примерами решения (так как население уменьшается, то Числовые последовательности - определение и вычисление с примерами решения), Числовые последовательности - определение и вычисление с примерами решения. Тогда:

Числовые последовательности - определение и вычисление с примерами решения.

Ответ. 29 405 жителей.

Сумма n первых членов геометрической прогрессии

Рассмотрим Числовые последовательности - определение и вычисление с примерами решения первых членов геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения.

Обозначим через Числовые последовательности - определение и вычисление с примерами решения их сумму:

Числовые последовательности - определение и вычисление с примерами решения

Найдем формулу для вычисления этой суммы. Имеем (учитывая формулу Числовые последовательности - определение и вычисление с примерами решения члена геометрической прогрессии):

Числовые последовательности - определение и вычисление с примерами решения

Умножим обе части этого равенства на Числовые последовательности - определение и вычисление с примерами решения:

Числовые последовательности - определение и вычисление с примерами решения

Вычтем почленно из этого равенства предыдущее:

Числовые последовательности - определение и вычисление с примерами решения

Таким образом, Числовые последовательности - определение и вычисление с примерами решения и Числовые последовательности - определение и вычисление с примерами решения.

Если Числовые последовательности - определение и вычисление с примерами решения, получаем формулу суммы Числовые последовательности - определение и вычисление с примерами решения первых членов геометрической прогрессии:

Числовые последовательности - определение и вычисление с примерами решения

Если Числовые последовательности - определение и вычисление с примерами решения, то все члены прогрессии равны первому члену и тогда Числовые последовательности - определение и вычисление с примерами решения.

Заметим, что полученную формулу Числовые последовательности - определение и вычисление с примерами решения можно записать и так:

Числовые последовательности - определение и вычисление с примерами решения

Так как Числовые последовательности - определение и вычисление с примерами решения, то формулу Числовые последовательности - определение и вычисление с примерами решения можно записать и по-другому. Действительно,

Числовые последовательности - определение и вычисление с примерами решения

Таким образом,

Числовые последовательности - определение и вычисление с примерами решения

Получили еще одну формулу для вычисления суммы Числовые последовательности - определение и вычисление с примерами решения первых членов геометрической прогрессии, которой удобно пользоваться, если известны первый и Числовые последовательности - определение и вычисление с примерами решения члены прогрессии и ее знаменатель. Применим эти формулы для решения упражнений.

Пример №377

Найти сумму первых семи членов геометрической прогрессии 2; -6; 18; … .

Решение:

1-й способ. По условию:

Числовые последовательности - определение и вычисление с примерами решения

Тогда по формуле Числовые последовательности - определение и вычисление с примерами решения:

Числовые последовательности - определение и вычисление с примерами решения

2-й способ. Известно, что Числовые последовательности - определение и вычисление с примерами решения, тогда

Числовые последовательности - определение и вычисление с примерами решения

По формуле Числовые последовательности - определение и вычисление с примерами решения:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. 1094.

Пример №378

Найти сумму первых шести членов геометрической прогрессии Числовые последовательности - определение и вычисление с примерами решения, если Числовые последовательности - определение и вычисление с примерами решения

Решение:

Числовые последовательности - определение и вычисление с примерами решения, тогда Числовые последовательности - определение и вычисление с примерами решения, следовательно, Числовые последовательности - определение и вычисление с примерами решения или Числовые последовательности - определение и вычисление с примерами решения.

Таким образом, существуют две прогрессии, удовлетворяющие условию задачи:

1) если Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения

2) если Числовые последовательности - определение и вычисление с примерами решения, то Числовые последовательности - определение и вычисление с примерами решения

Ответ. 252 или -84.

Пример №379

Сократить дробь

Числовые последовательности - определение и вычисление с примерами решения

Решение:

Слагаемые в числителе дроби являются последовательными членами геометрической прогрессии 1, Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, Числовые последовательности - определение и вычисление с примерами решения, первый член которой равен 1, а знаменатель равен Числовые последовательности - определение и вычисление с примерами решения. Из условия следует, что Числовые последовательности - определение и вычисление с примерами решения.

Найдем сумму всех шести членов этой прогрессии по формуле Числовые последовательности - определение и вычисление с примерами решения и сократим данную в условии дробь:

Числовые последовательности - определение и вычисление с примерами решения

Ответ. Числовые последовательности - определение и вычисление с примерами решения.

Числовые последовательности - определение и вычисление с примерами решения Древняя индийская задача-легенда гласит- что изобретатель шахматной игры Сета в награду за свою остроумную выдумку попросил у индийского царя Шерама столько зерен пшеницы, сколько их получится, если на первую клетку шахматной доски положить одно зерно, на вторую – два, на третью – четыре, на четвертую – восемь и т. д., пока не заполнятся все клетки.

Царь удивился, что изобретатель пожелал столь мало, и приказал придворным математикам подсчитать необходимое количество зерен. Каково же было изумление царя, когда он узнал, что не сможет выдать обещанную награду, так как необходимое число зерен равно Числовые последовательности - определение и вычисление с примерами решения

Чтобы получить столько зерен, потребовалось бы собрать урожай с площади, в 2000 раз превышающей всю поверхность Земли. А для хранения такого урожая понадобился бы амбар, который при высоте 4 м и ширине 10 м тянулся бы на 300 000 000 км, то есть вдвое дальше, чем от Земли до Солнца.

  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики
  • Параллельность в пространстве
  • Рациональные выражения
  • Квадратные корни
  • Квадратные уравнения
  • Неравенства

Арифметическая прогрессия: что это такое?

5 января 2017

  • Тренировочные задачи
  • Ответы и решения

Да, да: арифметическая прогрессия — это вам не игрушки 🙂

Что ж, друзья, если вы читаете этот текст, то внутренний кэп-очевидность подсказывает мне, что вы пока ещё не знаете, что такое арифметическая прогрессия, но очень (нет, вот так: ОООООЧЕНЬ!) хотите узнать. Поэтому не буду мучать вас длинными вступлениями и сразу перейду к делу.

Для начала парочка примеров. Рассмотрим несколько наборов чисел:

  • 1; 2; 3; 4; …
  • 15; 20; 25; 30; …
  • $sqrt{2}; 2sqrt{2}; 3sqrt{2};…$

Что общего у всех этих наборов? На первый взгляд — ничего. Но на самом деле кое-что есть. А именно: каждый следующий элемент отличается от предыдущего на одно и то же число.

Судите сами. Первый набор — это просто идущие подряд числа, каждое следующее на единицу больше предыдущего. Во втором случае разница между рядом стоящими числами уже равна пяти, но эта разница всё равно постоянна. В третьем случае вообще корни. Однако $2sqrt{2}=sqrt{2}+sqrt{2}$, а $3sqrt{2}=2sqrt{2}+sqrt{2}$, т.е. и в этом случае каждый следующий элемент просто возрастает на $sqrt{2}$ (и пусть вас не пугает, что это число — иррациональное).

Так вот: все такие последовательности как раз и называются арифметическими прогрессиями. Дадим строгое определение:

Определение. Последовательность чисел, в которой каждое следующее отличается от предыдущего ровно на одну и ту же величину, называется арифметической прогрессией. Сама величина, на которую отличаются числа, называется разностью прогрессии и чаще всего обозначается буквой $d$.

Обозначение: $left( {{a}_{n}} right)$ — сама прогрессия, $d$ — её разность.

И сразу парочка важных замечаний. Во-первых, прогрессией считается лишь упорядоченная последовательность чисел: их разрешено читать строго в том порядке, в котором они записаны — и никак иначе. Переставлять и менять местами числа нельзя.

Во-вторых, сама последовательность может являться как конечной, так и бесконечной. К примеру, набор {1; 2; 3} — это, очевидно, конечная арифметическая прогрессия. Но если записать что-нибудь в духе {1; 2; 3; 4; …} — это уже бесконечная прогрессия. Многоточие после четвёрки как бы намекает, что дальше идёт ещё довольно много чисел. Бесконечно много, например.:)

Ещё хотел бы отметить, что прогрессии бывают возрастающими и убывающими. Возрастающие мы уже видели — тот же набор {1; 2; 3; 4; …}. А вот примеры убывающих прогрессий:

  • 49; 41; 33; 25; 17; …
  • 17,5; 12; 6,5; 1; −4,5; −10; …
  • $sqrt{5}; sqrt{5}-1; sqrt{5}-2; sqrt{5}-3;…$

Ладно, ладно: последний пример может показаться чересчур сложным. Но остальные, думаю, вам понятны. Поэтому введём новые определения:

Определение. Арифметическая прогрессия называется:

  1. возрастающей, если каждый следующий элемент больше предыдущего;
  2. убывающей, если, напротив, каждый последующий элемент меньше предыдущего.

