Как разложить на множители квадратный трёхчлен
Квадратный трёхчлен — это многочлен вида ax2 + bx + c.
В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:
ax2 + bx + c = 0
Левая часть этого уравнения является квадратным трёхчленом.
Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.
Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:
a(x − x1)(x − x2)
Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:
ax2 + bx + c = a(x − x1)(x − x2)
Где левая часть — исходный квадратный трёхчлен.
Пример 1. Разложить на множители следующий квадратный трёхчлен:
x2 − 8x + 12
Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:
x2 − 8x + 12 = 0
В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:
Итак, x1 = 6, x2 = 2. Теперь воспользуемся формулой ax2 + bx + c = a(x − x1)(x − x2). В левой части вместо выражения ax2 + bx + c напишем свой квадратный трёхчлен x2 − 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2
x2 − 8x + 12 = 1(x − 6)(x − 2) = (x − 6)(x − 2)
Если a равно единице (как в данном примере), то решение можно записать покороче:
x2 − 8x + 12 = (x − 6)(x − 2)
Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.
Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2). Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x2 − 8x + 12
(x − 6)(x − 2) = x2 − 6x − 2x + 12 = x2 − 8x + 12
Пример 2. Разложить на множители следующий квадратный трёхчлен:
2x2 − 14x + 24
Приравняем данный квадратный трёхчлен к нулю и решим уравнение:
2x2 − 14x + 24 = 0
Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:
Итак, x1 = 4, x2 = 3. Приравняем квадратный трехчлен 2x2 − 14x + 24 к выражению a(x − x1)(x − x2), где вместо переменных a, x1 и x2 подстáвим соответствующие значения. В данном случае a = 2
2x2 − 14x + 24 = 2(x − 4)(x − 3)
Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x2 − 14x + 24
2(x − 4)(x − 3) = 2(x2 − 4x −3x + 12) = 2(x2 − 7x + 12) = 2x2 − 14x + 24
Как это работает
Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.
Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:
x2 + bx + c
Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:
Тогда приведённый квадратный трехчлен x2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b. Для этого можно умножить обе его части на −1
Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:
Теперь подставим выраженные переменные b и c в квадратный трёхчлен x2 + bx + c
Раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Из первых скобок вынесем общий множитель x, из вторых скобок — общий множитель −x2
Далее замечаем, что выражение (x − x1) является общим множителем. Вынесем его за скобки:
Мы пришли к тому, что выражение x2 + bx + c стало равно (x − x1)(x − x2)
x2 + bx + c = (x − x1)(x − x2)
Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.
Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a
ax2 + bx + c = a(x − x1)(x − x2)
Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax2 + bx + c = 0, то теорема Виета принимает следующий вид:
Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a
Далее чтобы квадратный трёхчлен вида ax2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и
Для начала выразим b и c. В первом равенстве умножим обе части на a. Затем обе части получившегося равенства умножим на −1
Теперь из второго равенства выразим c. Для этого умножим обе его части на a
Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax2 + bx + c. Для наглядности каждое преобразование будем выполнять на новой строчке:
Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2, которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Теперь из первых скобок вынесем общий множитель ax, а из вторых — общий множитель −ax2
Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:
Вторые скобки содержат общий множитель a. Вынесем его за скобки. Его можно расположить в самом начале выражения:
Мы пришли к тому, что выражение ax2 + bx + c стало равно a(x − x1)(x − x2)
ax2 + bx + c = a(x − x1)(x − x2)
Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(x − x1)(x − x2) вместо переменных x1 и x2.
Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2. Например, квадратный трёхчлен x2 + 4x + 4 имеет только один корень −2
Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2. А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:
Скобки внутри скобок можно раскрыть. Тогда получим следующее:
При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2)2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)
Примеры разложений
Пример 1. Разложить на множители следующий квадратный трёхчлен:
3x2 − 2x − 1
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x2 − 2x − 1, а в правой части — его разложение в виде a(x − x1)(x − x2), где вместо a, x1 и x2 подстáвим соответствующие значения:
Во вторых скобках можно заменить вычитание сложением:
Пример 2. Разложить на множители следующий квадратный трёхчлен:
3 − 11x + 6x2
Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:
6x2 − 11x + 3
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3
Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:
Пример 3. Разложить на множители следующий квадратный трёхчлен:
3x2 + 7x − 6
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Пример 4. Найдите значение k, при котором разложение на множители трёхчлена 3x2 − 8x + k содержит множитель (x − 2)
Если разложение содержит множитель (x − 2), то один из корней квадратного трёхчлена равен 2. Пусть корень 2 это значение переменной x1
Чтобы найти значение k, нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.
