Как найти корень квадратного числа в квадрате

Корни и степени

  • Степень с натуральным показателем

  • Степень с целым показателем

  • Кубический корень

  • Корень -ной степени

  • Сравнение арифметических корней

  • Как избавиться от иррациональности в знаменателе

  • Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Степенью называется выражение вида a^c.

Здесь a — основание степени, c  — показатель степени.

к оглавлению ▴

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, a^1=a.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

a^2=a cdot a.

Возвести число в куб — значит умножить его само на себя три раза.

a^3=a cdot a cdot a.

Возвести число в натуральную степень n — значит умножить его само на себя n раз:

a^n= underbrace{a cdot a cdot a cdot a cdot ldots cdot a}_{displaystyle n}.

к оглавлению ▴

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

a^0=1.

Это верно для aneq 0. Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

a^{-1}=genfrac{}{}{}{0}{1}{a};

a^{-2}=genfrac{}{}{}{0}{1}{a^2};

a^{-n}=genfrac{}{}{}{0}{1}{a^n}.

Конечно, все это верно для aneq 0, поскольку на ноль делить нельзя.

Например,

5^{-2}=genfrac{}{}{}{0}{1}{5^2};

left( genfrac{}{}{}{0}{1}{2} right)^{-1}=2;

left( genfrac{}{}{}{0}{2}{7} right)^{-1}=genfrac{}{}{}{0}{7}{2}.

Заметим, что при возведении в минус первую степень дробь переворачивается.

left( genfrac{}{}{}{0}{5}{3} right)^{-2}=1 : left( genfrac{}{}{}{0}{5}{3} right)^{2}=left( genfrac{}{}{}{0}{3}{5} right)^{2}=genfrac{}{}{}{0}{9}{25}.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби genfrac{}{}{}{0}{p}{q}, где p — целое, q — натуральное.

Здесь нам понадобится новое понятие — корень n-степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Определение.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

Согласно определению, left (sqrt{a} right )^2=a; , , sqrt{a}geq 0; , , ageq 0.

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение  sqrt{a}  для нас сейчас имеет смысл только при ageq 0.

Выражение sqrt{a} всегда неотрицательно, т.е. sqrt{a}geq 0. Например, sqrt{25}=5.

Свойства арифметического квадратного корня:

sqrt{ab}=sqrt{a} cdot sqrt{b}, ; sqrt{a^2}=left|aright| , ; sqrt{a^{2n}}={left|aright|}^n; 

sqrt{genfrac{}{}{}{0}{a}{b}}=genfrac{}{}{}{0}{sqrt{a}}{sqrt{b}}.

Запомним важное правило: sqrt{a^2}=left|aright| .

По определению, .

к оглавлению ▴

Кубический корень

Аналогично, кубический корень из a — это такое число, которое при возведении в третью степень дает число a.

left( sqrt[leftroot{3}scriptstyle 3]{a} right) ^3 = sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a}.

Например, sqrt[leftroot{3}scriptstyle 3]{8} = 2, так как 2^3 = 2 cdot 2 cdot 2 = 8 ;

sqrt[leftroot{3}scriptstyle 3]{1000} = 10, так как 10^3 = 1000;

sqrt[leftroot{3}scriptstyle 3]{-genfrac{}{}{}{0}{1}{125}} = -genfrac{}{}{}{0}{1}{5}, так как left( -genfrac{}{}{}{0}{1}{5} right) ^3 = -genfrac{}{}{}{0}{1}{125}.

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня n-ной степени для любого целого n.

к оглавлению ▴

Корень n-ной степени

Корень n-ной степени из числа a — это такое число, при возведении которого в n-ную степень получается число a.

Например,

sqrt[leftroot{3}scriptstyle 5]{32} = 2;

sqrt[leftroot{3}scriptstyle 4]{81} = 3;

sqrt[leftroot{3}scriptstyle 3]{mathstrut 0,001} = 0,1.

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, sqrt[leftroot{3}scriptstyle n]{a} — такое число, что left( sqrt[leftroot{3}scriptstyle n]{a} right) ^n = a. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = sqrt{a},

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = sqrt[leftroot{3}scriptstyle 3]{a},

в общем случае a^{frac{1}{n}} = sqrt[leftroot{3}scriptstyle n]{a}..

Сразу договоримся, что основание степени a больше 0.

Например,

25^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = 5;

8^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 2;

81^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 4}} = 3;

100000^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 5}} = 10;

0,001^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 0,1.

Выражение a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} по определению равно sqrt[leftroot{3}scriptstyle n]{a^m}.

При этом также выполняется условие, что a больше 0.

a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} = sqrt[leftroot{3}scriptstyle n]{a^m} = left( sqrt[leftroot{3}scriptstyle n]{a} right) ^m.

Например,

8^{genfrac{}{}{}{3}{scriptstyle 4}{scriptstyle 3}} = left( sqrt[leftroot{3} scriptstyle 3]{8} right) ^4 = 2^4 = 16;

a^{genfrac{}{}{}{3}{scriptstyle 3}{scriptstyle 5}} = sqrt[leftroot{3} scriptstyle 5]{a^3} = left( sqrt[leftroot{3} scriptstyle n]{a} right) ^m;

b^{-genfrac{}{}{}{3}{scriptstyle 2}{scriptstyle 3}} = genfrac{}{}{}{0}{1}{sqrt[leftroot{3} scriptstyle 3]{b^2}}.

Запомним правила действий со степенями:

a^ma^n = a^{m+n} — при перемножении степеней показатели складываются;

genfrac{}{}{}{0}{a^m}{a^n} = a^{m-n} — при делении степени на степень показатели вычитаются;

left( a^m right) ^n = left( a^n right) ^m = a^{mn} — при возведении степени в степень показатели перемножаются;

a^nb^n = left( ab right) ^n;

genfrac{}{}{}{0}{a^n}{b^n} = left( genfrac{}{}{}{0}{a}{b} right) ^n.