Кроме того, существуют так называемые «стационарные» последовательности — они состоят из одного и того же повторяющегося числа. Например, {3; 3; 3; …}.

Остаётся лишь один вопрос: как отличить возрастающую прогрессию от убывающей? К счастью, тут всё зависит лишь от того, каков знак числа $d$, т.е. разности прогрессии:

  1. Если $d gt 0$, то прогрессия возрастает;
  2. Если $d lt 0$, то прогрессия, очевидно, убывает;
  3. Наконец, есть случай $d=0$ — в этом случае вся прогрессия сводится к стационарной последовательности одинаковых чисел: {1; 1; 1; 1; …} и т.д.

Попробуем рассчитать разность $d$ для трёх убывающих прогрессий, приведённых выше. Для этого достаточно взять любые два соседних элемента (например, первый и второй) и вычесть из числа, стоящего справа, число, стоящее слева. Выглядеть это будет вот так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $sqrt{5}-1-sqrt{5}=-1$.

Как видим, во всех трёх случаях разность действительно получилась отрицательной. И теперь, когда мы более-менее разобрались с определениями, пора разобраться с тем, как описываются прогрессии и какие у них свойства.

Члены прогрессии и рекуррентная формула

Поскольку элементы наших последовательностей нельзя менять местами, их можно пронумеровать:

[left( {{a}_{n}} right)=left{ {{a}_{1}}, {{a}_{2}},{{a}_{3}},… right}]

Отдельные элементы этого набора называются членами прогрессии. На них так и указывают с помощью номера: первый член, второй член и т.д.

Кроме того, как мы уже знаем, соседние члены прогрессии связаны формулой:

[{{a}_{n}}-{{a}_{n-1}}=dRightarrow {{a}_{n}}={{a}_{n-1}}+d]

Короче говоря, чтобы найти $n$-й член прогрессии, нужно знать $n-1$-й член и разность $d$. Такая формула называется рекуррентной, поскольку с её помощью можно найти любое число, лишь зная предыдущее (а по факту — все предыдущие). Это очень неудобно, поэтому существует более хитрая формула, которая сводит любые вычисления к первому члену и разности:

[{{a}_{n}}={{a}_{1}}+left( n-1 right)d]

Наверняка вы уже встречались с этой формулой. Её любят давать во всяких справочниках и решебниках. Да и в любом толковом учебнике по математике она идёт одной из первых.

Тем не менее предлагаю немного потренироваться.

Задача №1. Выпишите первые три члена арифметической прогрессии $left( {{a}_{n}} right)$, если ${{a}_{1}}=8,d=-5$.

Решение. Итак, нам известен первый член ${{a}_{1}}=8$ и разность прогрессии $d=-5$. Воспользуемся только что приведённой формулой и подставим $n=1$, $n=2$ и $n=3$:

[begin{align} & {{a}_{n}}={{a}_{1}}+left( n-1 right)d; \ & {{a}_{1}}={{a}_{1}}+left( 1-1 right)d={{a}_{1}}=8; \ & {{a}_{2}}={{a}_{1}}+left( 2-1 right)d={{a}_{1}}+d=8-5=3; \ & {{a}_{3}}={{a}_{1}}+left( 3-1 right)d={{a}_{1}}+2d=8-10=-2. \ end{align}]

Ответ: {8; 3; −2}

Вот и всё! Обратите внимание: наша прогрессия — убывающая.

Конечно, $n=1$ можно было и не подставлять — первый член нам и так известен. Впрочем, подставив единицу, мы убедились, что даже для первого члена наша формула работает. В остальных случаях всё свелось к банальной арифметике.

Задача №2. Выпишите первые три члена арифметической прогрессии, если её седьмой член равен −40, а семнадцатый член равен −50.

Решение. Запишем условие задачи в привычных терминах:

[{{a}_{7}}=-40;quad {{a}_{17}}=-50.]

Далее распишем 7-й и 17-й члены через формулу $n$-го члена прогрессии:

[left{ begin{align} & {{a}_{7}}={{a}_{1}}+6d \ & {{a}_{17}}={{a}_{1}}+16d \ end{align} right.]

[left{ begin{align} & {{a}_{1}}+6d=-40 \ & {{a}_{1}}+16d=-50 \ end{align} right.]

Знак системы я поставил потому, что эти требования должны выполняться одновременно. А теперь заметим, если вычесть из второго уравнения первое (мы имеем право это сделать, т.к. у нас система), то получим вот что:

[begin{align} & {{a}_{1}}+16d-left( {{a}_{1}}+6d right)=-50-left( -40 right); \ & {{a}_{1}}+16d-{{a}_{1}}-6d=-50+40; \ & 10d=-10; \ & d=-1. \ end{align}]

Вот так просто мы нашли разность прогрессии! Осталось подставить найденное число в любое из уравнений системы. Например, в первое:

[begin{matrix} {{a}_{1}}+6d=-40;quad d=-1 \ Downarrow \ {{a}_{1}}-6=-40; \ {{a}_{1}}=-40+6=-34. \ end{matrix}]

Теперь, зная первый член и разность, осталось найти второй и третий член:

[begin{align} & {{a}_{2}}={{a}_{1}}+d=-34-1=-35; \ & {{a}_{3}}={{a}_{1}}+2d=-34-2=-36. \ end{align}]

Готово! Задача решена.

Ответ: {−34; −35; −36}

Обратите внимание на любопытное свойство прогрессии, которое мы обнаружили: если взять $n$-й и $m$-й члены и вычесть их друг из друга, то мы получим разность прогрессии, умноженную на число $n-m$:

[{{a}_{n}}-{{a}_{m}}=dcdot left( n-m right)]

Простое, но очень полезное свойство, которое обязательно надо знать — с его помощью можно значительно ускорить решение многих задач по прогрессиям. Вот яркий тому пример:

Задача №3. Пятый член арифметической прогрессии равен 8,4, а её десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

Решение. Поскольку ${{a}_{5}}=8,4$, ${{a}_{10}}=14,4$, а нужно найти ${{a}_{15}}$, то заметим следующее:

[begin{align} & {{a}_{15}}-{{a}_{10}}=5d; \ & {{a}_{10}}-{{a}_{5}}=5d. \ end{align}]

Но по условию ${{a}_{10}}-{{a}_{5}}=14,4-8,4=6$, поэтому $5d=6$, откуда имеем:

[begin{align} & {{a}_{15}}-14,4=6; \ & {{a}_{15}}=6+14,4=20,4. \ end{align}]

Ответ: 20,4

Вот и всё! Нам не потребовалось составлять какие-то системы уравнений и считать первый член и разность — всё решилось буквально в пару строчек.

Теперь рассмотрим другой вид задач — на поиск отрицательных и положительных членов прогрессии. Не секрет, что если прогрессия возрастает, при этом первый член у неё отрицательный, то рано или поздно в ней появятся положительные члены. И напротив: члены убывающей прогрессии рано или поздно станут отрицательными.

При этом далеко не всегда можно нащупать этот момент «в лоб», последовательно перебирая элементы. Зачастую задачи составлены так, что без знания формул вычисления заняли бы несколько листов — мы просто уснули бы, пока нашли ответ. Поэтому попробуем решить эти задачи более быстрым способом.

Задача №4. Сколько отрицательных членов в арифметической прогрессии −38,5; −35,8; …?

Решение. Итак, ${{a}_{1}}=-38,5$, ${{a}_{2}}=-35,8$, откуда сразу находим разность:

[d={{a}_{2}}-{{a}_{1}}=-35,8-left( -38,5 right)=38,5-35,8=2,7]

Заметим, что разность положительна, поэтому прогрессия возрастает. Первый член отрицателен, поэтому действительно в какой-то момент мы наткнёмся на положительные числа. Вопрос лишь в том, когда это произойдёт.

Попробуем выяснить: до каких пор (т.е. до какого натурального числа $n$) сохраняется отрицательность членов:

[begin{align} & {{a}_{n}} lt 0Rightarrow {{a}_{1}}+left( n-1 right)d lt 0; \ & -38,5+left( n-1 right)cdot 2,7 lt 0;quad left| cdot 10 right. \ & -385+27cdot left( n-1 right) lt 0; \ & -385+27n-27 lt 0; \ & 27n lt 412; \ & n lt 15frac{7}{27}Rightarrow {{n}_{max }}=15. \ end{align}]

Ответ: 15

Последняя строчка требует пояснения. Итак, нам известно, что $n lt 15frac{7}{27}$. С другой стороны, нас устроят лишь целые значения номера (более того: $nin mathbb{N}$), поэтому наибольший допустимый номер — это именно $n=15$, а ни в коем случае не 16.

