Как найти корень однозначного

#хакнем_математика 👈 рубрика, содержащая интересный, познавательный контент по математике как для школьников, так и для взрослых 🥳

Авторские права на изображение принадлежат медиагруппе "Хакнем" и защищены товарным знаком ®️
Авторские права на изображение принадлежат медиагруппе “Хакнем” и защищены товарным знаком ®️

УНИВЕРСАЛЬНЫЕ СПОСОБЫ (ПРИЁМЫ) ИЗВЛЕЧЕНИЯ КВАДРАТНОГО КОРНЯ

ЧАСТЬ II (часть I по ссылке)

Здравствуйте, уважаемые читатели канала Хакнем Школа!

Прежде чем перейти к рассмотрению универсальных способов (приёмов) извлечения квадратного корня из любого неотрицательного рационального числа, к слову сказать, весьма трудоёмких, необходимо разобраться со следующей теоремой, утверждение которой будет нами широко использоваться.

ТЕОРЕМА. Если a > b >0 , то a >√ b .

ДОКАЗАТЕЛЬСТВО.

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Из (1) и (2) следует (√ a – √ b )×(√ a + √ b ) > 0 . (3)

Из неравенств a >0 и b >0 по определению квадратного корня имеем a >0 и b >0 , но тогда a + √ b > 0 . (4)

Произведение двух множителей положительно тогда и только тогда, когда либо оба множителя больше 0, либо оба множителя меньше 0.

Из (1) и (4) следует, что a – √ b > 0 ó √ a > √ b , что и требовалось доказать.

Приступим к рассмотрению приёмов непосредственного извлечения квадратного корня из натуральных чисел. Прежде всего обратимся к хорошо нам известному приёму разложения натурального числа на множители, который основан на признаках делимости, которые можно при необходимости повторить по статье «Признаки делимости чисел: где мы их применяем в жизни», автор #ирина_чудневцева .

СПОСОБ I

ЗАДАЧА 1. Вычислить √91728.

РЕШЕНИЕ. Под знаком радикала стоит пятизначное число, которого нет в четырёхзначных таблицах квадратов, и нельзя использовать калькулятор. В этом случае нам поможет разложение этого числа на простые множители. Получим:

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Поскольку квадратный корень произведения равен произведению квадратных корней сомножителей, то

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Если под знаком корня стоит десятичная дробь, то её следует представить в виде произведения целого числа, убрав запятую, и десятичной дроби с числителем, равным единице, и числом знаков после запятой, равным числу знаков после запятой в заданной дроби, при этом число этих знаков должно быть чётным, например:

√917,28=√(91728×0,01)=√91728 × √0,01=84√13 × 0,1=8,4√13.

Прежде чем перейти к следующему способу непосредственного вычисления квадратного корня необходимо рассмотреть следующую лемму:

ЛЕММА (об опорных квадратах).

Пусть нам известен квадрат одного из двух последовательных натуральных чисел m и n , таких, что n = m +1 или, что то же, m = n 1 .

В этом случае становятся верными два тождества:

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

ДОКАЗАТЕЛЬСТВО.

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Отдельный интерес представляет случай использования этих тождеств, когда n и т дроби, отличающиеся друг от друга на единицу самого младшего разряда, например:

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Следующий способ, опирающийся на метод подбора каждой цифры результата путём последовательных приближений с использованием средних арифметических значений, позволяет извлекать квадратный корень с наперёд заданной точностью.

СПОСОБ II

При решении предыдущей задачи осталась одна неясность: чему же равен √13 ? Попытаемся ответить на этот вопрос. Восьмиклассники уже знают, что значения квадратных корней из чисел, не являющихся точными квадратами, относятся к так называемым иррациональным числам , которые могут быть представлены в виде бесконечных непериодических десятичных дробей . Поэтому в различного рода расчётах их представляют округлёнными до конкретного разряда числами.

ЗАДАЧА 2. Найти значение √13 с точностью до сотых.