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1. genfrac{}{}{}{0}{sqrt{ mathstrut 2,8} cdot sqrt{ mathstrut 4,2}}{sqrt{ mathstrut 0,24}}= sqrt{ mathstrut genfrac{}{}{}{0}{2,8 cdot 4,2}{0,24}} = sqrt{ mathstrut genfrac{}{}{}{0}{28 cdot 42}{24}}=sqrt{ mathstrut genfrac{}{}{}{0}{7 cdot 4 cdot 7 cdot 6}{4 cdot 6}} =

= sqrt{ mathstrut 7 cdot 7} = 7.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2. genfrac{}{}{}{0}{left( 2 sqrt{7} right) ^2}{14}= genfrac{}{}{}{0}{ 2^2 cdot left( sqrt{7} right) ^2}{14} = genfrac{}{}{}{0}{4 cdot 7}{14} = 2.

3. genfrac{}{}{}{0}{ sqrt[leftroot{3} scriptstyle 9]{7} cdot sqrt[leftroot{3} scriptstyle 18]{7}}{sqrt[leftroot{3} scriptstyle 6]{7}}=genfrac{}{}{}{0}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9}} cdot 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}}}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}}=7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9} + genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}- genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}= 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6} - genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}=7^0=1.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
4. Найдите значение выражения displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6} при b = 2.

Решение:

displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6}=displaystyle frac{11a^6b^3-{27a^6b}^3}{4a^6b^6}=displaystyle frac{-16a^6b^3}{4a^6b^6}=-displaystyle frac{4}{b^3}.

При b = 2 получим -displaystyle frac{4}{2^3}=-displaystyle frac{4}{8}=-0,5 .

Ответ: -0,5.

5. Найдите значение выражения displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}} при a=12 .

Решение:

displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}}=displaystyle frac{a^{3,21+7,36}}{a^{8,57}}=displaystyle frac{a^{10,57}}{a^{8,57}}=a^{10,57-8,57}=a^2.

При a = 12 получим {12}^2=144.

Мы воспользовались свойствами степеней.

Ответ: 144.

6. Найдите значение выражения displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^4} при b = – 5.

Решение: displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^3}=displaystyle frac{b^{sqrt{3} cdot  2sqrt{3}}}{b^3}=displaystyle frac{b^6}{b^3}=b^3 .

При b = – 5 получим: {(-5)}^3=-125 .

Ответ: -125.

7. Расположите в порядке возрастания: {left(displaystyle frac{7}{8}right)}^{-3}; displaystyle frac{7}{8}; {left(displaystyle frac{8}{7}right)}^{-3}.

Решение:

Запишем выражения как степени с положительным показателем и сравним.

left(displaystyle frac{7}{8}right)^-3=left(displaystyle frac{8}{7}right)^3. Так как displaystyle frac{8}{7} textgreater 1, то left(displaystyle frac{8}{7}right)^3 textgreater 1.

left(displaystyle frac{8}{7}right)^-3=left(displaystyle frac{7}{8}right)^3. Так как displaystyle frac{7}{8} textless 1, то left(displaystyle frac{7}{8}right)^3 textless 1.

Сравним displaystyle frac{7}{8} и {left(displaystyle frac{7}{8}right)}^3, для этого оценим их разность:

displaystyle frac{7}{8} - {left(displaystyle frac{7}{8}right)}^3=displaystyle frac{7}{8} - displaystyle frac{7^3}{8^3}=displaystyle frac{7 cdot  8^2-7^3}{8^3}=displaystyle frac{7(8^2-7^2)}{8^3}=displaystyle frac{7(64-49)}{8^3} textgreater 0 , значит displaystyle frac{7}{8} textgreater {left(displaystyle frac{7}{8}right)}^3 .

Получим : {left(displaystyle frac{7}{8}right)}^3 textless displaystyle frac{7}{8} textless {left(displaystyle frac{8}{7}right)}^3 , поэтому {left(displaystyle frac{8}{7}right)}^{-3} ; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3} .

Ответ: {left(displaystyle frac{8}{7}right)}^{-3}; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3}.

8. Представьте выражение в виде степени: displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}.

Решение:

Вынесем за скобку степень с меньшим показателем:

displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}=displaystyle frac{x^{-6}(1+x^2+x^4)}{x^2(1+x^2+x^4)}=displaystyle frac{x^{-6}}{x^2}=x^{-6-2}=x^{-8}.

Ответ: x^{-8} .

9. Упростите выражение: displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n} .

Решение:

Приведем основания 6 и 12 к основаниям 2 и 3:

displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n}=displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2 cdot 3 cdot  {(2^2 cdot 3 )}^n}= displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2^1cdot 3^1cdot 2^{2n} cdot  3^n} =

(выполним деление степеней с одинаковыми основаниями)

= 2^{2n-1-1-2n}cdot 3^{n+1-1-n}=2^{-2}cdot 3^0=displaystyle frac{1}{2^2}cdot 1=displaystyle frac{1}{4} = 0,25.

Ответ: 0,25.

10. Чему равно значение выражения displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}} при a=displaystyle frac{1}{3}?

Решение:

displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}}=a^{-4+left(-3right)-(-5)}=a^{-2}.

При a=displaystyle frac{1}{3}, получим {left(displaystyle frac{1}{3}right)}^{-2}=3^2=9.

Ответ: 9.

к оглавлению ▴

Сравнение арифметических корней

11. Какое из чисел больше: sqrt{5}+sqrt{6} или 2+sqrt{7}?

Решение:

Возведем в квадрат оба числа (числа положительные):

{left(sqrt{5}+sqrt{6}right)}^2= 5 + 2sqrt{5cdot 6}+6=11+2sqrt{30};

{left(2+7right)}^2={left(sqrt{4}+sqrt{7}right)}^2= 4 + 2sqrt{4cdot 7}+7=11+2sqrt{28}.

Найдем разность полученных результатов:

11+2sqrt{30}-(11+2sqrt{28})=2(sqrt{30}-sqrt{28}) textgreater 0, так как sqrt{30} textgreater sqrt{28}.

Значит, первое число больше второго.

Ответ: sqrt{5}+sqrt{6} textgreater  2+sqrt{7}.