Задача №5. В арифметической прогрессии ${{}_{5}}=-150,{{}_{6}}=-147$. Найдите номер первого положительного члена этой прогрессии.

Это была бы точь-в-точь такая же задача, как и предыдущая, однако нам неизвестно ${{a}_{1}}$. Зато известны соседние члены: ${{a}_{5}}$ и ${{a}_{6}}$, поэтому мы легко найдём разность прогрессии:

[d={{a}_{6}}-{{a}_{5}}=-147-left( -150 right)=150-147=3]

Кроме того, попробуем выразить пятый член через первый и разность по стандартной формуле:

[begin{align} & {{a}_{n}}={{a}_{1}}+left( n-1 right)cdot d; \ & {{a}_{5}}={{a}_{1}}+4d; \ & -150={{a}_{1}}+4cdot 3; \ & {{a}_{1}}=-150-12=-162. \ end{align}]

Теперь поступаем по аналогии с предыдущей задачей. Выясняем, в какой момент в нашей последовательности возникнут положительные числа:

[begin{align} & {{a}_{n}}=-162+left( n-1 right)cdot 3 gt 0; \ & -162+3n-3 gt 0; \ & 3n gt 165; \ & n gt 55Rightarrow {{n}_{min }}=56. \ end{align}]

Минимальное целочисленное решение данного неравенства — число 56.

Ответ: 56

Обратите внимание: в последнем задании всё свелось к строгому неравенству, поэтому вариант $n=55$ нас не устроит.

Теперь, когда мы научились решать простые задачи, перейдём к более сложным. Но для начала давайте изучим ещё одно очень полезное свойство арифметических прогрессий, которое в будущем сэкономит нам кучу времени и неравных клеток.:)

Среднее арифметическое и равные отступы

Рассмотрим несколько последовательных членов возрастающей арифметической прогрессии $left( {{a}_{n}} right)$. Попробуем отметить их на числовой прямой:

Члены арифметической прогрессии на числовой прямой

Я специально отметил произвольные члены ${{a}_{n-3}},…,{{a}_{n+3}}$, а не какие-нибудь ${{a}_{1}}, {{a}_{2}}, {{a}_{3}}$ и т.д. Потому что правило, о котором я сейчас расскажу, одинаково работает для любых «отрезков».

А правило очень простое. Давайте вспомним рекуррентную формулу и запишем её для всех отмеченных членов:

[begin{align} & {{a}_{n-2}}={{a}_{n-3}}+d; \ & {{a}_{n-1}}={{a}_{n-2}}+d; \ & {{a}_{n}}={{a}_{n-1}}+d; \ & {{a}_{n+1}}={{a}_{n}}+d; \ & {{a}_{n+2}}={{a}_{n+1}}+d; \ end{align}]

Однако эти равенства можно переписать иначе:

[begin{align} & {{a}_{n-1}}={{a}_{n}}-d; \ & {{a}_{n-2}}={{a}_{n}}-2d; \ & {{a}_{n-3}}={{a}_{n}}-3d; \ & {{a}_{n+1}}={{a}_{n}}+d; \ & {{a}_{n+2}}={{a}_{n}}+2d; \ & {{a}_{n+3}}={{a}_{n}}+3d; \ end{align}]

Ну и что с того? А то, что члены ${{a}_{n-1}}$ и ${{a}_{n+1}}$ лежат на одном и том же расстоянии от ${{a}_{n}}$. И это расстояние равно $d$. То же самое можно сказать про члены ${{a}_{n-2}}$ и ${{a}_{n+2}}$ — они тоже удалены от ${{a}_{n}}$ на одинаковое расстояние, равное $2d$. Продолжать можно до бесконечности, но смысл хорошо иллюстрирует картинка

Члены прогрессии лежат на одинаковом расстоянии от центра

Что это значит для нас? Это значит, что можно найти ${{a}_{n}}$, если известны числа-соседи:

[{{a}_{n}}=frac{{{a}_{n-1}}+{{a}_{n+1}}}{2}]

Мы вывели великолепное утверждение: всякий член арифметической прогрессии равен среднему арифметическому соседних членов! Более того: мы можем отступить от нашего ${{a}_{n}}$ влево и вправо не на один шаг, а на $k$ шагов — и всё равно формула будет верна:

[{{a}_{n}}=frac{{{a}_{n-k}}+{{a}_{n+k}}}{2}]

Т.е. мы спокойно можем найти какое-нибудь ${{a}_{150}}$, если знаем ${{a}_{100}}$ и ${{a}_{200}}$, потому что ${{a}_{150}}=frac{{{a}_{100}}+{{a}_{200}}}{2}$. На первый взгляд может показаться, что данный факт не даёт нам ничего полезного. Однако на практике многие задачи специально «заточены» под использование среднего арифметического. Взгляните:

Задача №6. Найдите все значения $x$, при которых числа $-6{{x}^{2}}$, $x+1$ и $14+4{{x}^{2}}$ являются последовательными членами арифметической прогрессии (в указанном порядке).

Решение. Поскольку указанные числа являются членами прогрессии, для них выполняется условие среднего арифметического: центральный элемент $x+1$ можно выразить через соседние элементы:

[begin{align} & x+1=frac{-6{{x}^{2}}+14+4{{x}^{2}}}{2}; \ & x+1=frac{14-2{{x}^{2}}}{2}; \ & x+1=7-{{x}^{2}}; \ & {{x}^{2}}+x-6=0. \ end{align}]

Получилось классическое квадратное уравнение. Его корни: $x=2$ и $x=-3$ — это и есть ответы.

Ответ: −3; 2.

Задача №7. Найдите значения $$, при которых числа $-1;4-3;{{}^{2}}+1$ составляют арифметическую прогрессию (в указанном порядке).

Решение. Опять выразим средний член через среднее арифметическое соседних членов:

[begin{align} & 4x-3=frac{x-1+{{x}^{2}}+1}{2}; \ & 4x-3=frac{{{x}^{2}}+x}{2};quad left| cdot 2 right.; \ & 8x-6={{x}^{2}}+x; \ & {{x}^{2}}-7x+6=0. \ end{align}]

Снова квадратное уравнение. И снова два корня: $x=6$ и$x=1$.

Ответ: 1; 6.

Если в процессе решения задачи у вас вылезают какие-то зверские числа, либо вы не до конца уверены в правильности найденных ответов, то есть замечательный приём, позволяющий проверить: правильно ли мы решили задачу?

Допустим, в задаче №6 мы получили ответы −3 и 2. Как проверить, что эти ответы верны? Давайте просто подставим их в исходное условие и посмотрим, что получится. Напомню, что у нас есть три числа ($-6{{}^{2}}$, $+1$ и $14+4{{}^{2}}$), которые должны составлять арифметическую прогрессию. Подставим $x=-3$:

[begin{align} & x=-3Rightarrow \ & -6{{x}^{2}}=-54; \ & x+1=-2; \ & 14+4{{x}^{2}}=50. end{align}]

Получили числа −54; −2; 50, которые отличаются на 52 — несомненно, это арифметическая прогрессия. То же самое происходит и при $x=2$:

[begin{align} & x=2Rightarrow \ & -6{{x}^{2}}=-24; \ & x+1=3; \ & 14+4{{x}^{2}}=30. end{align}]

Опять прогрессия, но с разностью 27. Таким образом, задача решена верно. Желающие могут проверить вторую задачу самостоятельно, но сразу скажу: там тоже всё верно.

В целом, решая последние задачи, мы наткнулись на ещё один интересный факт, который тоже необходимо запомнить:

Если три числа таковы, что второе является средним арифметическим первого и последнего, то эти числа образуют арифметическую прогрессию.

В будущем понимание этого утверждения позволит нам буквально «конструировать» нужные прогрессии, опираясь на условие задачи. Но прежде чем мы займёмся подобным «конструированием», следует обратить внимание на ещё один факт, который прямо следует из уже рассмотренного.