В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби
Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2
Теперь из второго равенства выразим k. Так мы найдём его значение.
Пример 5. Разложить на множители следующий квадратный трёхчлен:
Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным
Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Задания для самостоятельного решения
Задание 1. Разложить на множители квадратный трёхчлен:
Решение:
Задание 2. Разложить на множители квадратный трёхчлен:
Решение:
Задание 3. Разложить на множители квадратный трёхчлен:
Решение:
Задание 4. Разложить на множители квадратный трёхчлен:
Решение:
Задание 5. Разложить на множители квадратный трёхчлен:
Решение:
Задание 6. Разложить на множители квадратный трёхчлен:
Решение:
Задание 7. Разложить на множители квадратный трёхчлен:
Решение:
Задание 8. Разложить на множители квадратный трёхчлен:
Решение:
Задание 9. Разложить на множители квадратный трёхчлен:
Решение:
Задание 10. Разложить на множители квадратный трёхчлен:
Решение:
Задание 11. Разложить на множители квадратный трёхчлен:
Решение:
Задание 12. Разложить на множители квадратный трёхчлен:
Решение:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Квадратный трехчлен – это многочлен вида (ax^2+bx+c) ((a≠0)).
Пример:
(x^2-2x+1)
(3x^2-5x+6)
Почему его называют именно так? Потому что, наибольшая степень у него – квадрат, а состоит он из трех слагаемых (одночленов). Вот и получается – квадратный трехчлен.
Примеры не квадратных трехчленов:
(x^3-3x^2-5x+6) – кубический четырёхчлен
(2x+1) – линейный двучлен
Корень квадратного трехчлена:
Значение переменной (x), при котором квадратный трехчлен обращается в ноль, называют его корнем.
Пример:
У трехчлена (x^2-2x+1) корень (1), потому что (1^2-2·1+1=0)
У трехчлена (x^2+2x-3) корни (1) и (-3), потому что (1^2+2-3=0) и ((-3)^2-6-3=9-9=0)
Например: если нужно найти корни для квадратного трехчлена (x^2-2x+1), приравняем его к нулю и решим уравнение (x^2-2x+1=0).
(D=4-4cdot1=0)
(x=frac{2-0}{2}=frac{2}{2}=1)
Готово. Корень равен (1).
Разложение квадратного трёхчлена на множители:
Квадратный трехчлен (ax^2+bx+c) можно разложить как (a(x-x_1 )(x-x_2)), если дискриминант уравнения (ax^2+bx+c=0) больше нуля (x_1) и (x_2) – корни того же уравнения).
Например, рассмотрим трехчлен (3x^2+13x-10).
У квадратного уравнения (3x^2+13x-10=0) дискриминант равен 289 (больше нуля), а корни равны (-5) и (frac{2}{3}). Поэтому (3x^2+13x-10=3(x+5)(x-frac{2}{3})). В верности этого утверждения легко убедится – если мы раскроем скобки, то получим исходный трехчлен.
Квадратный трехчлен (ax^2+bx+c) можно представить как (a(x-x_1)^2), если дискриминант уравнения (ax^2+bx+c=0) равен нулю.
Например, рассмотрим трехчлен (x^2+6x+9).
У квадратного уравнения (x^2+6x+9=0) дискриминант равен (0), а единственный корень равен (-3). Значит, (x^2+6x+9=(x+3)^2) (здесь коэффициент (a=1), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по формулам сокращенного умножения.
Квадратный трехчлен (ax^2+bx+c) не раскладывается на множители, если дискриминант уравнения (ax^2+bx+c=0) меньше нуля.
Например, у трехчленов (x^2+x+4) и (-5x^2+2x-1) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.
Пример. Разложите на множители (2x^2-11x+12).
Решение:
Найдем корни квадратного уравнения (2x^2-11x+12=0)
(D=11^2-4 cdot 2 cdot 12=121-96=25>0)
(x_1=frac{11-5}{4}=1,5;) (x_2=frac{11+5}{4}=4.)
Значит, (2x^2-11x+12=2(x-1,5)(x-4))
Ответ: (2(x-1,5)(x-4))
Полученный ответ, может быть, записать по-другому: ((2x-3)(x-4)).
Пример. (Задание из ОГЭ) Квадратный трехчлен разложен на множители (5x^2+33x+40=5(x++ 5)(x-a)). Найдите (a).