к оглавлению ▴

Как избавиться от иррациональности в знаменателе

Если дана дробь вида displaystyle frac{a}{sqrt{b}}, то нужно умножить числитель и знаменатель дроби на sqrt{b}:

displaystyle frac{a}{sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}cdot sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}^2} = displaystyle frac{a cdot sqrt{b}}{b}.

Тогда знаменатель станет рациональным.

Если дана дробь вида displaystyle frac{c}{ a pm  sqrt{b}} или displaystyle frac{c}{  sqrt{a} pm  sqrt{b}}, то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.

Сопряженные выражения – это выражения, отличающиеся только знаками. Например,

a + sqrt{b} и a-sqrt{b}; sqrt{a}+sqrt{b} и sqrt{a}-sqrt{b} – сопряженные выражения.

Пример:

displaystyle frac{c}{sqrt{a}-sqrt{b}}=displaystyle frac{c (sqrt{a}+ sqrt{b})}{ (sqrt{a}- sqrt{b})(sqrt{a}+ sqrt{b})}=

=displaystyle frac{c (sqrt{a}+sqrt{b})}{{ left(sqrt{a}right)}^2-{left(sqrt{b}right)}^2  }=displaystyle frac{c(sqrt{a}+ sqrt{b})}{a-b } .

12. Вот несколько примеров – как избавиться от иррациональности в знаменателе:

Пример 1.

displaystyle frac{2}{sqrt{27}}= displaystyle frac{2 cdot  sqrt{3}}{sqrt{3^3} cdot  sqrt{3}}=displaystyle frac{2 sqrt{3}}{sqrt{3^4} }=displaystyle frac{2 sqrt{3}}{9}.

Пример 2.

displaystyle frac{6}{1+sqrt{3}} = displaystyle frac{6(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=displaystyle frac{6(sqrt{3}-1)}{3-1}=

=displaystyle frac{6(sqrt{3}-1)}{2}=3(sqrt{3}-1).

Пример 3.

displaystyle frac{33}{7-3sqrt{3}} = displaystyle frac{33(7+3sqrt{3})}{(7-3sqrt{3})(7+3sqrt{3})}= displaystyle frac{33(7+3sqrt{3})}{49 -9 cdot 3}=

displaystyle frac{33(7+3sqrt{3})}{22}=displaystyle frac{3(7+3sqrt{3})}{2}.

Пример 4.

displaystyle frac{12}{sqrt{3}+sqrt{6}}=displaystyle frac{12(sqrt{6}-sqrt{3})}{(sqrt{3}+sqrt{6})(sqrt{6}-sqrt{3})}=displaystyle frac{12(sqrt{6}-sqrt{3})}{6-3}=

=displaystyle frac{12(sqrt{6}-sqrt{3})}{3}=4(sqrt{6}-sqrt{3}).

Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.

Пример 5.

displaystyle frac{5+3sqrt{3}}{sqrt{3}+2}= displaystyle frac{(5+3sqrt{3})(2-sqrt{3})}{(sqrt{3}+2)(2-sqrt{3})}=

=displaystyle frac{10+6sqrt{3}-5sqrt{3}-9}{2^2-{(sqrt{3} )}^2}=displaystyle frac{1+sqrt{3}}{4-3}= 1+sqrt{3}.

13. Сравните sqrt{140} и displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}.

1) displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}=displaystyle frac{7-4sqrt{3}+7+4sqrt{3}}{(7+4sqrt{3})(7-4sqrt{3})}=displaystyle frac{14}{7^2-{(4sqrt{3})}^2}=

=displaystyle frac{14}{49-48}=14.

2) Сравним sqrt{140} и 14.

14 = sqrt{{14}^2}=sqrt{196}, 140 textless 196, то и sqrt{140} textless sqrt{196}, а значит,

sqrt{140} textless displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}} .

Ответ: sqrt{140} меньше.

к оглавлению ▴

Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Покажем несколько примеров.

14. Упростите: выражения: sqrt{3-2sqrt{2}}; sqrt{7+4sqrt{3}}; sqrt{19-8sqrt{3}}.

Пример 5.

sqrt{3-2sqrt{2}}=sqrt{2+1-2sqrt{2}}=sqrt{{left(sqrt{2}right)}^2-2cdot 1cdot sqrt{2}+1}=

=sqrt{{left(sqrt{2}-1right)}^2} =  left|sqrt{2}-1right| = sqrt{2}-1, т.к. sqrt{2} textgreater 1.

Пример 6.

sqrt{7+4sqrt{3}} =  sqrt{4+3+4sqrt{3 }}=sqrt{2^2+2cdot 2cdot sqrt{3 }+{(sqrt{3 })}^2} =

= sqrt{{(2+sqrt{3})}^2} = 2+sqrt{3}.

Пример 7.

sqrt{19-8sqrt{3}} =  sqrt{16+3-8sqrt{3 }}=sqrt{4^2-2cdot 4cdot sqrt{3 }+{(sqrt{3 })}^2} =

=sqrt{{(4-sqrt{3})}^2} = 4-sqrt{3},

так как 4-sqrt{3}=sqrt{16}-sqrt{3} textgreater 0 .

Следующие несколько задач решаются с помощью формулы:

sqrt{a^2}=left|aright|.

Решение:

sqrt{{(5-2x)}^2}=left|5-2xright|.

Получим уравнение left|5-2xright|=2x-5, 2x-5ge 0, x geq 2,5.

Ответ: [2,5; + infty ).

19. Вычислите значение выражения: sqrt{{(sqrt{3}-1)}^2}+sqrt{{(sqrt{3}-2)}^2}.

Решение:

sqrt{(sqrt{3}-1)^2}+sqrt{(sqrt{3}-2)^2}=|sqrt{3}-1|+|sqrt{3}-2|=

=sqrt{3}-1+2-sqrt{3}=1.

Ответ: 1.

20. Вычислите значение выражения: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}.

Решение: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}= left|2-sqrt{5}right|+left|3-sqrt{5}right|=

=sqrt{5}-2+3-sqrt{5} = 1.

Ответ: 1.

21. Вычислите значение выражения: (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}, если x textless 3.