РЕШЕНИЕ. Рассмотренная в начале статьи теорема позволяет опереться на следующее неравенство:

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Среднее арифметическое чисел 0 и 1, между которыми может находится значение цифры, стоящей в разряде десятых искомого значения корня квадратного, равно числу 5 , и это число является первым кандидатом на то, чтобы соответствующая ему цифра была проверена соответствующей подстановкой. Однако можно заметить, что число 13 находится дальше от числа 9 нежели от числа 16 . Поэтому проверку можно начать с цифры 6, и заодно покажем интересный способ вычисления квадратов таких чисел с помощью так называемых опорных квадратов.

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Подбор цифры в разряд сотых начнём с квадрата числа 3,61:

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

С целью получения наименьшей погрешности необходимо найти цифру для разряда тысячных для последующего округления…

Выберем цифру 5 из середины интервала (0, 9) :

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

Для разряда тысячных необходимо ещё проверить цифру 6 :

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

СПОСОБ III

Этот способ, значительно облегчающий подбор цифр-кандидатов, является удачной формализацией второго способа.

ЗАДАЧА III. Найти значение √13 с точностью до сотых.

РЕШЕНИЕ. Поскольку квадрат однозначного числа равен однозначному или двузначному числу, то натуральное число надо разбить на грани по две цифры в каждой, начиная с разряда единиц а десятичную дробь — от запятой, причём последнюю грань при необходимости следует дополнить цифрой 0 .

Предварительный результат будет содержать три цифры после запятой — значит, десятичная часть числа, из которого будем извлекать квадратный корень будет содержать три грани:

13,00 | 00 | 00.

Ищем наибольшее число, квадрат которого не превосходит числа 13, стоящего в первой грани. Этим числом будет 3. Записываем его в ответ — это будет первая цифра результата. Поскольку следующая грань находится после запятой, то ставим запятую в ответ.

Возводим число 3 в квадрат и результат вычитаем из первой грани.

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов

К найденной разности приписываем справа вторую грань и получаем число 400 . Слева от этого числа ставим вертикальную чёрточку на две строчки и слева от неё записываем удвоенную цифру полученного результата (цифру 6 ), оставляя между этой цифрой и вертикальной чертой место для ещё одной цифры, обозначенной литерой а .

Эту цифру подбираем таким образом, чтобы произведение двузначного числа на это число 6а× a было наибольшим, но не больше числа 400 справа от вертикальной черты. Таким числом будет число 6 .

Вычтем (столбиком) произведение 66×6=396 из числа 400 и запишем разность под горизонтальной чертой, проставив слева от неё вертикальную черту на две строчки. Слева от этой черты запишем сумму 66+6=72, оставив место для ещё одной цифры между полученной суммой и вертикальной чертой.

Повторяем действия описанные в предыдущих двух абзацах пока не получим цифры в разряде тысячных результата. В итоге мы получим следующую запись:

Вычисление √13.
Вычисление √13.

Осталось провести округление: √13 = 3,603…≈3,61.

Попробуйте самостоятельно найти √2374,6129 и сверить свои действия с приведённым образцом.

Вычисление √2374,6129
Вычисление √2374,6129

Помните, что дорогу осилит идущий! Желаю успехов и не только в учёбе!

Продолжение следует…

Не забудьте подписаться на канал Хакнем Школа и хэштег #хакнем_математика

Автор: #себихов_александр 71 год, много лет проработал конструктором-технологом микроэлектронных приборов и узлов в одном из НИИ г. Саратова, затем преподавателем математики и физики.