Решение:
(5x^2+33x+40=0)
(D=33^2-4 cdot 5 cdot 40=1089-800=289=17^2)
(x_1=frac{-33-17}{10}=-5)
(x_2=frac{-33+17}{10}=-1,6)
(5x^2+33x+40=5(x+5)(x+1,6))
Ответ: (-1,6)
Смотрите также:
Квадратный трехчлен (шпаргалка)
Тема 3.
Квадратный трёхчлен и его корни. Разложение квадратного трехчлена на множители.
Квадратный трёхчлен — это многочлен вида ax2 + bx + c, где x — переменная, a, b, c — некоторые числа, причем a ≠ 0.
Если x = 2, то 2x2 – 5x – 3 = 2 ∙ 22 – 5 ∙ 2 – 3 = -5
Если x = -5, то 2x2 – 5x – 3 = 2 ∙ (-5)2 – 5 ∙ (-5) – 3 = 72
Если x = 3, то 2x2 – 5x – 3 = 2 ∙ 32 – 5 ∙ 3 – 3 = 0
Корень квадратного трёхчлена – это значение переменной, при котором значение квадратного трёхчлена равно 0.
Чтобы найти корни квадратного трёхчлена ax2 + bx + c, необходимо решить квадратное уравнение ax2 + bx + c = 0.
2x2 – 5x – 3 = 0
D = 25 – 4 ∙ 2 ∙ -3 = 49
x1=5+74=3
x1=5-74=-0,5
Ответ: -0,5; 3
Количество корней зависит от дискриминанта.
Если D > 0, то квадратный трехчлен имеет 2 корня;
Если D = 0, то квадратный трехчлен имеет 1 корень;
Если же D < 0, то квадратный трехчлен не имеет корней.
При решении задач иногда удобно выделить квадрат двучлена из квадратного трехчлена.
Например, выделим квадрат двучлена из квадратного трехчлена x2 – 6x – 2.
Вспомним формулы сокращенного умножения:
- a+b2=a2+2ab+b2
- a-b2=a2-2ab+b2
x2-6x-2=x2-6x+9-9-2=x-32-11
При решении уравнений, неравенств удобно, когда квадратный трёхчлен представлен в виде произведения множителей, например
-2×2+14x-20=-2×2-7x+10=-2×2-2x-5x+10=-2xx-2-5x-2=-2x-2x-5
х = 2 и х = 5 – корни квадратного трехчлена.
Таким образом, ax2+bx+c=ax-x1x-x2,
где x1, x2– корни квадратного трехчлена ax2 + bx + c.
Разложить на множители 3×2+5x-2
3×2+5x-2=0
D=52-4∙3∙-2=49
x1=-5+76=26=13
x2=-5-76=-126=-2
3×2+5x-2=3x-13x–2
3×2+5x-2=3x-1x+2
Всем привет! В этой статье разбираем необходимый минимум про квадратный трехчлен. Учимся находить корни и раскладывать на множители. Жмите палец вверх, мне за полезную статью и подписывайтесь на мой канал, чтобы готовиться к ЕГЭ по математике вместе со мной!
Квадратным трехчленом называется многочлен вида ax^2 + bx + c, где a, b, c – некоторые числа, причем a ≠ 0, а x – переменная.
Про корни квадратного трехчлена
Корнем квадратного трехчлена называют значение переменной x, при котором значение этого трехчлена равно нулю.
Для того чтобы найти корни квадратного трехчлена, нужно решить уравнение вида:
Квадратный трехчлен, так же как и квадратное уравнение может иметь два корня, один корень или не иметь корней вообще.
Для нахождения корней, необходимо найти дискриминант квадратного трехчлена по формуле:
- Если дискриминант больше нуля, то квадратный трехчлен имеет два корня.
- Если дискриминант равен нулю, то квадратный трехчлен имеет один корень.
- Если дискриминант меньше нуля, то квадратный трехчлен не имеет корней.
Корни квадратного трехчлена находятся по формуле:
Разложение квадратного трехчлена на множители
Где x(1) и x(2) корни квадратного трехчлена. Причем если D = 0, то считают что трехчлен имеет два одинаковых корня.
Если квадратный трехчлен не имеет корней, то его нельзя разложить на множители.
- Алгоритм разложения квадратного трёхчлена на множители с помощью дискриминанта
- Алгоритм разложения квадратного трёхчлена на множители по теореме Виета
- Примеры
Алгоритм разложения квадратного трёхчлена на множители с помощью дискриминанта
Данный алгоритм является универсальным.