Решение. (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}=left(x - 3right)sqrt{displaystyle frac{1}{{left(x-3right)}^2}}=displaystyle frac{x-3}{left|x-3right|}=

=displaystyle frac{x-3}{3-x}=-1.

Если x textless 3, то x - 3 textless 0, следовательно left|x-3right|=-left(x-3right)=3-x.

Ответ: – 1.

22. Вычислите: (sqrt{3}-2)(sqrt{7+4sqrt{3}}).

Решение: left(sqrt{3}-2right)left(sqrt{7+4sqrt{3}}right) = sqrt{{left(sqrt{3}-2right)}^2(7+4sqrt{3}})=

=sqrt{left(3-4sqrt{3}+4right)left(7+4sqrt{3}right)}=sqrt{left(7-4sqrt{3}right)left(7+4sqrt{3}right)}=sqrt{7^2-{left(4sqrt{3}right)}^2}=

= sqrt{49-48} = 1.

Ответ: 1.

Рассмотрим уравнение вида a^x=a^y, где a textgreater 0.

Это равенство выполняется, только если x = y.

Подробно об таких уравнениях – в статье «Показательные уравнения».

При решении уравнений такого вида мы пользуемся монотонностью показательной функции.

23. Решите уравнение:

а) 2^{3-x}=16;

б) {27}^{displaystyle frac{1}{3}x-1}-3=0;

в) {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

Решение.

23. Решите уравнение: 2^{3-x}=16.

Решение:

2^{3-x}=2^4, тогда 3 - x = 4, ; x = - 1.

Ответ: -1.

24. Решите уравнение:

{27}^{displaystyle frac{1}{3}x-1}-3=0.

Решение:

{left(3^3right)}^{left(displaystyle frac{1}{3}x-1right)}=3 , ; 3^{3left(displaystyle frac{1}{3}x-1right)}=3^1;

3left(displaystyle frac{1}{3}x-1right)=1, ; x - 3 = 1, ; x = 4.

Ответ: 4.

25. Решите уравнение: {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

Решение:

{left(3^{- displaystyle frac{1}{2}}right)}^{2x+1}={left(3^{1+ displaystyle frac{1}{2}}right)}^x ,; ; 3^{-displaystyle frac{1}{2} cdot (2x+1)}=3^{displaystyle frac{3}{2}x}.

Значит, -displaystyle frac{1}{2} cdot left(2x+1right)=displaystyle frac{3}{2}x, - 2x - 1 = 3x, - 5x = 1 , x = -displaystyle frac{1}{5}.

Ответ: -0,2.

Если вы хотите разобрать большее количество примеров – записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Корни и степени» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023


Загрузить PDF


Загрузить PDF

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

  1. Изображение с названием Calculate a Square Root by Hand Step 1

    1

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число.[1]
    Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  2. Изображение с названием Calculate a Square Root by Hand Step 2

    2

    Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b.[2]
    Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  3. Изображение с названием Calculate a Square Root by Hand Step 3

    3

    Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • √147
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  4. Изображение с названием Calculate a Square Root by Hand Step 4

    4

    Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 – мы были правы.
  5. Изображение с названием Calculate a Square Root by Hand Step 5

    5

    Еще один способ – разложите подкоренное число на простые множители. Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • √88
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Реклама

При помощи деления в столбик

  1. Изображение с названием Calculate a Square Root by Hand Step 6

    1

    Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как “7 95 20 78 91 82, 47 89 70”.

    • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде “7 80, 14”. Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
  2. Изображение с названием Calculate a Square Root by Hand Step 7

    2

    Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

    • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 22 < 7 и n = 2. Напишите 2 сверху справа – это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
  3. Изображение с названием Calculate a Square Root by Hand Step 8

    3

    Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

    • В нашем примере вычтите 4 из 7 и получите 3.
  4. Изображение с названием Calculate a Square Root by Hand Step 9

    4

    Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере второй парой чисел является “80”. Запишите “80” после 3. Затем, удвоенное число сверху справа дает 4. Запишите “4_×_=” снизу справа.
  5. Изображение с названием Calculate a Square Root by Hand Step 10

    5

    Заполните прочерки справа. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 – слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа – это вторая цифра в искомом квадратном корне числа 780,14.
  6. Изображение с названием Calculate a Square Root by Hand Step 11

    6

    Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

    • В нашем примере, вычтите 329 из 380, что равно 51.
  7. Изображение с названием Calculate a Square Root by Hand Step 12

    7

    Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите “54_×_=” снизу справа.
  8. Изображение с названием Calculate a Square Root by Hand Step 13

    8

    Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 – 4941 = 173.
  9. Изображение с названием Calculate a Square Root by Hand Step 14

    9

    Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Реклама

Понимание процесса

  1. Изображение с названием Calculate a Square Root by Hand Step 15

    1

    Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

  2. Изображение с названием Calculate a Square Root by Hand Step 16

    2

    Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C – третьей и так далее.

  3. Изображение с названием Calculate a Square Root by Hand Step 17

    3

    Задайте букву для каждой пары первых цифр. Обозначим через Sa первую пару цифр в значении S, через Sb – вторую пару цифр и так далее.

  4. Изображение с названием Calculate a Square Root by Hand Step 18

    4

    Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

  5. Изображение с названием Calculate a Square Root by Hand Step 19

    5

    Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен Sa (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

    • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
  6. Изображение с названием Calculate a Square Root by Hand Step 20

    6

    Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C – цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

    • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B². Запомните, что 10A+B – это такое число, у которого цифра B означает единицы, а цифра A – десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² – это площадь всего квадрата, 100A² – площадь большого внутреннего квадрата, – площадь малого внутреннего квадрата, 10A×B – площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.
  7. Изображение с названием Calculate a Square Root by Hand Step 21

    7

    Вычтите A² из Sa. Для учета множителя 100 снесите одну пару цифр (Sb) из S: вам нужно, чтобы “SaSb” было равным общей площади квадрата, и из нее вычтите 100A² (площадь большого квадрата). В результате получите число N1, стоящее слева в шаге 4 (N = 380 в нашем примере). N1 = 2×10A×B + B² (площадь двух прямоугольников плюс площадь малого квадрата).