Читайте наш канал в телеграм – по этой ссылке

Другие статьи автора:

Способы, позволяющие вычислить квадратный корень из любого числа без таблиц и калькуляторов


Загрузить PDF


Загрузить PDF

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

  1. Изображение с названием Calculate a Square Root by Hand Step 1

    1

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число.[1]
    Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  2. Изображение с названием Calculate a Square Root by Hand Step 2

    2

    Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b.[2]
    Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  3. Изображение с названием Calculate a Square Root by Hand Step 3

    3

    Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • √147
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  4. Изображение с названием Calculate a Square Root by Hand Step 4

    4

    Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 – мы были правы.
  5. Изображение с названием Calculate a Square Root by Hand Step 5

    5

    Еще один способ – разложите подкоренное число на простые множители. Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • √88
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Реклама

При помощи деления в столбик

  1. Изображение с названием Calculate a Square Root by Hand Step 6

    1

    Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как “7 95 20 78 91 82, 47 89 70”.

    • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде “7 80, 14”. Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
  2. Изображение с названием Calculate a Square Root by Hand Step 7

    2

    Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

    • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 22 < 7 и n = 2. Напишите 2 сверху справа – это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
  3. Изображение с названием Calculate a Square Root by Hand Step 8

    3

    Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

    • В нашем примере вычтите 4 из 7 и получите 3.
  4. Изображение с названием Calculate a Square Root by Hand Step 9

    4

    Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере второй парой чисел является “80”. Запишите “80” после 3. Затем, удвоенное число сверху справа дает 4. Запишите “4_×_=” снизу справа.
  5. Изображение с названием Calculate a Square Root by Hand Step 10

    5

    Заполните прочерки справа. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 – слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа – это вторая цифра в искомом квадратном корне числа 780,14.
  6. Изображение с названием Calculate a Square Root by Hand Step 11

    6

    Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

    • В нашем примере, вычтите 329 из 380, что равно 51.
  7. Изображение с названием Calculate a Square Root by Hand Step 12

    7

    Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите “54_×_=” снизу справа.
  8. Изображение с названием Calculate a Square Root by Hand Step 13

    8

    Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 – 4941 = 173.
  9. Изображение с названием Calculate a Square Root by Hand Step 14

    9

    Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Реклама

Понимание процесса

  1. Изображение с названием Calculate a Square Root by Hand Step 15

    1

    Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

  2. Изображение с названием Calculate a Square Root by Hand Step 16

    2

    Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C – третьей и так далее.

  3. Изображение с названием Calculate a Square Root by Hand Step 17

    3

    Задайте букву для каждой пары первых цифр. Обозначим через Sa первую пару цифр в значении S, через Sb – вторую пару цифр и так далее.

  4. Изображение с названием Calculate a Square Root by Hand Step 18

    4

    Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

  5. Изображение с названием Calculate a Square Root by Hand Step 19

    5

    Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен Sa (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

    • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
  6. Изображение с названием Calculate a Square Root by Hand Step 20

    6

    Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C – цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

    • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B². Запомните, что 10A+B – это такое число, у которого цифра B означает единицы, а цифра A – десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² – это площадь всего квадрата, 100A² – площадь большого внутреннего квадрата, – площадь малого внутреннего квадрата, 10A×B – площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.
  7. Изображение с названием Calculate a Square Root by Hand Step 21

    7

    Вычтите A² из Sa. Для учета множителя 100 снесите одну пару цифр (Sb) из S: вам нужно, чтобы “SaSb” было равным общей площади квадрата, и из нее вычтите 100A² (площадь большого квадрата). В результате получите число N1, стоящее слева в шаге 4 (N = 380 в нашем примере). N1 = 2×10A×B + B² (площадь двух прямоугольников плюс площадь малого квадрата).

  8. Изображение с названием Calculate a Square Root by Hand Step 22

    8

    Выражение N1 = 2×10A×B + B² можно записать как N1 = (2×10A + B) × B. В нашем примере вам известно значение N1 (=380) и A(=2) и необходимо вычислить B. Скорее всего, B не является целым числом, поэтому необходимо найти наибольшее целое B, удовлетворяющее условию: (2×10A + B) × B ≤ N1. При этом B+1 будет слишком большим, поэтому N1 < (2×10A + (B+1)) × (B+1).