Группировка и сумма элементов

Давайте ещё раз вернёмся к числовой оси. Отметим там несколько членов прогрессии, между которыми, возможно. стоит очень много других членов:

На числовой прямой отмечены 6 элементов

Попробуем выразить «левый хвост» через ${{a}_{n}}$ и $d$, а «правый хвост» через ${{a}_{k}}$ и $d$. Это очень просто:

[begin{align} & {{a}_{n+1}}={{a}_{n}}+d; \ & {{a}_{n+2}}={{a}_{n}}+2d; \ & {{a}_{k-1}}={{a}_{k}}-d; \ & {{a}_{k-2}}={{a}_{k}}-2d. \ end{align}]

А теперь заметим, что равны следующие суммы:

[begin{align} & {{a}_{n}}+{{a}_{k}}=S; \ & {{a}_{n+1}}+{{a}_{k-1}}={{a}_{n}}+d+{{a}_{k}}-d=S; \ & {{a}_{n+2}}+{{a}_{k-2}}={{a}_{n}}+2d+{{a}_{k}}-2d=S. end{align}]

Проще говоря, если мы рассмотрим в качестве старта два элемента прогрессии, которые в сумме равны какому-нибудь числу $S$, а затем начнём шагать от этих элементов в противоположные стороны (навстречу друг другу или наоборот на удаление), то суммы элементов, на которые мы будем натыкаться, тоже будут равны $S$. Наиболее наглядно это можно представить графически:

Одинаковые отступы дают равные суммы

Понимание данного факта позволит нам решать задачи принципиально более высокого уровня сложности, нежели те, что мы рассматривали выше. Например, такие:

Задача №8. Определите разность арифметической прогрессии, в которой первый член равен 66, а произведение второго и двенадцатого членов является наименьшим из возможных.

Решение. Запишем всё, что нам известно:

[begin{align} & {{a}_{1}}=66; \ & d=? \ & {{a}_{2}}cdot {{a}_{12}}=min . end{align}]

Итак, нам неизвестна разность прогрессии $d$. Собственно, вокруг разности и будет строиться всё решение, поскольку произведение ${{a}_{2}}cdot {{a}_{12}}$ можно переписать следующим образом:

[begin{align} & {{a}_{2}}={{a}_{1}}+d=66+d; \ & {{a}_{12}}={{a}_{1}}+11d=66+11d; \ & {{a}_{2}}cdot {{a}_{12}}=left( 66+d right)cdot left( 66+11d right)= \ & =11cdot left( d+66 right)cdot left( d+6 right). end{align}]

Для тех, кто в танке: я вынес общий множитель 11 из второй скобки. Таким образом, искомое произведение представляет собой квадратичную функцию относительно переменной $d$. Поэтому рассмотрим функцию $fleft( d right)=11left( d+66 right)left( d+6 right)$ — её графиком будет парабола ветвями вверх, т.к. если раскрыть скобки, то мы получим:

[begin{align} & fleft( d right)=11left( {{d}^{2}}+66d+6d+66cdot 6 right)= \ & =11{{d}^{2}}+11cdot 72d+11cdot 66cdot 6 end{align}]

Как видим, коэффициент при старшем слагаемом равен 11 — это положительное число, поэтому действительно имеем дело с параболой ветвями вверх:

график квадратичной функции — парабола

Обратите внимание: минимальное значение эта парабола принимает в своей вершине с абсциссой ${{d}_{0}}$. Конечно, мы можем посчитать эту абсциссу по стандартной схеме (есть же формула ${{d}_{0}}={-b}/{2a};$), но куда разумнее будет заметить, что искомая вершина лежит на оси симметрии параболы, поэтому точка ${{d}_{0}}$ равноудалена от корней уравнения $fleft( d right)=0$:

[begin{align} & fleft( d right)=0; \ & 11cdot left( d+66 right)cdot left( d+6 right)=0; \ & {{d}_{1}}=-66;quad {{d}_{2}}=-6. \ end{align}]

Именно поэтому я не особо спешил раскрывать скобки: в исходном виде корни было найти очень и очень просто. Следовательно, абсцисса равна среднему арифметическому чисел −66 и −6:

[{{d}_{0}}=frac{-66-6}{2}=-36]

Что даёт нам обнаруженное число? При нём требуемое произведение принимает наименьшее значение (мы, кстати, так и не посчитали ${{y}_{min }}$ — от нас это не требуется). Одновременно это число является разностью исходной прогрессии, т.е. мы нашли ответ.:)

Ответ: −36

Задача №9. Между числами $-frac{1}{2}$ и $-frac{1}{6}$ вставьте три числа так, чтобы они вместе с данными числами составили арифметическую прогрессию.

Решение. По сути, нам нужно составить последовательность из пяти чисел, причём первое и последнее число уже известно. Обозначим недостающие числа переменными $x$, $y$ и $z$:

[left( {{a}_{n}} right)=left{ -frac{1}{2};x;y;z;-frac{1}{6} right}]

Отметим, что число $y$ является «серединой» нашей последовательности — оно равноудалено и от чисел $x$ и $z$, и от чисел $-frac{1}{2}$ и $-frac{1}{6}$. И если из чисел $x$ и $z$ мы в данный момент не можем получить $y$, то вот с концами прогрессии дело обстоит иначе. Вспоминаем про среднее арифметическое:

[y=frac{-frac{1}{2}-frac{1}{6}}{2}=-frac{4}{2cdot 6}=-frac{1}{3}]

Теперь, зная $y$, мы найдём оставшиеся числа. Заметим, что $x$ лежит между числами $-frac{1}{2}$ и только что найденным $y=-frac{1}{3}$. Поэтому

[x=frac{-frac{1}{2}-frac{1}{3}}{2}=-frac{5}{6cdot 2}=-frac{5}{12}]

Аналогично рассуждая, находим оставшееся число:

[z=frac{-frac{1}{3}-frac{1}{6}}{2}=-frac{3}{6cdot 2}=-frac{1}{4}]

Готово! Мы нашли все три числа. Запишем их в ответе в том порядке, в котором они должны быть вставлены между исходными числами.

Ответ: $-frac{5}{12}; -frac{1}{3}; -frac{1}{4}$

Задача №10. Между числами 2 и 42 вставьте несколько чисел, которые вместе с данными числами образуют арифметическую прогрессию, если известно, что сумма первого, второго и последнего из вставленных чисел равна 56.

Решение. Ещё более сложная задача, которая, однако, решается по той же схеме, что и предыдущие — через среднее арифметическое. Проблема в том, что нам неизвестно, сколько конкретно чисел надо вставить. Поэтому положим для опредлённости, что после вставки всего будет ровно $n$ чисел, причём первое из них — это 2, а последнее — 42. В этом случае искомая арифметическая прогрессия представима в виде:

[left( {{a}_{n}} right)=left{ 2;{{a}_{2}};{{a}_{3}};…;{{a}_{n-1}};42 right}]

Далее распишем сумму первого, второго и последнего из вставленных чисел:

[{{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56]

Заметим, однако, что числа ${{a}_{2}}$ и ${{a}_{n-1}}$ получаются из стоящих по краям чисел 2 и 42 путём одного шага навстречу друг другу, т.е. к центру последовательности. А это значит, что

[{{a}_{2}}+{{a}_{n-1}}=2+42=44]

Но тогда записанное выше выражение можно переписать так:

[begin{align} & {{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56; \ & left( {{a}_{2}}+{{a}_{n-1}} right)+{{a}_{3}}=56; \ & 44+{{a}_{3}}=56; \ & {{a}_{3}}=56-44=12. \ end{align}]

Зная ${{a}_{3}}$ и ${{a}_{1}}$, мы легко найдём разность прогрессии:

[begin{align} & {{a}_{3}}-{{a}_{1}}=12-2=10; \ & {{a}_{3}}-{{a}_{1}}=left( 3-1 right)cdot d=2d; \ & 2d=10Rightarrow d=5. \ end{align}]

Осталось лишь найти остальные члены:

[begin{align} & {{a}_{1}}=2; \ & {{a}_{2}}=2+5=7; \ & {{a}_{3}}=12; \ & {{a}_{4}}=2+3cdot 5=17; \ & {{a}_{5}}=2+4cdot 5=22; \ & {{a}_{6}}=2+5cdot 5=27; \ & {{a}_{7}}=2+6cdot 5=32; \ & {{a}_{8}}=2+7cdot 5=37; \ & {{a}_{9}}=2+8cdot 5=42; \ end{align}]

Таким образом, уже на 9-м шаге мы придём в левый конец последовательности — число 42. Итого нужно было вставить лишь 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Ответ: 7; 12; 17; 22; 27; 32; 37

Текстовые задачи с прогрессиями

В заключение хотелось бы рассмотреть парочку относительно простых задач. Ну, как простых: для большинства учеников, которые изучают математику в школе и не читали того, что написано выше, эти задачи могут показаться жестью. Тем не менее именно такие задачи попадаются в ОГЭ и ЕГЭ по математике, поэтому рекомендую ознакомиться с ними.