  8. Изображение с названием Calculate a Square Root by Hand Step 22

    8

    Выражение N1 = 2×10A×B + B² можно записать как N1 = (2×10A + B) × B. В нашем примере вам известно значение N1 (=380) и A(=2) и необходимо вычислить B. Скорее всего, B не является целым числом, поэтому необходимо найти наибольшее целое B, удовлетворяющее условию: (2×10A + B) × B ≤ N1. При этом B+1 будет слишком большим, поэтому N1 < (2×10A + (B+1)) × (B+1).

  9. Изображение с названием Calculate a Square Root by Hand Step 23

    9

    Решите уравнение. Для решения умножьте A на 2, переведите результат в десятки (что эквивалентно умножению на 10), поместите B в положение единиц, и умножьте это число на B. Это число (2×10A + B) × B и это выражение абсолютно идентичны записи “N_×_=” (где N=2×A) сверху справа в шаге 4. А в шаге 5 вы находите наибольшее целое B, которое ставится на место прочерков и соответствует неравенству: (2×10A + B) × B ≤ N1.

  10. Изображение с названием Calculate a Square Root by Hand Step 24

    10

    Вычтите площадь (2×10A + B) × B из общей площади (слева в шаге 6). Так вы получите площадь S-(10A+B)², которая еще не учитывалась (и которая поможет вычислить следующие цифры).

  11. Изображение с названием Calculate a Square Root by Hand Step 25

    11

    Для вычисления следующей цифры C повторите процесс. Слева снесите следующую пару цифр (Sc) из S для получения N2 и найдите наибольшее C, удовлетворяющее условию (2×10×(10A+B)+C) × C ≤ N2 (что эквивалентно двукратному написанию числа из пары цифр “A B” с соответствующим “_×_=”, и нахождению наибольшего числа, которое можно подставить вместо прочерков).

    Реклама

Советы

  • Перемещение десятичного разделителя при увеличении числа на 2 цифры (множитель 100), перемещает десятичный разделить на одну цифру в значении квадратного корня этого числа (множитель 10).
  • В нашем примере, 1,73 может считаться остатком: 780,14 = 27,9² + 1,73.
  • Данный метод верен для любых чисел.
  • Записывайте процесс вычисления в том виде, который вам наиболее удобен. Например, некоторые записывают результат над исходным числом.
  • Альтернативный метод с использованием непрерывных дробей включает формулу: √z = √(x^2+y) = x + y/(2x + y/(2x + y/(2x + …))). Например, для вычисления квадратного корня из 780,14, целым числом, квадрат которого близок к 780,14 будет число 28, поэтому z=780,14, x=28, y=-3,86. Подставляя эти значения в уравнение и решая его в упрощении до х+у/(2x), уже в младших членах получаем результат 78207/2800 или около 27,931(1), а в следующих членах 4374188/156607 или около 27,930986(5). Решение каждого последующего члена добавляет около 3 цифр к дробной доли по сравнению с предыдущем членом.

Реклама

Предупреждения

  • Не забудьте разделить число на пары, начиная с дробной части числа. Например, разделяя 79520789182,47897 как “79 52 07 89 18 2,4 78 97″, вы получите бессмысленное число.

Реклама

Похожие статьи

Источники

Об этой статье

Эту страницу просматривали 926 223 раза.

Была ли эта статья полезной?

Благодаря прочтению этой статьи вы научитесь:

  1. Извлекать корни из разных чисел;
  2. Решать разнообразные задания по этой тематике;
  3. Применять удобные таблицы на практике.

А также пополните свой мозг новыми знаниями, что всегда хорошо и полезно! Приятным бонусом для вас будут задания для отработки материала с ответами, которые вы сможете найти в конце этой статьи. Что значит понятие: «Извлечение корня из числа»?

Определение

Извлечение корня из числа — это нахождение значения корня, т.е. действие, обратное возведению в степень.

Числа b и a равны, ведь при извлечении корня n-ной степени одного из чисел, мы, соответственно, находим и второе.

  • n — натуральное число, являющиеся степенью корня.
  • a — подкоренное значение.

Интересно

При помощи разложения функции в ряд можно показать, что сумма всех натуральных чисел равна:

1/12[18]

Когда следует извлекать корень? Если вы видите, что a можно представить в виде n-ной степени какого-либо числа b, то корень a можно извлечь.

Определение

Квадратный корень из числа — это неизвестное число, которое дает это же число при возведении его в квадрат.

Пример извлечения корня:

√25=5×5 — из этого становится ясно, что квадратный корень числа равен 5.

В обратной ситуации, когда нельзя представить корень n-ной степени из числа a, в виде n-ной степени числа b, корень не извлекается или находится лишь приближенное значение этого корня.

Пример:

√6≈√2,44949

Для этого используют различные виды решений, начиная с калькулятора, заканчивая формулами. Калькулятор хоть и посчитает все вместо нас, но не всегда мы можем его применить. Поэтому важно знать другие варианты нахождения приближенного значения корня.

Способы извлечения корня

Для того, чтобы найти значение корня, существуют такие способы извлечения корня, как:

  1. Применение различных таблиц.
  2. Разложение чисел или выражений на простые множители.
  3. Извлечение корней из дробных чисел.
  4. Извлечение отрицательного корня.
  5. Поразрядное нахождение значения корня.

Они основываются на свойствах корней. Далее рассмотрим таблицы, которые могут помочь в процессе извлечения корней.

Квадраты натуральных чисел

Основной является таблица квадратов натуральных чисел:

0 1 2 3 4 5 6 7 8 9
0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Она, пожалуй, самая распространенная среди школьников. Если в какой-то важный момент она вам необходима, но у вас отсутствует к ней доступ, можно воспользоваться несколькими хитростями:

  1. Чтобы быстро возвести в квадрат число, на конце которого 0, можно добавить к нему парочку нулей: 80×80=6400; 30×30=900. Т.е., первые цифры умножаем и дописываем два 0 к этому числу.
  2. Теперь возьмём какое-нибудь число так, чтобы вторая его цифра оканчивалась на 5. Так, например, число 75. Чтобы быстро возвести его в квадрат, прибавьте к первой цифре единицу, из чего получаются цифры 7 и 8.
  3. Умножаем их и приписываем в конец число 25 и получаем конечный результат в виде числа 5625.