  9. Изображение с названием Calculate a Square Root by Hand Step 23

    9

    Решите уравнение. Для решения умножьте A на 2, переведите результат в десятки (что эквивалентно умножению на 10), поместите B в положение единиц, и умножьте это число на B. Это число (2×10A + B) × B и это выражение абсолютно идентичны записи “N_×_=” (где N=2×A) сверху справа в шаге 4. А в шаге 5 вы находите наибольшее целое B, которое ставится на место прочерков и соответствует неравенству: (2×10A + B) × B ≤ N1.

  10. Изображение с названием Calculate a Square Root by Hand Step 24

    10

    Вычтите площадь (2×10A + B) × B из общей площади (слева в шаге 6). Так вы получите площадь S-(10A+B)², которая еще не учитывалась (и которая поможет вычислить следующие цифры).

  11. Изображение с названием Calculate a Square Root by Hand Step 25

    11

    Для вычисления следующей цифры C повторите процесс. Слева снесите следующую пару цифр (Sc) из S для получения N2 и найдите наибольшее C, удовлетворяющее условию (2×10×(10A+B)+C) × C ≤ N2 (что эквивалентно двукратному написанию числа из пары цифр “A B” с соответствующим “_×_=”, и нахождению наибольшего числа, которое можно подставить вместо прочерков).

    Реклама

Советы

  • Перемещение десятичного разделителя при увеличении числа на 2 цифры (множитель 100), перемещает десятичный разделить на одну цифру в значении квадратного корня этого числа (множитель 10).
  • В нашем примере, 1,73 может считаться остатком: 780,14 = 27,9² + 1,73.
  • Данный метод верен для любых чисел.
  • Записывайте процесс вычисления в том виде, который вам наиболее удобен. Например, некоторые записывают результат над исходным числом.
  • Альтернативный метод с использованием непрерывных дробей включает формулу: √z = √(x^2+y) = x + y/(2x + y/(2x + y/(2x + …))). Например, для вычисления квадратного корня из 780,14, целым числом, квадрат которого близок к 780,14 будет число 28, поэтому z=780,14, x=28, y=-3,86. Подставляя эти значения в уравнение и решая его в упрощении до х+у/(2x), уже в младших членах получаем результат 78207/2800 или около 27,931(1), а в следующих членах 4374188/156607 или около 27,930986(5). Решение каждого последующего члена добавляет около 3 цифр к дробной доли по сравнению с предыдущем членом.

Реклама

Предупреждения

  • Не забудьте разделить число на пары, начиная с дробной части числа. Например, разделяя 79520789182,47897 как “79 52 07 89 18 2,4 78 97″, вы получите бессмысленное число.

Реклама

Похожие статьи

Источники

Об этой статье

Эту страницу просматривали 925 121 раз.

Была ли эта статья полезной?

Это статья об извлечении корней. См. также Корень уравнения и Корень многочлена.

Nuvola apps edu mathematics blue-p.svg

Корень n-й степени из числа a определяется[1] как такое число b, что {displaystyle b^{n}=a.} Здесь n — натуральное число, называемое показателем корня (или степенью корня); как правило, оно больше или равно 2, потому что случай n=1 не представляет интереса.

Обозначение: b={sqrt[{n}]{a}}, символ (знак корня) в правой части называется радикалом. Число a (подкоренное выражение) чаще всего вещественное или комплексное, но существуют и обобщения для других математических объектов, например, вычетов, матриц и операторов, см. ниже #Вариации и обобщения.

Примеры для вещественных чисел:

Как видно из первого примера, у вещественного корня чётной степени могут быть два значения (положительное и отрицательное), и это затрудняет работу с такими корнями, не позволяя использовать их в арифметических вычислениях. Чтобы обеспечить однозначность, вводится понятие арифметического корня[⇨] (из неотрицательного вещественного числа), значение которого всегда неотрицательно, в первом примере это число 3. Кроме того, принято соглашение, по которому знак корня чётной степени из вещественного числа всегда обозначает арифметический корень[2][3]: {displaystyle {sqrt[{2}]{9}}=3.} Если требуется учесть двузначность корня, перед радикалом ставится знак плюс-минус[2]; например, так делается в формуле решения квадратного уравнения ax^{2}+bx+c=0:

{displaystyle x_{1,2}={frac {-bpm {sqrt {b^{2}-4ac}}}{2a}}}

Вещественные корни чётной степени из отрицательных чисел не существуют. Из комплексного числа всегда можно извлечь корень любой степени, но результат определён неоднозначно — комплексный корень n-й степени из ненулевого числа имеет n различных значений (см. #Корни из комплексных чисел).