Задача №11. Бригада изготовила в январе 62 детали, а в каждый следующий месяц изготовляла на 14 деталей больше, чем в предыдущий. Сколько деталей изготовила бригада в ноябре?

Решение. Очевидно, количество деталей, расписанное по месяцам, будет представлять собой возрастающую арифметическую прогрессию. Причём:

[begin{align} & {{a}_{1}}=62;quad d=14; \ & {{a}_{n}}=62+left( n-1 right)cdot 14. \ end{align}]

Ноябрь — это 11-й месяц в году, поэтому нам нужно найти ${{a}_{11}}$:

[{{a}_{11}}=62+10cdot 14=202]

Следовательно, в ноябре будет изготовлено 202 детали.

Ответ: 202

Задача №12. Переплётная мастерская переплела в январе 216 книг, а в каждый следующий месяц она переплетала на 4 книги больше, чем в предыдущий. Сколько книг переплела мастерская в декабре?

Решение. Всё то же самое:

$begin{align} & {{a}_{1}}=216;quad d=4; \ & {{a}_{n}}=216+left( n-1 right)cdot 4. \ end{align}$

Декабрь — это последний, 12-й месяц в году, поэтому ищем ${{a}_{12}}$:

[{{a}_{12}}=216+11cdot 4=260]

Это и есть ответ — 260 книг будет переплетено в декабре.

Ответ: 260

Что ж, если вы дочитали до сюда, спешу вас поздравить: «курс молодого бойца» по арифметическим прогрессиям вы успешно прошли. Можно смело переходить к следующему уроку, где мы изучим формулу суммы прогрессии, а также важные и очень полезные следствия из неё.

Смотрите также:

  1. Формула n-го члена арифметической прогрессии
  2. Нахождение элементов арифметической прогрессии
  3. Тест к уроку «Сложные выражения с дробями» (легкий)
  4. Как считать логарифмы еще быстрее
  5. Задача B5: метод узлов
  6. Сфера, вписанная в куб

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

{displaystyle a_{1}, a_{1}+d, a_{1}+2d, ldots , a_{1}+(n-1)d, ldots  ,}

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):

{displaystyle a_{n}=a_{n-1}+d.}[1]

Любой член арифметической прогрессии равен первому её члену, сложенному с произведением разности прогрессии на число членов, предшествующих определяемому, т. е. он выражается формулой[2]:

{displaystyle a_{n}=a_{1}+(n-1)d.}

Арифметическая прогрессия является монотонной последовательностью. При d>0 она является возрастающей, а при d<0 — убывающей. Если d=0, то последовательность будет стационарной. Эти утверждения следуют из соотношения a_{n+1}-a_n=d для членов арифметической прогрессии.

Свойства[править | править код]

Общий член арифметической прогрессии[править | править код]

Член арифметической прогрессии с номером n может быть найден по формулам

a_n=a_1+(n-1)d
{displaystyle a_{n}=a_{m}-(m-n)d}

где a_{1} — первый член прогрессии, d — её разность, a_m — член арифметической прогрессии с номером m.

Доказательство формулы общего члена арифметической прогрессии

Пользуясь соотношением a_{n+1}=a_n+d выписываем последовательно несколько членов прогрессии, а именно:

a_2=a_1+d

a_3=a_2+d=a_1+d+d=a_1+2d

a_4=a_3+d=a_1+2d+d=a_1+3d

a_5=a_4+d=a_1+3d+d=a_1+4d

Заметив закономерность, делаем предположение, что a_n=a_1+(n-1)d. С помощью математической индукции покажем, что предположение верно для всех n in mathbb N:

База индукции (n=1) :

a_1=a_1+(1-1)d=a_1 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_k=a_1+(k-1)d. Докажем истинность утверждения при n=k+1:

a_{k+1}=a_k+d=a_1+(k-1)d+d=a_1+kd

Итак, утверждение верно и при n=k+1. Это значит, что a_n=a_1+(n-1)d для всех n in mathbb N.

Отметим, что в формулах общего члена n-й член прогрессии есть линейная функция. Об этом говорит следующая теорема.

Для того чтобы последовательность {displaystyle left{a_{n}right}} являлась арифметической прогрессией, необходимо и достаточно, чтобы a_n являлась линейной функцией (от n)[3].

Доказательство

Необходимость. Пусть {displaystyle left{a_{n}right}} арифметическая прогрессия. Тогда, как было уже показано, a_n=a_1+(n-1)d, то есть {displaystyle a_{n}=nd+a_{1}-d}. Так как {displaystyle fleft(xright)=ax+b} есть линейная функция и {displaystyle xin mathbb {N} }, это значит, что {displaystyle a=d} и {displaystyle b=a_{1}-d}, т. е. a_n — линейная функция, где {displaystyle fleft(nright)=nd+a_{1}-d}.

Достаточность. Пусть a_n есть линейная функция, т. е. {displaystyle a_{n}=acdot x+b}. Так как {displaystyle xin mathbb {N} } и {displaystyle x=n}, то {displaystyle a_{n}=acdot n+b}, тогда {displaystyle a_{n+1}=acdot left(n+1right)+b}.
Рассмотрим {displaystyle a_{n+1}-a_{n}=left(acdot left(n+1right)+bright)-left(an+bright)}.
Отсюда следует, что {displaystyle a_{n+1}-a_{n}=a}, где a — величина постоянная. Тогда {displaystyle a_{n+1}=a_{n}+a}, а это значит по определению, что {displaystyle left{a_{n}right}} — арифметическая прогрессия.

Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. {displaystyle a_{n}+a_{m}=a_{k}+a_{l}Longleftrightarrow n+m=k+lquad vert ;forall left(n,,m,,k,,lin mathbb {N} right)}.

Характеристическое свойство арифметической прогрессии[править | править код]

Последовательность a_1, a_2, a_3, ldots есть арифметическая прогрессия Longleftrightarrow для любого её элемента выполняется условие

{displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}},ngeqslant 2.}

Доказательство характеристического свойства арифметической прогрессии

Необходимость.

Поскольку a_1, a_2, a_3, ldots — арифметическая прогрессия, то для n geqslant 2 выполняются соотношения:

a_n=a_{n-1}+d

a_n=a_{n+1}-d.

Сложив эти равенства и разделив обе части на 2, получим {displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность.

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется a_n=frac{a_{n-1}+a_{n+1}}2. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду a_{n+1}-a_n=a_n-a_{n-1}. Поскольку соотношения верны при всех n geqslant 2, с помощью математической индукции покажем, что a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

База индукции (n=2) :

a_2-a_1=a_3-a_2 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Докажем истинность утверждения при n=k+1:

a_{k+1}-a_{k}=a_{k+2}-a_{k+1}

Но по предположению индукции следует, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Получаем, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k=a_{k+2}-a_{k+1}

Итак, утверждение верно и при n=k+1. Это значит, что a_n=frac{a_{n-1}+a_{n+1}}2, n geqslant 2 Rightarrow a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

Обозначим эти разности через d. Итак, a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n=d, а отсюда имеем a_{n+1}=a_n+d для n in mathbb N. Поскольку для членов последовательности a_1, a_2, a_3, ldots выполняется соотношение a_{n+1}=a_n+d, то это есть арифметическая прогрессия.

Тождество арифметической прогрессии[править | править код]

Пусть {displaystyle a_{k},a_{l},a_{m}} — соответственно k-й, l-й, m-й члены арифметической прогрессии, где {displaystyle k,,l,,min mathbb {N} }. Тогда для всякой такой тройки выполняется комплементарное свойство арифметической прогрессии[нет в источнике], называемое тождеством арифметической прогрессии:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Доказательство тождества арифметической прогрессии

С помощью формулы общего члена выразим k-й, l-й, m-й члены:

{displaystyle a_{k}=a_{1}+(k-1)d,quad a_{l}=a_{1}+(l-1)d,quad a_{m}=a_{1}+(m-1)d.}

Вычитая почленно из первого равенства второе, а из второго третьего, получим:

{displaystyle a_{k}-a_{l}=(k-l)d,quad a_{l}-a_{m}=(l-m)d.}

Выражая из этих равенств d и приравнивая полученные выражения, получим:

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

По основному свойству пропорции:

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Откуда следует доказываемое тождество:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Следствие 1. Всякий член арифметической прогрессии вырази́м[5] через любую пару других членов.