На входе: квадратный трёхчлен $ax^2+bx+c$
Задача: разложить трёхчлен на множители
Шаг 1. Находим дискриминант $D = b^2-4ac$
Шаг 2. Если $D gt 0, x_1,2 = frac{-b pm sqrt{D}}{2a} $ и $ax^2+bx+c = a(x-x_1 )(x-x_2 )$
Если D = 0, $x_0 = – frac{b}{2a}$ и $ax^2+bx+c = a(x-x_0 )^2$
Если $D lt 0$, разложение на множители невозможно.
Шаг 3. Работа завершена.
Алгоритм разложения квадратного трёхчлена на множители по теореме Виета
Данный алгоритм применяется в частных случаях.
Если один (или оба) корня квадратного уравнения целые, то полезным навыком становится разложение на множители «в уме», с помощью теоремы Виета.
Навык этот не простой, и если у вас сразу не получится, не расстраивайтесь.
Рассмотрим следующий трёхчлен: $x^2+8x+15$
b = 8, c = 15
Если корни трёхчлена существуют, то их произведение равно 15.
Прикинем «в уме» соответствующие пары натуральных чисел:
(1;15),(3;5)
В трёхчлене $c gt 0$, значит корни одного знака, и в построении b участвует сумма этих корней. Из пары (1;15) сумма 8 не выходит, а вот из пары (3;5) – получается.
Для выбранной пары (3;5) запишем разложение, пока без знаков:
$$ (x…3)(x…5) = x^2+8x+15 $$
Теперь видно, что знаки в скобках – два плюса:
$$ (x+3)(x+5) = x^2+8x+15 $$
Разложение найдено.
Рассмотрим другой трёхчлен: $x^2+2x-35$
b = 2, c = -35
Пары натуральных чисел, дающие произведение 35:
(1;35),(5;7)
В трёхчлене $c lt 0$, значит корни разных знаков, и в построении b участвует разность этих корней. Из пары (1;35) разность 2 не выходит, а вот из пары (5;7) – получается.
Для выбранной пары (5;7) запишем разложение, пока без знаков:
$$ (x…5)(x…7) = x^2+2x-35 $$
Теперь видно, что 7 должно быть с плюсом, а 5 – с минусом:
$$ (x-5)(x+7) = x^2+2x-35 $$
Разложение найдено.
Обобщим алгоритм разложения по теореме Виета.
На входе: приведенный квадратный трёхчлен $x^2+bx+c$
Задача: разложить трёхчлен на множители при гипотезе, что корни – целочисленные
Шаг 1. Записать все пары натуральных чисел (m;n), дающих в произведении c.
Шаг 2. Если $c gt 0$, то из всех пар выбрать ту, сумма которой даёт b.
Если $c lt 0$, то из всех пар выбрать ту, разность которой даёт b.
Если выбрать пару не удаётся, данный алгоритм не подходит, и нужно приступить к разложению с помощью дискриминанта.
Шаг 3. Для выбранной пары записать разложение без знаков в виде:
$$ (x…m)(x…n) = x^2+bx+c $$
Сопоставляя левую и правую части, окончательно расставить знаки в скобках.
Шаг 4. Работа завершена.
Внимание!
Предложенный алгоритм позволяет не только раскладывать на линейные множители трёхчлены, но и находить их корни, т.е. решать соответствующие квадратные уравнения.
Не забывайте менять знаки при записи решений уравнения!
Например:
Решаем $x^2+8x+15 = 0$. Получаем (x+3)(x+5) = 0. Корни $x_1 = -3, x_2 = -5$.
Решаем $x^2+2x-35 = 0$. Получаем (x-5)(x+7) = 0. Корни $x_1 = 5, x_2 = -7$.
При некотором опыте, можно наловчиться раскладывать не только приведенные трёхчлены, например:
$$ 5x^2-14x-3 = (5x+1)(x-3), 3x^2+13x-10 = (3x-2)(x+5), $$
$$ 6x^2+7x-3 = (3x-1)(2x+3) $$
В этих случаях алгоритм усложняется за счёт дополнительных вариантов расстановки коэффициентов при переменной в скобках.