Операция извлечения корня и алгоритмы её реализации появились в глубокой древности в связи с практическими потребностями геометрии и астрономии, см. #История.

Определение и связанные понятия[править | править код]

Кроме приведенного выше, можно дать два равносильных определения корня[4]:

График значений квадратного корня: каждому значению x, кроме нуля, соответствуют два значения корня (y), различающиеся знаком

Операция вычисления {sqrt[{n}]{a}} называется «извлечением корня n-й степени» из числа a. Это одна из двух операций, обратных по отношению к возведению в степень[5], а именно — нахождение основания степени b по известному показателю n и результату возведения в степень a=b^{n}. Вторая обратная операция, логарифмирование, находит показатель степени по известным основанию и результату.

Корни второй и третьей степени употребляются особенно часто и поэтому имеют специальные названия[5].

Корни из вещественных чисел[править | править код]

В данном разделе всюду n — натуральное число, a,b — вещественные числа. Корень n-й степени из вещественного числа a, в зависимости от чётности n и знака a, может иметь от 0 до 2 вещественных значений.

Общие свойства[править | править код]

  • Корень нечётной степени из положительного числа — положительное число, однозначно определенное.
Например, {sqrt[{3}]{125}}=5, {sqrt[{5}]{32}}=2, {sqrt[{15}]{1}}=1
  • Корень нечётной степени из отрицательного числа — отрицательное число, однозначно определенное.
Например, {sqrt[{3}]{-8}}=-2, {sqrt[{5}]{-243}}=-3, {sqrt[{7}]{-1}}=-1
  • Корень чётной степени из положительного числа имеет два значения с противоположными знаками, но равными по модулю.
Например, {displaystyle pm {sqrt {4}}=pm 2,  pm {sqrt[{4}]{81}}=pm 3,  pm {sqrt[{10}]{1024}}=pm 2}
  • Корень чётной степени из отрицательного числа не существует в области вещественных чисел, поскольку при возведении любого вещественного числа в степень с чётным показателем результатом будет неотрицательное число. Ниже будет показано, как извлекать такие корни в более широкой системе — множестве комплексных чисел (тогда значениями корня будут n комплексных чисел).
  • Корень любой натуральной степени из нуля — ноль.

{displaystyle {sqrt[{n}]{0}}=0}

Предостережение[править | править код]

Как сказано выше: «Корень чётной степени из отрицательного числа не существует в области вещественных чисел». При этом в области комплексных чисел такой корень существует. Поэтому следует всегда учитывать, в какой числовой системе (вещественных или комплексных чисел) мы извлекаем корень.

  1. Пример. В области вещественных чисел, квадратный корень из -9 не существует.
  2. Пример. В области комплексных чисел, квадратный корень из -9 равен {displaystyle pm 3i.}

Арифметический корень[править | править код]

График функции арифметического квадратного корня

Выше уже говорилось, что корни чётной степени определены, вообще говоря, неоднозначно, и этот факт создаёт неудобства при их использовании. Поэтому было введено практически важное ограничение этого понятия[6].

Арифметический корень n-й степени из неотрицательного вещественного числа a — это неотрицательное число b, для которого {displaystyle b^{n}=a.} Обозначается арифметический корень знаком радикала.

Таким образом, арифметический корень, в отличие от корня общего вида (алгебраического), определяется только для неотрицательных вещественных чисел, а его значение всегда существует, однозначно[7] и неотрицательно. Например, квадратный корень из числа 4 имеет два значения: 2 и -2, из них арифметическим является первое.