Доказательство

Преобразовав тождество арифметической прогрессии

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

к виду

{displaystyle a_{m}={dfrac {(l-m)a_{k}+(m-k)a_{l}}{l-k}},}

можно заметить, что m-й член есть линейная комбинация двух других членов (a_{{k}} и {displaystyle a_{l}}), поскольку оно равносильно

{displaystyle a_{m}={dfrac {l-m}{l-k}}a_{k}+{dfrac {m-k}{l-k}}a_{l}.}

Следствие 2. Для того, чтобы число {displaystyle a_{m}} являлось членом данной арифметической прогрессии с членами a_{{k}} и {displaystyle a_{l}}, необходимо и достаточно, чтобы было натуральным число

{displaystyle m={dfrac {(a_{l}-a_{m})k+(a_{m}-a_{k})l}{a_{l}-a_{k}}}.}

Формулировка ещё одного признака арифметической прогрессии.

Следствие 3 [критерий]. Числовая последовательность является арифметической прогрессией в том и только в том случае, если выполняется тождество арифметической прогрессии для всех членов данной последовательности. Другими словами, чтобы каждый член был вырази́м через любую пару остальных членов последовательности.

{displaystyle left{a_{n}right}~-~div Longleftrightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Доказательство

Необходимость. Утверждение

{displaystyle left{a_{n}right}~-~div Rightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} }

очевидно (см. доказательство тождества арифметической прогрессии).

Достаточность. Докажем, что

{displaystyle left{a_{n}right}~-~div Leftarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Равенство

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

можно преобразовать к виду

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Если все три номера различны, тогда

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

Обозначим выражение, например, в левой части равенства за d, то есть

{displaystyle d={dfrac {a_{k}-a_{l}}{k-l}}.}

Откуда можно прийти к следующему предложению:

{displaystyle a_{k}=a_{l}+{left(k-lright)}d.}

Наконец, методом математической индукции, например, по l нетрудно убедиться, что данное соотношение описывает именно арифметическую прогрессию.

Действительно, при l=1 (база индукции) получаем формулу общего члена арифметической прогрессии:

{displaystyle a_{k}=a_{1}+{left(k-1right)}d.}

Предположим истинность утверждения (для l): формула {displaystyle a_{k}=a_{l}+{left(k-lright)}d} характеризует арифметическую прогрессию. Тогда покажем, что и при l+1 формула верна для арифметической прогрессии (переход, или шаг, индукции). Рассмотрим левую часть формулы

{displaystyle a_{k}=a_{l+1}+{left(k-left(l+1right)right)}d.}

По предположению индукции ({displaystyle a_{k}=a_{l}+{left(k-lright)}d}) заменим a_{k} на выражение {displaystyle a_{l}+{left(k-lright)}d}. Итак, получим следующее:

{displaystyle a_{l}+{left(k-lright)}d=a_{l+1}+{left(k-left(l+1right)right)}d.}

Методом тождественных преобразований имеем равносильное предложение

{displaystyle a_{l+1}=a_{l}+d.}

А это, в свою очередь, рекуррентное соотношение для арифметической прогрессии.

Значит, по принципу математической индукции можно утвердать, что для всякого l соотношение {displaystyle a_{k}=a_{l}+{left(k-lright)}d} верно только и только для членов арифметической прогрессии.

Аналогичные рассуждения проводятся для формулы {displaystyle d={dfrac {a_{l}-a_{m}}{l-m}}}.

Данное следствие целиком и полностью считается доказанным.

Сумма первых n членов арифметической прогрессии[править | править код]

Сумма первых n членов арифметической прогрессии {displaystyle S_{n}=sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+ldots +a_{n}} может быть найдена по формулам

{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n} , где a_{1} — первый член прогрессии, a_n — член с номером n, n — количество суммируемых членов.
{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot ({dfrac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a_{1} — первый член прогрессии, a_{2} — второй член прогрессии {displaystyle ,a_{n}} — член с номером n.
{displaystyle S_{n}={dfrac {2a_{1}+d(n-1)}{2}}cdot n} , где a_{1} — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
{displaystyle S_{n}=a_{frac {n+1}{2}}cdot n}, если n — нечётное натуральное число.
Доказательство
Запишем сумму двумя способами:

S_n=a_1+a_2+a_3+ ldots +a_{n-2}+a_{n-1}+a_n

S_n=a_n+a_{n-1}+a_{n-2}+ ldots +a_3+a_2+a_1 — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2S_n=(a_1+a_n)+(a_2+a_{n-1})+(a_3+a_{n-2})+ ldots +(a_{n-2}+a_3)+(a_{n-1}+a_2)+(a_n+a_1)

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде a_i+a_{n-i+1}, i=1,2,ldots,n. Воспользуемся формулой общего члена арифметической прогрессии:

a_i+a_{n-i+1}=a_1+(i-1)d+a_1+(n-i+1-1)d=2a_1+(n-1)d, i=1,2,ldots,n

Получили, что каждое слагаемое не зависит от i и равно 2a_1+(n-1)d. В частности, a_1+a_n=2a_1+(n-1)d. Поскольку таких слагаемых n, то

{displaystyle 2S_{n}=(a_{1}+a_{n})cdot nRightarrow S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n}

Третья формула для суммы получается подстановкой 2a_1+(n-1)d вместо a_1+a_n. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a_1+a_n в первой формуле для суммы можно взять любое из других слагаемых a_i+a_{n-i+1}, i=2,3,ldots,n, так как они все равны между собой.

Формулировка ещё одного факта: для всякой арифметической прогрессии при любом n выполняется равенство:

{displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n}.}

Примечание: S_{k} — сумма k первых членов арифметической прогрессии.

Доказательство

1. Очевидно, что {displaystyle {dfrac {S_{2n}}{2n}}-{dfrac {S_{n}}{n}}={dfrac {a_{1}+a_{2n}-left(a_{1}+a_{n}right)}{2}}={dfrac {a_{2n}-a_{n}}{2}},} или {displaystyle S_{2n}-2S_{n}=ncdot (a_{2n}-a_{n}).}

Прибавим к обеим частям S_{n} и получим, что {displaystyle S_{2n}-S_{n}=S_{n}+ncdot (a_{2n}-a_{n}).}

2. Покажем, что {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

Это так, поскольку можно написать верное равенство:

{displaystyle {dfrac {S_{3n}}{3n}}-{dfrac {S_{n}}{n}}={dfrac {a_{3n}-a_{n}}{2}}.} Из него следует, что {displaystyle {dfrac {S_{3n}}{3}}=S_{n}+{dfrac {a_{3n}-a_{n}}{2}}cdot n.}

3. Теперь докажем, что {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}
Перепишем последнее как {displaystyle a_{2n}={dfrac {a_{3n}+a_{n}}{2}}.}

Но гораздо лучше представить это равенство в виде {displaystyle a_{2n}={dfrac {a_{2n+1}+a_{2n-1}}{2}}.} Видно, что это характеристическое свойство арифметической прогрессии.
Значит, действительно {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}

4. А следовательно, {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

5. Тем самым, {displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n},} что и требовалось доказать.

Предыдущее свойство имеет обобщение.

Для любых натуральных k, l, m выполняется комплементарное свойство сумм:

{displaystyle {dfrac {l-m}{k}}cdot S_{k}+{dfrac {m-k}{l}}cdot S_{l}+{dfrac {k-l}{m}}cdot S_{m}=0.}

Ещё один признак арифметической прогрессии.

Для того чтобы последовательность {displaystyle left{a_{n}right}} являлась арифметической прогрессией, необходимо и достаточно, чтобы сумма первых n членов последовательности была функцией не выше второй степени относительно n[6].

Сумма членов арифметической прогрессии от n-го до m-го[править | править код]

Сумма членов арифметической прогрессии с номерами от n до m {displaystyle S_{m,n}=sum _{i=n}^{m}a_{i}=a_{n}+a_{n+1}+ldots +a_{m}} может быть найдена по формулам

{displaystyle S_{m,n}={dfrac {a_{m}+a_{n}}{2}}cdot (m-n+1)} , где a_m — член с номером m, a_n — член с номером n, {displaystyle (m-n+1)} — количество суммируемых членов.

{displaystyle S_{m,n}={dfrac {2a_{n}+dleft(m-nright)}{2}}cdot left(m-n+1right),}

где a_n — член с номером n, d — разность прогрессии, {displaystyle (m-n+1)} — количество суммируемых членов.

Произведение членов арифметической прогрессии[править | править код]

Произведением первых n членов арифметической прогрессии {displaystyle left{a_{n}right}} называется произведение от a_{1} до a_n, то есть выражение вида {displaystyle prod limits _{i=1}^{n}a_{i}=a_{1}cdot a_{2}cdot a_{3}cdot ldots cdot a_{n-2}cdot a_{n-1}cdot a_{n}.} Обозначение: P_{n}.