Примеры
Пример 1. Разложите квадратный трёхчлен с помощью дискриминанта:
$а) 2x^2+7x-4$
$ D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2 $
$ x = frac{-7 pm 9}{4} = left[ begin{array}{cc} x_1 = -4 \ x_2 = frac{1}{2} end{array} right. $
Получаем: $2x^2+7x-4 = 2(x+4) left(x- frac{1}{2} right)$
Можно также записать: $2x^2+7x-4 = (x+4)(2x-1)$
$б) 3x^2+20x-7$
$ D = 20^2-4 cdot 3 cdot (-7) = 400+84 = 484 = 22^2 $
$x = frac{-20 pm 22}{6} = left[ begin{array}{cc} x_1 = -7 \ x_2 = frac{1}{3} end{array} right.$
Получаем: $3x^2+20x-7 = 3(x+7) left(x-frac{1}{3} right)$
Можно также записать: $3x^2+20x-7 = (x+7)(3x-1)$
$в) 4x^2-19x-5$
$D = 19^2-4 cdot 4 cdot (-5) = 361+80 = 441 = 21^2$
$ x = frac{19 pm 21}{8} = left[ begin{array}{cc} x_1 = -frac{1}{4} \ x_2 = 5 end{array} right.$
Получаем: $4x^2-19x-5 = 4 left(x+ frac{1}{4} right)(x-5)$
Можно также записать: $4x^2-19x-5 = (4x+1)(x-5)$
$г*) x^2- sqrt{2}x+ frac{1}{2}$
$ D = (sqrt{2})^2-4 cdot frac{1}{2} = 2-2 = 0, x = frac{sqrt{2}}{2} $
Получаем: $x^2-sqrt{2} x+ frac{1}{2} = left(x- frac{sqrt{2}}{2} right)^2 $
Пример 2*. Разложите трёхчлены на множители подбором по теореме Виета:
$а) x^2+7x+12$
Пары множителей: (1;12),(2;6),(3;4)
$c = 12 gt 0 Rightarrow$ выбираем из пар ту, что в сумме дает b = 7. Это пара (3;4).
Записываем разложение без знаков: $(x…3)(x…4) = x^2+7x+12$
Расставляем знаки, результат: $x^2+7x+12 = (x+3)(x+4)$
$б) x^2+3x-18$
Пары множителей: (1;18),(2;9),(3;6)
$c = -18 lt 0 Rightarrow$ выбираем из пар ту, разность которой дает b = 3. Это пара (3;6).
Записываем разложение без знаков: $(x…3)(x…6) = x^2+3x-18$
Расставляем знаки, результат: $x^2+3x-18 = (x-3)(x+6)$
в) x+4x-77
Пары множителей: (1;77),(7;11)
$c = -18 lt 0 Rightarrow$ выбираем из пар ту, разность которой дает b=4. Это пара (7;11).
Записываем разложение без знаков: $(x…7)(x…11) = x^2+4x-77$
Расставляем знаки, результат: $x^2+4x-77 = (x-7)(x+11)$
$г*) 2x^2-x-3$
Одна пара множителей (1;3)
Возможные разложения с коэффициентом:
$$ (2x…1)(x…3) = 2x^2-x-3, (2x…3)(x…1) = 2x^2-x-3 $$
$c = -3 lt 0$, в скобках разные знаки.
Перебираем четыре возможных варианта и получаем:
$$2x^2-x-3 = (2x+3)(x-1) = 2 left(x+ frac{3}{2} right)(x-1)$$
Пример 3. Сократите дробь.
Разложение на множители проводим по формулам сокращенного умножения, с помощью дискриминанта или по теореме Виета.
а) $$ frac{x^2-16}{x^2+11x+28} = frac{(x-4)(x+4)}{(x+4)(x+7)} = frac{x-4}{x+7}$$
б) $$ frac{x^2-2x-15}{x^2-10x+25} = frac{(x-5)(x+3)}{(x-5)^2} = frac{x+3}{x-5}$$
в) $$ frac{3y^2-5y+2}{3y^2-y-2} = frac{(3y-2)(y-1)}{(3y+2)(y-1)} = frac{3y-2}{3y+2}$$
г)$$ frac{2y^2-3y+1}{3y^2-4y+1} = frac{(2y-1)(y-1)}{(3y-1)(y-1)} = frac{2y-1}{3y-1}$$
Пример 4. Упростите выражение:
$$ frac{x-16}{(x+2)^2} ∶ left(frac{3x+11}{(3x^2+17x+22)} – frac{2}{x+2} right) = frac{x-16}{(x+2)^2} ∶ left(frac{3x+11}{(3x+11)(x+2)} – frac{2}{x+2} right) = $$
$$ = frac{x-16}{(x+2)^2} ∶ left(frac{1}{x+2} – frac{2}{x+2}right) = frac{x-16}{(x+2)^2} ∶ left(-frac{1}{x+2}right) = -frac{(x-16)(x+2)}{(x+2)^2} = $$
$$ =-frac{x-16}{x+2} = frac{16-x}{x+2}$$