Алгебраические свойства[править | править код]

Приведённые ниже формулы верны, прежде всего, для арифметических корней любой степени (кроме особо оговоренных случаев). Они справедливы также для корней нечётной степени, у которых допускаются и отрицательные подкоренные выражения[8].

Корень из произведения равен произведению корней из сомножителей:

  • {color {blue}{sqrt[{color {black}n}]{color {black}{ab}}}}={color {blue}{sqrt[{color {black}n}]{color {black}{a}}}}{color {blue}{sqrt[{color {black}n}]{color {black}{b}}}}

Аналогично для деления:

  • {color {blue}{sqrt[{color {black}n}]{color {black}{frac {a}{b}}}}}={frac {color {blue}{sqrt[{color {black}n}]{color {black}{a}}}}{color {blue}{sqrt[{color {black}n}]{color {black}{b}}}}},;bneq 0

Следующее равенство есть определение возведения в дробную степень[10]:

  • a^{m/n}={color {blue}{sqrt[{color {black}n}]{color {black}{a^{m}}}}}=left({color {blue}{sqrt[{color {black}n}]{color {black}{a}}}}right)^{m}=left(a^{1/n}right)^{m}

Величина корня не изменится, если его показатель и степень подкоренного выражения разделить на одно и то же число (множитель показателя степени и показатель степени подкоренного выражения):

Для корней нечётной степени укажем дополнительное свойство:

  • {sqrt[{n}]{-a}}=-{sqrt[{n}]{a}}

Извлечение корня и возведение в дробную степень[править | править код]

Операция возведения в степень первоначально была введена как сокращённая запись операции умножения натуральных чисел: {displaystyle m^{n}={color {Gray}underbrace {color {Black}mcdot mcdot dots cdot m} _{color {Black}n}}}. Следующим шагом было определение возведения в произвольную целую, в том числе отрицательную, степень: {displaystyle m^{-n}={frac {1}{m^{n}}}.}

Операция извлечения арифметического корня позволяет определить возведение положительного числа в любую рациональную (дробную) степень[10]:

a^{frac {m}{n}}={color {blue}{sqrt[{color {black}n}]{color {black}{a^{m}}}}},     a>0

При этом числитель m дроби {frac {m}{n}} может иметь знак. Свойства расширенной операции в основном аналогичны возведению в целую степень.

Это определение означает, что извлечение корня и обратное к нему возведение в степень фактически объединяются в одну алгебраическую операцию. В частности:

{displaystyle {color {blue}{sqrt[{color {black}n}]{color {black}{a}}}}=a^{frac {1}{n}}}

Попытки возведения в рациональную степень отрицательных чисел могут привести к ошибкам, поскольку значение алгебраического корня неоднозначно, а область значений арифметического корня ограничена неотрицательными числами. Пример возможной ошибки:

-1=(-1)^{2 cdot  {frac {1}{2}}}=left({(-1)^{2}}right)^{frac {1}{2}}=1^{frac {1}{2}}={color {blue}{sqrt {color {black}1}}}=1

Функция корня[править | править код]

  • Графики функций корня
  • Функции корня: — арифметический, чётные степени 2, 4, 6 — общий, нечётные степени 3, 5, 7

    Функции корня:
    — арифметический, чётные степени 2, 4, 6
    — общий, нечётные степени 3, 5, 7

Если рассматривать подкоренное выражение как переменную, мы получим функцию корня n-й степени: y={sqrt[{n}]{x}}. Функция корня относится к категории алгебраических функций. График любой функции корня проходит через начало координат и точку (1; 1).

Как сказано выше, для корня чётной степени, чтобы обеспечить однозначность функции, корень должен быть арифметическим, так что аргумент x неотрицателен. Функция корня нечётной степени однозначна и существует для любого вещественного значения аргумента.