Квадратные корни

Вторая таблица — это таблица квадратных корней:

√x 0 1 2 3 4 5 6 7 8 9
0 0 1 1,41421 1,73205 2 2,23607 2,44949 2,64575 2,82843 3
1 3,16228 3,31662 3,4641 3,60555 3,74166 3,87298 4 4,12311 4,24264 4,3589
2 4,47214 4,58258 4,69042 4,79583 4,89898 5 5,09902 5,19615 5,2915 5,38516
3 5,47723 5,56776 5,65685 5,74456 5,83095 5,91608 6 6,08276 6,16441 6,245
4 6,32456 6,40312 6,48074 6,55744 6,63325 6,7082 6,78233 6,85565 6,9282 7
5 7,07107 7,14143 7,2111 7,28011 7,34847 7,4162 7,48331 7,54983 7,61577 7,68115
6 7,74597 7,81025 7,87401 7,93725 8 8,06226 8,12404 8,18535 8,24621 8,30662
7 8,3666 8,42615 8,48528 8,544 8,60233 8,66025 8,7178 8,77496 8,83176 8,88819
8 8,94427 9 9,05539 9,11043 9,16515 9,21954 9,27362 9,32738 9,38083 9,43398
9 9,48683 9,53939 9,59166 9,64365 9,69536 9,74679 9,79796 9,84886 9,89949 9,94987

Числа в кубе

И, конечно же, третья — таблица кубов, при помощи которой осуществляется извлечение кубического корня.

0 1 2 3 4 5 6 7 8 9
0 0 1 8 27 64 125 216 343 512 729
1 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859
2 8000 9261 10648 12167 13824 15625 17576 19683 21952 24389
3 27000 29791 32768 35937 39304 42875 46656 50653 54872 59319
4 64000 68921 74088 79507 85184 91125 97336 103823 110592 117649
5 125000 132651 140608 148877 157464 166375 175716 185193 195112 205379
6 216000 226981 238328 250047 262144 274625 287496 300763 314432 328509
7 343000 357911 373248 389017 405224 421875 438976 456533 474552 493039
8 512000 531441 551368 571787 592704 614125 636056 658503 681472 704969
9 729000 753571 778688 804357 830584 857375 884736 912673 941192 970299
Эти числа возводятся в третью степень.

Интересно

Название «Куб» приобрелось из-за того, что такая операция проводится для нахождения объема куба. Т.е., для этого нужно возвести длину ребра куба в третью степень.

Такие таблицы достаточно просты в использовании. Слева — десятки, а справа —  единицы. С их помощью можно быстро и легко извлечь корень числа от 0 до 99. Это был один из методов извлечения корней, как мне кажется, самый простой после вычислительного средства — калькулятора, но, зачастую, мы не всегда можем им воспользоваться, как говорилось ранее. Так давайте же перейдем к другим интересным и сложным на первый взгляд вариантам решения.

Разложение подкоренного числа на простые множители

Двигаясь от наиболее удобного и быстрого способа к более сложному, давайте разберемся во втором из них — разложение подкоренного числа на простые множители.

Этот метод состоит в том, чтобы представить какое-либо число в виде степени с нужным нам показателем, из чего мы можем получить значение этого корня.

Пример 1:

Возьмём число 196. Для извлечения его квадратного корня, разложим это число на простые множители: √196=2×2×7×7=2²×7²

Теперь делаем следующие действия: 2×7=14.

Ответ: √196=14.

Объяснение:

Множители находятся так: 196 делим на 2, а полученное число 98 мы тоже делим на 2. Делим до тех пор, пока деление станет невозможным. Так, число 49 нельзя поделить пополам, поэтому мы действуем методом подбора. Находим такое число, которое делится. В данном случае — это 7. Два числа, что у нас получились (2 и 7), мы умножаем друг на друга, но уже без степени и получаем число 14, что есть извлечённый корень из числа 196.

Пример 2:

Для того, чтобы лучше понять, как раскладывать на множители, приведем ещё одно число и перейдем к действиям. Деление 441 на 2 невозможно, поэтому подбираем число. Оно делится на 3 два раза. Опять выходит число 49, которое мы делим 2 раза на 7. Из этого следует: √441=3×3×7×7=3²×7²

3×7=21. Значит, ответ: √441=21.

Объяснение:

3 мы умножили на 7, так как это два числа, имеющих 2 степень. Будь у одного из них 4 степень, например: 3⁴×7² — нужно было бы сделать так: 3×3×7. Проще сказать, что мы сокращаем степени ⁴ и ².

Интересно

Подкоренные числа, разложенные на простые множители, могут иметь лишь чётную степень.

Извлечение корней из дробных чисел

Перед тем, как начать вычисления, убедитесь, что дробное число представлено в виде обыкновенной дроби.

Перейдем к свойству корня из частного:

[sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}}]

Далее нужно воспользоваться правилом извлечения корня из дроби, которое гласит: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 1:

Давайте возьмем любую десятичную дробь и на её примере посмотрим, как нужно извлекать корень.

Так, например, найдем кубический корень из 373,248.

Первый ход — это представление десятичной дроби в виде обыкновенной:

³√373248/³√1000. После этого найдем кубический корень в числе и знаменателе:

³√373248=2×2×2×2×2×2×2×2×2×3×3×3×3×3×3=2⁹×3⁶=72³

Эти действия происходят как с квадратными корнями, но здесь уже мы считаем числа 2 и 3 не по двойке, а тройке, т.е. 2⁹=2×2×2, а 3⁶=3×3. Или же сокращаем ⁹ и ⁶.

Проверим таким образом: из 9 вычитаем тройки до тех пор, пока не придем к 0: 9-3-3-3 – это значит, что двоек у нас будет именно 3. Так и с 3⁶. Если от 6 отнять 3 два раза, то будет 0. Выходит, что троек у нас именно две.

А 1000=10³.

Получается, ³√373248/³√1000=72/10=7,2.