Свойство произведения:

Число множителей-скобок {displaystyle {left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} равно {displaystyle {dfrac {n-1}{2}}}, а в самом произведении {displaystyle a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} их составляет {displaystyle {dfrac {n+1}{2}}} «штук».[10]

Сходимость арифметической прогрессии[править | править код]

Арифметическая прогрессия a_1, a_2, a_3, ldots расходится при dne 0 и сходится при d=0. Причём

lim_{nrightarrowinfty} a_n=left{ begin{matrix} +infty, d>0 \ -infty, d<0  \ a_1, d=0 end{matrix} right.

Доказательство
Записав выражение для общего члена и исследуя предел lim_{nrightarrowinfty} (a_1+(n-1)d), получаем искомый результат.

Связь между арифметической и геометрической прогрессиями[править | править код]

Пусть a_1, a_2, a_3, ldots — арифметическая прогрессия с разностью d и число a>0. Тогда последовательность вида a^{a_1}, a^{a_2}, a^{a_3}, ldots есть геометрическая прогрессия со знаменателем a^d.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}= a^{a_n}, ngeqslant 2

Воспользуемся выражением для общего члена арифметической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}=sqrt{a^{a_1+(n-2)d}cdot a^{a_1+nd}}=sqrt{a^{2a_1+2(n-1)d}}=sqrt{(a^{a_1+(n-1)d})^2}=a^{a_1+(n-1)d}=a^{a_n}, ngeqslant 2

Итак, поскольку характеристическое свойство выполняется, то a^{a_1}, a^{a_2}, a^{a_3}, ldots — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=frac{a^{a_2}}{a^{a_1}}=frac{a^{a_1+d}}{a^{a_1}}=a^d.

Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.

Арифметические прогрессии высших порядков[править | править код]

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

1, 4, 9, 16, 25, 36, …

разности которых образуют простую арифметическую прогрессию с разностью 2:

3, 5, 7, 9, 11, …

Треугольные числа {displaystyle 1,3,6,10,15,ldots } также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию {displaystyle 2,3,4,5,ldots }

Тетраэдральные числа {displaystyle 1,4,10,20,35,ldots } образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если left[a_{{i}}right]_{{1}}^{{n}} — арифметическая прогрессия порядка m, то существует многочлен P_{{m}}(i)=c_{{m}}i^{{m}}+...+c_{{1}}i+c_{{0}}, такой, что для всех iin left{1,....nright} выполняется равенство a_{{i}}=P_{{m}}(i)[11]

Примеры[править | править код]

{displaystyle T_{n}=sum _{i=1}^{n}i=1+2+3+ldots +n={frac {n(n+1)}{2}}}

Формула для разности[править | править код]

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

{displaystyle {mathit {d={frac {a_{m}-a_{n}}{m-n}}}}}.

Сумма чисел от 1 до 100[править | править код]

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле

frac{n(n+1)}2

то есть к формуле суммы первых n чисел натурального ряда.

См. также[править | править код]

  • Геометрическая прогрессия
  • Арифметико-геометрическая прогрессия

Примечания[править | править код]

  1. Такое соотношение называют рекуррентным соотношением первого порядка. Поэтому арифметическая прогрессия есть множество последовательностей, задающихся именно таким образом.
  2. Фильчаков П. Ф. Глава II. Алгебра и элементарные функции. Функции натурального аргумента (§ 75. Арифметическая прогрессия) // Справочник по элементарной математике: для поступающих в вузы : книга / под ред. чл.-кор. АН УССР П. Ф. Фильчакова. — Киев : «Наукова думка», 1972. — С. 303. — 528 с. — 400 000 экз. — УДК 51 (08)(G).
  3. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  4. Соотношение между любыми тремя членами арифметической прогрессии и их номерами (Мусинов В. А.) // Материалы студенческой научной сессии Института математики и информатики МПГУ. 2021–2022 учебный год : сборник статей / под общ. ред. Е. С. Крупицына. — М.: МПГУ, 2022. — С. 91—93. — 156 с. — ISBN 978-5-4263-1109-1, ББК 22.1я431+32.81я431+22.1р30я431+74.262.21я431+74.263.2я431.
  5. Это означает, что выражаемый член есть комбинация любых двух других членов данной последовательности, причём эта комбинация составлена с помощью арифметических операций и конечного набора символов. Для арифметической последовательности такая комбинация будет линейной.
  6. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 141. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  7. Из доказательства необходимости следует, что {displaystyle S_{n}=an^{2}+bn}, поэтому, если {displaystyle S_{n}=an^{2}+bn+c}, то необходимо сделать проверку. Например, если {displaystyle S_{n}=2n^{2}-n-6} — сумма первых n членов последовательности, то такая последовательность НЕ является арифметической прогрессией. А последовательность, заданная суммой {displaystyle S_{n}=2n^{2}-n} первых n членов, будет арифметической прогрессией.
  8. При n=1 произведение P_{n} равно {displaystyle a_{frac {1+1}{2}}=a_{1}}, что безусловно верно.
  9. Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и n-м членом.
  10. Пример применения формулы.
    Пусть {displaystyle div left{a_{n}right}:quad underbrace {27} _{a_{1}},;underbrace {20} _{a_{2}},;underbrace {13} _{a_{3}},;underbrace {6} _{a_{4}},;underbrace {-1} _{a_{5}}}, где {displaystyle d=-7}.

    По формуле {displaystyle P_{n}=a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} найдём произведение пяти первых членов. Количество сомножителей должно равняться {displaystyle {dfrac {5+1}{2}}=3}. Причём первым сомножителем будет {displaystyle a_{frac {5+1}{2}}=a_{3}=13}.

    Далее {displaystyle prod limits _{i=1}^{frac {5-1}{2}}{left(a_{frac {5+1}{2}}^{2}-{left[idright]}^{2}right)}=prod limits _{i=1}^{2}{left(a_{3}^{2}-{left[idright]}^{2}right)}=}{displaystyle ={left(a_{3}^{2}-{left[dright]}^{2}right)}cdot {left(a_{3}^{2}-{left[2dright]}^{2}right)}={left(169-49right)}cdot {left(169-4cdot 49right)}=}{displaystyle =120cdot {left(-27right)}}.

    Наконец, {displaystyle P_{n}=13cdot 120cdot {left(-27right)}=-42120}.
  11. Бронштейн, 1986, с. 139.

Литература[править | править код]

  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1986. — 544 с.

Ссылки[править | править код]

  • Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.

Арифметическая прогрессия — это последовательность чисел, в которой разница между двумя соседними числами — постоянна.

Пример:

Последовательность 1, 2, 3, 4,… является арифметической прогрессией с шагом(разностью) прогрессии 1.

Пример:

Последовательность 3, 5, 7, 9, 11,… является арифметической прогрессией с разностью 2.

Пример:

Последовательность 20, 10, 0, -10, -20, -30,… является арифметической прогрессией с разностью -10.

Последовательности

Будем выписывать в порядке возрастания положительные четные числа. Первое такое число равно 2, второе 4, третье 6, четвертое 8 и т. д. Получим последовательность

2; 4; 6; 8; … .

Очевидно, что на пятом месте в этой последовательности будет число 10, на десятом — число 20, на сотом — число 200. Вообще для любого натурального числа п можно указать соответствующее ему положительное четное число; оно равно 2n.

Рассмотрим еще одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

Арифметическая прогрессия

Для любого натурального числа n мы можем указать соответствующую ему дробь; она равна Арифметическая прогрессия Так, на шестом месте должна стоять дробь Арифметическая прогрессия на тридцатом Арифметическая прогрессия дробь , на тысячном — дробь Арифметическая прогрессия

Числа, образующие последовательность, называют соответственно первым, вторым, третьим, четвертым и т. д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена. Например, Арифметическая прогрессия (читают: «а первое, а второе, а третье, а четвертое» и т. д.). Вообще член последовательности с номером n, или, как говорят, n-й член последовательности, обозначают Арифметическая прогрессия Саму последовательность будем обозначать так: Арифметическая прогрессия

Заметим, что последовательность может содержать конечное число членов. В таком случае ее называют конечной. Например, конечной является последовательность двузначных чисел:

Арифметическая прогрессия

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена последовательности. Например, последовательность положительных четных чисел можно задать формулой Арифметическая прогрессия последовательность правильных дробей с числителем, равным 1, — формулой Арифметическая прогрессия Приведем другие примеры.