Тип функции корня Область определения Область значений Другие свойства
Чётной степени [0; +infty ) [0; +infty ) Функция выпукла вверх на всей области определения
Нечётной степени (-infty ;+infty ) (-infty ;+infty ) Функция нечётна

Для любой степени функция корня строго возрастает, непрерывна всюду внутри своей области определения. Неограниченно дифференцируема всюду, кроме начала координат, где производная обращается в бесконечность[11] [12]. Производная определяется по формуле[13]:

{frac {d}{dx}}{sqrt[{n}]{x}}={frac {1}{n{sqrt[{n}]{x^{n-1}}}}}   . В частности,   {frac {d}{dx}}{sqrt {x}}={frac {1}{2{sqrt {x}}}}.

Функция неограниченно интегрируема во всей области определения. Неопределенный интеграл ищется по формуле:

int {sqrt[{n}]{x}};dx={frac {sqrt[{n}]{x^{n+1}}}{1+{frac {1}{n}}}}+C   . В частности,   int {sqrt {x}};dx={frac {2{sqrt {x^{3}}}}{3}}+C   , где   C — произвольная постоянная.

Неограниченная дифференцируемость и интегрируемость функции

Правые части формул являются алгебраическими выражениями, которые существуют всегда, при натуральном k. Следовательно и левые тоже.

Предельные соотношения[править | править код]

Приведём несколько полезных пределов, содержащих корни[16].

lim _{nto infty }{sqrt[{n}]{n}}=lim _{nto infty }{sqrt[{n}]{ln n}}=1
lim _{nto infty }nleft({sqrt[{n}]{x}}-1right)=lim _{nto infty }nleft(1-{frac {1}{sqrt[{n}]{x}}}right)=ln x
lim _{xto 0}{frac {{sqrt[{n}]{(x+1)^{m}}}-1}{x}}={frac {m}{n}}
lim _{nto infty }left({frac {{sqrt[{n}]{a}}+{sqrt[{n}]{b}}}{2}}right)^{n}={sqrt {ab}}

Практическое вычисление корней[править | править код]

Функция вычисления квадратных и кубических корней предусмотрена во многих калькуляторах; например, калькулятор Windows показывает соответствующие кнопки в режиме «Инженерный» (Научный). Если на электронном калькуляторе есть клавиша возведения в степень: y^{x}, то для извлечения корня из текущего числа надо нажать следующие клавиши[17].

y^{x}
Набрать показатель корня
Нажать клавишу 1/x
Нажать клавишу =

Для расчёта вручную можно использовать быстро сходящийся метод, изложенный в статье «Алгоритм нахождения корня n-ной степени». Для степеней выше третьей можно использовать логарифмическое тождество:

{displaystyle {sqrt[{n}]{x}}=a^{frac {log _{a}(x)}{n}}=e^{frac {ln(x)}{n}}}

Для извлечения корня надо найти логарифм подкоренного выражения, разделить на степень корня и найти антилогарифм результата.

Корни из комплексных чисел[править | править код]

Зарождение понятия комплексного числа исторически было связано с желанием «легализовать» квадратные корни из отрицательных чисел. Как постепенно выяснилось, комплексные числа обладают богатыми алгебраическими и аналитическими свойствами; в частности, извлечение корней из них всегда возможно, хотя и неоднозначно. Для корней в комплексной области знак радикала обычно либо не используется, либо обозначает не функцию корня, а множество всех корней; в последнем случае, во избежание ошибок, знак радикала не должен использоваться в арифметических операциях. Пример возможной ошибки:

{displaystyle -1=({sqrt {-1}})^{2}={sqrt {(-1)^{2}}}={sqrt {1}}=1} (что, конечно, неверно)

Ошибка возникла из-за того, что неарифметический квадратный корень является многозначной функцией, и его нельзя использовать в арифметических действиях.

Способы нахождения[править | править код]

Запишем комплексное число z в тригонометрической форме:

z=rleft(cos {varphi }+isin {varphi }right).