Извлечение отрицательного корня

Существуют вещественные числа, из которых невозможно извлечь корень, т.е. решения нет. А вот из комплексных чисел можно извлекать корень. Для начала узнаем, что это за числа.

Определение

Вещественные (действительные) числа— это рациональные и иррациональные числа, которые можно записать в форме конечной или бесконечной десятичной дроби.

Комплексные числа — это выражение, в котором есть:

  • вещественные числа a и b;
  • i — мнимая единица.

Итак, чтобы извлечь корень из отрицательного числа, нужно помнить, что если знаменатель является нечётным, то число под знаком корня может оказаться отрицательным.

Далее, чтобы провести эту операцию с отрицательным числом, перейдем к следующим действиям:

  1. Извлекаем корень из противоположного ему положительного числа.
  2. Ставим перед полученным числом знак минус.

Пример 1:

1. Преобразуем выражение ⁵√-12 640/32 так, чтобы вместо отрицательного числа под корнем оказалось положительное:

⁵√-12 640/32 = -⁵√12 640/32

2. Избавимся от смешанного числа, заменив его обыкновенной дробью:

 -⁵√12 640/32= -⁵√1024/32

3. С помощью правила извлечения корней из обыкновенной дроби, начнем извлекать:

-⁵√1024/32 = — ⁵√1024/⁵√32.

4. Теперь нужно вычислить корни в числителе и знаменателе:

— ⁵√1024/⁵√32 = — ⁵√4⁵/⁵√2⁵ = — 4/2 = -2.

Нет времени решать самому?

Наши эксперты помогут!

Поразрядное нахождение значения корня

Мы разобрали несколько методов, которые вы можете выбрать на своё усмотрение. Однако, есть еще один, который может понадобиться в таких ситуациях, когда нужно знать полное значение корня, а число, находящееся под корнем нельзя представить в виде n-ной степени определенного числа.

Для таких случаев существует алгоритм поразрядного нахождения значения корня, который нужно использовать, чтобы получить нужное количество значений определяемого числа.

Пример 1:

Итак, чтобы в этом разобраться, найдем значение квадратного корня из 7:

1. Находим значение разряда единиц, перебирая значения 0, 1, 2, …, 9, в это же время вычисляя их во 2 степени до нужного значения, которое больше подкоренного числа 7. Значение ряда единиц равняется 2 (потому как 2² < 7, а 2³ > 7).

2. Следующий на очереди — разряд десятых. Здесь мы будем возводить в квадрат числа: 2.0, 2.1, 2.2, …, 2.9, сравнивая результат с нужным нам числом 7. Так как 2.6² < 7, а 2.7² > 7, то значение десятых равняется 6.

3. Значение сотых. По аналогии находим приближенное значение к 7.

2.64² = 6,9696 подходит нам, так как 2.65²=7.0225, а это больше 7. Действуя таким же образом, можно и дальше находить значение √7 ≈ 2.64.

Теперь, когда мы разобрались с извлечением корней, перейдем к практике. Специально для вас составлены задания с ответами, чтобы вы попробовали воспользоваться приобретенными знаниями. Решайте без таблиц и калькулятора.

Задания для отработки материала

1 задание

а)√324

б)√900

в)√1369

2 задание

а)³√531,441

б)³√166,375

3 задание

а) ⁵√-14 2471/1024

б) ⁵√-5 1182/3125

4 задание

а)Найдите квадратный корень из 3.

б)Найдите квадратный корень из 5.

в)Найдите квадратный корень из 9.

Ответы с решением

1 задание

а)√324

1)2×2×3×3×3×3=2²×3⁴=√324, а чтобы извлечь, мы умножаем:

2)2×3×3=18. Получается, √324=18.

б)√900

1)2×2×3×3×5×5=2²×3²×5²=√900.

Извлекаем:

2)2×3×5=30. Мы получили √900=30.

в)√1369

1)37×37=37²=√1369.

А здесь мы оставляем 37, так как это единственное число в квадрате. Конечным ответом будет: √1369=37.

2 задание

а)³√531441.

1)3×3×3×3×3×3×3×3×3×3×3×3=3¹²=³√531441.

Разложили на простые множители, а теперь найдем квадратный корень.

2)3¹² это 3×3×3×3, т.к. 3 у нас в 12 степени. Это можно проверить, отняв из 12 столько троек, чтобы вышел 0: 12-3-3-3-3. Так что, 3⁴=81; ³√531441=81.

3)1000=10³.  

4)³√531441/³√1000=81/10=8,1.

б)³√166,375.

1) 5×5×5×11×11×11=5³×11³=³√166375.

2)5³×11³=55. Так как числа в кубе – они в степени 1.

3) 1000=10³.  

4)³√166375/³√1000=55/10=5,5.

3 задание

а)

1) ⁵√-14 2471/1024 = -⁵√14 2471/1024.

2) -⁵√14 2471/1024= -⁵√16801/1024.

3) -⁵√16801/1024 = — ⁵√16801/⁵√1024.

4) ⁵√16801/⁵√1024 = — ⁵√6⁵/⁵√4⁵ = — 6/4 = — 1,5.

б)

1) ⁵√-5 1182/3125 = -⁵√5 1182/3125.

2) -⁵√5 1182/3125= -⁵√16807/3125.

3) -⁵√16807/3125 = — ⁵√16807/⁵√3125.

4) ⁵√16807/⁵√3125 = — ⁵√7⁵/⁵√5⁵ = — 7/5 = — 1,4.

4 задание

а)√3≈1,73.

б√5≈2,23.

в)√8≈2,82.

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Содержание:

  • Извлечение квадратного корня при помощи таблицы квадратов
  • Разложение на простые множители
  • Метод Герона
  • Вычисление корня делением в столбик
  • Поразрядное вычисление значения квадратного корня
  • Видео

Извлечение квадратного корня при помощи таблицы квадратов

Один из простейших способов вычисления корней заключается в использовании специальной таблицы. Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах — значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Приближенные методы извлечения квадратного корня

Поскольку извлечение корня — это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки — 1, по вертикали находим единицы — 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Корень из числа онлайн

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители. Простые множители — это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Квадратный корень из числа

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона. Его суть заключается в использовании приближённой формулы:

√R = √a + (R — a) / 2√a,

где R — число, корень которого нужно вычислить, a — ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен — 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 — 121) / 2 ∙ √121 = 11 — 10 / 22 ≈ 10,55.