Пример:

Пусть последовательность задана формулой Арифметическая прогрессия Подставляя вместо n натуральные числа 1, 2, 3, 4, 5 и т. д., получаем:

Арифметическая прогрессия

Рассматриваемая последовательность начинается так:

Арифметическая прогрессия

Пример:

Пусть последовательность задана формулой Арифметическая прогрессия Все члены этой последовательности с нечетными номерами равны —10, а с четными номерами равны 10:

Арифметическая прогрессия

Получаем последовательность

Арифметическая прогрессия

Пример:

Формулой Арифметическая прогрессиязадается последовательность, все члены которой равны 5:

Арифметическая прогрессия

Рассмотрим еще один способ задания последовательности.

Пример:

Пусть первый член последовательности Арифметическая прогрессияравен 3, а каждый следующий член равен квадрату предыдущего, т. е.

Арифметическая прогрессия

С помощью формулы Арифметическая прогрессия можно по известному первому члену последовательности вычислить второй, затем по известному второму найти третий, по известному третьему — четвертый и т. д. Получим последовательность

Арифметическая прогрессия

Формулу, выражающую любой член последовательности, начиная с некоторого, через предыдущие (один или несколько), называют рекуррентной (от латинского слова recurro — возвращаться).

Определение арифметической прогрессии

Формула n-го члена арифметической прогрессии:

Рассмотрим последовательность натуральных чисел, которые при делении на 4 дают в остатке 1:

Арифметическая прогрессия

Каждый ее член, начиная со второго, получается прибавлением к предыдущему члену числа 4. Эта последовательность является примером арифметической, прогрессии.

Определение:

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

Иначе говоря, последовательностьАрифметическая прогрессия — арифметическая прогрессия, если для любого натурального п выполняется условие

Арифметическая прогрессия

где d — некоторое число.

Из определения арифметической прогрессии следует, что разность между любым ее членом, начиная со второго, и предыдущим членом равна d, т. е. при любом натуральном n верно равенство

Арифметическая прогрессия

Число d называют разностью арифметической прогрессии.

Чтобы задать арифметическую прогрессию, достаточно указать ее первый член и разность. Приведем примеры.

Если Арифметическая прогрессия то получим арифметическую прогрессию

Арифметическая прогрессия

члены которой — последовательные натуральные числа.

Если Арифметическая прогрессия то получим арифметическую прогрессию

Арифметическая прогрессия

которая является последовательностью положительных нечетных чисел.

Если Арифметическая прогрессия то получим арифметическую прогрессию

Арифметическая прогрессия

которая является последовательностью отрицательных четных чисел.

Если Арифметическая прогрессия то имеем арифметическую прогрессию

Арифметическая прогрессия

все члены которой равны между собой.

Зная первый член и разность арифметической прогрессии, можно найти любой ее член, вычисляя последовательно второй, третий, четвертый и т. д. члены. Однако для нахождения члена прогрессии с большим номером такой способ неудобен. Постараемся отыскать способ, требующий меньшей вычислительной работы.

По определению арифметической прогрессии

Арифметическая прогрессия

Точно так же находим, что Арифметическая прогрессияи вообще, чтобы найти Арифметическая прогрессия нужно к Арифметическая прогрессия прибавить (n — 1) d, т. е.

Арифметическая прогрессия

Мы получили формулу n-го члена арифметической прогрессии.

Приведем примеры решения задач с использованием этой формулы.

Пример:

Последовательность Арифметическая прогрессия — арифметическая прогрессия, в которой с1 = 0,62 и d = 0,24. Найдем пятидесятый член этой прогрессии.

Имеем:

Арифметическая прогрессия

Пример:

Выясним, является ли число —122 членом арифметической прогрессии Арифметическая прогрессия

Арифметическая прогрессия

В данной арифметической прогрессии Арифметическая прогрессия и Арифметическая прогрессияАрифметическая прогрессия Запишем формулу n-го члена прогрессии:

Арифметическая прогрессия

Число —122 является членом арифметической прогрессии Арифметическая прогрессия, если существует такое натуральное число n, при котором значение выражения 28,8 — 5,8n равно —122. Решим уравнение 28,8 — 5,8n = 122:

Арифметическая прогрессия

Значит, число —122 является 26-м членом данной арифметической прогрессии.

Формулу n-го члена арифметической прогрессии Арифметическая прогрессияАрифметическая прогрессия можно записать иначе:

Арифметическая прогрессия

Отсюда ясно, что любая арифметическая прогрессия может быть задана формулой вида

Арифметическая прогрессия

где k и b — некоторые числа.

Верно и обратное: последовательность Арифметическая прогрессия, заданная формулой вида

Арифметическая прогрессия

где k и b — некоторые числа, является арифметической прогрессией.

Действительно, найдем разность (n + 1)-го и n-го членов последовательности Арифметическая прогрессия:

Арифметическая прогрессия

Значит, при любом n справедливо равенство Арифметическая прогрессия и по определению последовательность Арифметическая прогрессия является арифметической прогрессией, причем разность этой прогрессии равна k.

Формула суммы n первых членов арифметической прогрессии

Пусть требуется найти сумму первых ста натуральных чисел. Покажем, как можно решить эту задачу, не выполняя непосредственного сложения чисел.

Обозначим искомую сумму через S и запишем ее дважды, расположив в первом случае слагаемые в порядке возрастания, а во втором — в порядке убывания:

Арифметическая прогрессия

Каждая пара чисел, расположенных друг под другом, дает в сумме 101. Число таких пар равно 100. Поэтому, сложив равенства почленно, получим:

Арифметическая прогрессия

Итак,

Арифметическая прогрессия

С помощью аналогичных рассуждений можно найти сумму первых членов любой арифметической прогрессии.

Обозначим сумму n первых членов арифметической прогрессии Арифметическая прогрессия через Арифметическая прогрессия и запишем эту сумму дважды, расположив в первом случае слагаемые в порядке возрастания их номеров, а во втором случае в порядке убывания:

Арифметическая прогрессия

Сумма каждой пары членов прогрессии, расположенных друг под другом, равна Арифметическая прогрессия Действительно,

Арифметическая прогрессия

и т. д.

Число таких пар равно n. Поэтому, сложиd почленно равенства (1) и (2), получим:

Арифметическая прогрессия

Разделив обе части последнего равенства на 2, получим формулу суммы п первых членов арифметической прогрессии:

Арифметическая прогрессия

Приведем примеры на вычисление суммы членов арифметической прогрессии.

Пример:

Найдем сумму первых тридцати членов арифметической прогрессии 4; 5,5; … .

В данной арифметической прогрессии Арифметическая прогрессия Тридцатый член прогрессии найдем по формуле n-го члена:

Арифметическая прогрессия

Теперь вычислим сумму первых тридцати членов:

Арифметическая прогрессия

Заметим, что если заданы первый член и разность арифметической прогрессии, то удобно пользоваться формулой суммы, представленной в другом виде. Подставим в формулу (I) вместо Арифметическая прогрессиявыражение Арифметическая прогрессия получим:

Арифметическая прогрессия

Арифметическая прогрессия

Если для решения рассмотренной задачи воспользоваться формулой (II), то вычисления будут выглядеть так:

Арифметическая прогрессия

Пример:

Найдем сумму первых сорока членов последовательности Арифметическая прогрессия, заданной формулой Арифметическая прогрессия

Последовательность Арифметическая прогрессия является арифметической прогрессией, так как она задана формулой вида Арифметическая прогрессия и b = — 4.

Найдем первый и сороковой члены этой арифметической прогрессии:Арифметическая прогрессия Теперь по формуле (I) вычислим S40:

Арифметическая прогрессия

Пример:

Найдем сумму 1 + 2 + 3 + … + n, слагаемыми в которой являются все натуральные числа от 1 до n.

Применив формулу Арифметическая прогрессия к арифметической прогрессии 1; 2; 3; … получим, что

Арифметическая прогрессия

Пример:

Найдем сумму всех натуральных чисел, кратных шести и не превосходящих 250.

Натуральные числа, кратные шести, образуют арифметическую прогрессию, которую можно задать формулой Арифметическая прогрессия Чтобы выяснить, сколько членов этой прогрессии не превосходит 250, решим неравенство Арифметическая прогрессия

Значит, число членов прогрессии, сумму которых надо найти, равно 41. Имеем:

Арифметическая прогрессия

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Геометрическая прогрессия
  10. Показатели в математике
  11. Логарифмы в математике
  12. Исследование уравнений
  13. Уравнения высших степеней
  14. Уравнения высших степеней с одним неизвестным
  15. Комплексные числа
  16. Непрерывная дробь (цепная дробь)
  17. Алгебраические уравнения
  18. Неопределенные уравнения
  19. Соединения
  20. Бином Ньютона
  21. Число е
  22. Непрерывные дроби
  23. Функция
  24. Исследование функций
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

Добавить комментарий