Метод вычисления корня Герона

Теперь проверим точность метода:

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 — 111,3025) / 2 ∙ √111,3025 = 10,55 — 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора.

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 — первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3—6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 — 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Вычисление квадратного корня

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью. Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д. ) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

Видео

Из видео вы узнаете, как извлекать квадратные корни без использования калькулятора.

корень квадратныйТема в математике «Корень и его свойства» нередко вызывает затруднения у школьников, особенно при решении примеров. В данной статье описаны основные свойства корней, а также правила сложения, вычитания, умножения и деления. Наглядные примеры помогаю понять, как решать задания с корнями.

Определение «Корень»

 Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если число a возвести во вторую степень (в квадрат).
Например, √64 = 8 (√64 равно числу 8).

Формула: a2 = a

Число, стоящее под знаком корня, называется подкоренным числом. Если под знаком корня стоит целое выражение, то его называют подкоренным выражением.
Свойство квадратного корня: для действительных чисел не существует квадратный корень из отрицательного числа, так как возведение числа в квадрат будет всегда неотрицательным числом.

Извлечение корней: примеры

Извлечь корень — значит найти значение корня (то есть найти число, при возведении которого в степень, получается подкоренное значение).
Например, извлечь корень из 64 – значит найти √64.

Найти корень из числа можно одним из следующих способов:

  • Использование таблицы квадратов, таблицы кубов и т.д. В данном случае нужно просто найти нужное число в таблице и посмотреть, какому значению оно соответствует.
  • Разложение подкоренного выражения (числа) на простые множители.
    Порядок нахождения корня в этом случае будет следующим:
    1. Разложение подкоренного значения на простые множители,
    2. Объединение одинаковых множителей и их представление в виде степени с необходимым показателем.
    Например, √144 = √2х2х2х2х3х3 = √(2х2)х(2х2)х(3х3) = √22х22х32 = √122 = 12
    3. В случае, если невозможно найти корень из числа, то можно упростить подкоренное выражение (число). В этом случае применяется следующее правило: корень из произведения чисел равен произведению корней этих чисел.
    Например, √72 = √2х2х2х3х3 = √(2х2)х2х(3х3) = √22х2х32 = √62х2 = 6√2
  • Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.
    Например, 130=√13х5х2 – упростить нельзя.
  • Извлечение корня из дроби. В этом случае применяются следующие правила:
    1. дробное число должно быть записано в виде обыкновенной дроби;
    2. корень из дроби равен частному от деления корня числителя на корень знаменателя.
    Например, √3,24 = √324/100 = √81/25 = √81 / √25 = 9/5 = 1,8.
  • Извлечение нечетной степени из отрицательных чисел. Чтобы извлечь корень нечетной степени из отрицательного числа необходимо извлечь его из положительного числа и поставить перед ним знак минус.
    Например, чтобы найти корень третьей степени из (-125), нужно найти корень третьей степени из 125 (будет 5) и подставить знак минуса (будет -5).

Приведение корней с разными показателями

Для того, чтобы упростить выражение с корнями, которое содержит корни разных степеней, необходимо привести все корни к одной степени.

Для этого воспользуемся следующим свойством дроби: a = nan.

Например, есть квадратный корень (второй степени √2 ) и кубический корень (третьей степени 33).
Во-первых, необходимо найти наименьшее общее кратное (НОК) для степеней. В нашем примере НОК=6 (2х3).
Во-вторых, применим свойство a = nan: √2 = 22 = 623 = 68; 33 = 632 = 69
Получилось два корня одинаковой степени, с которыми можно совершать различные математические действия.

Корень: сложение и вычитание корней

Основное правила сложения и вычитания квадратных корней: сложение и вычитание квадратного корня возможны только при условии одинакового подкоренного выражения. 

Примеры:
2√3 + 3√3 = 5√3
2√3 + 2√4 – не выполняется.

При этом, нужно рассмотреть возможность упростить выражения.
Пример: 2√3 + 3√12 = 2√3 + 3√2х2х3 = 2√3 + 3√ 22х3 = 2√3 + 6√3 = 8√3.

Алгоритм действия:
1. Упростить подкоренное выражение путем разложения на простые множители.
2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. 
3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Корень: умножение

Умножение корней без множителей

Произведение корней из чисел равно корню из произведения этих чисел.
a*b=√a*√b
Важно: между собой можно умножать только одинаковые степени корней, то есть можно умножить один квадратный корень на другой, но нельзя умножить квадратный корень на корень кубической степени.
Примеры:
2 х √3 = √6
6 х √3 = √18 = √3х3х2 = 3√2

Умножение корней с множителями

При умножении корней с множителями нужно отдельно перемножить множители и подкорневые выражения (числа). Подкорневые числа можно перемножать между собой только в том случае, если они имеют одинаковые степени (см. умножение корней без множителей). В случае отсутствия множителя, он равен единице.
Примеры:
3
2 х √5 = (3х1) √(2*5) = 3√10

4√2 х 3√3 = (3х4) √(2х3) = 12√6

Корень: деление

Основной правило деления —  подкоренные выражения делятся на подкоренные выражения, а множители на множители.
a:b=√a:√b
В процессе деления квадратных корней дроби упрощаются.

Деление корней без множителей

Частное корней из чисел равно корню из частного этих чисел.
Важно: между собой можно делить только одинаковые степени корней, то есть можно делить один квадратный корень на другой, но нельзя делить квадратный корень на корень кубической степени.
Пример. √21:√3=√21:3=√7

Деление квадратных корней с множителями

При делении корней с множителями нужно отдельно разделить множители и подкорневые выражения (числа). Подкорневые числа можно делить между собой только в том случае, если они имеют одинаковые степени. В случае отсутствия множителя, он равен единице.
Пример. 12√32 : 6√16 = (12:6) √(32:16) = 2√2.

Примеры для практики

Добавить комментарий