Тогда корни n-й степени из z определяются формулой Муавра (тригонометрическая форма)[18]:

{sqrt[{n}]{z}}={color {blue}{sqrt[{color {black}n}]{color {black}{r}}}}left(cos {frac {varphi +2pi k}{n}}+isin {frac {varphi +2pi k}{n}}right),;k=0,1,dots ,n-1

или в показательной форме:

z=re^{ivarphi }
{sqrt[{n}]{z}}={color {blue}{sqrt[{color {black}n}]{color {black}{r}}}}e^{left(i{frac {varphi +2pi k}{n}}right)},;k=0,1,dots ,n-1

Корень степени n из ненулевого комплексного числа имеет n значений (это следствие основной теоремы алгебры), и все они различны. Значение корня, получаемое при k=0, часто называется главным.

Поскольку для всех значений корня величина модуля одинакова (он определяется как арифметический корень из модуля изначального комплексного числа), а меняется лишь его аргумент, все n значений корня располагаются на комплексной плоскости на окружности радиуса {color {blue}{sqrt[{color {black}n}]{color {black}{r}}}} c центром в начале координат. Корни делят эту окружность на n равных частей.

Примеры[править | править код]

Найдём {sqrt {-4}}. Поскольку -4=4(cos {pi }+isin {pi }), по формуле получаем:

{sqrt {-4}}=2left(cos {frac {pi +2pi k}{2}}+isin {frac {pi +2pi k}{2}}right),;k=0,1

При k=0 получим первый корень 2i, при k=1 получим второй корень (-2i).

Другой пример: найдём {sqrt[{4}]{-16}}. Представим подкоренное выражение в тригонометрической форме:

-16=16 (cos(pi +2kpi )+isin(pi +2kpi ))

По формуле Муавра получаем:

z_{k}={sqrt[{4}]{-16}}={sqrt[{4}]{16}}left(cos {frac {pi +2kpi }{4}}+isin {frac {pi +2kpi }{4}}right)

В итоге имеем четыре значения корня[19]:

z_{0}=2left(cos {frac {pi }{4}}+isin {frac {pi }{4}}right)={sqrt {2}} (1+i)
z_{1}=2left(cos {frac {3pi }{4}}+isin {frac {3pi }{4}}right)={sqrt {2}} (-1+i)
z_{2}=2left(cos {frac {5pi }{4}}+isin {frac {5pi }{4}}right)=-{sqrt {2}} (1+i)
z_{3}=2left(cos {frac {7pi }{4}}+isin {frac {7pi }{4}}right)={sqrt {2}} (1-i)

Можно записать сводный ответ в виде: {displaystyle {sqrt[{4}]{-16}}={sqrt {2}} (pm 1pm i)}

Комплексная функция корня и риманова поверхность[править | править код]

Рассмотрим комплексную функцию корня n-й степени: w={sqrt[{n}]{z}}. Согласно сказанному выше, эта функция является многозначной (точнее, n-значной) функцией, и это создаёт неудобства при её исследовании и применении. В комплексном анализе вместо рассмотрения многозначных функций на комплексной плоскости принято иное решение: рассматривать функцию как однозначную, но определённую не на плоскости, а на более сложном многообразии, которое называется римановой поверхностью[20].

  • Риманова поверхность для комплексного квадратного корня

    Риманова поверхность для комплексного квадратного корня

  • Риманова поверхность для комплексного корня 4-й степени

    Риманова поверхность для комплексного корня 4-й степени

Для комплексной функции корня n-й степени её риманова поверхность (см. рисунки) состоит из n ветвей (листов), связанных винтообразно, причём последний лист связан с первым. Эта поверхность непрерывна и односвязна. Один из листов содержит главные значения корня, получаемые как аналитическое продолжение вещественного корня с положительного луча вещественной оси.

Опишем для простоты комплексную функцию квадратного корня. Её риманова поверхность состоит из двух листов. Первый лист можно представить как комплексную плоскость, у которой вырезан положительный луч вещественной оси. Значения функции корня w на этом листе имеют вдвое меньший аргумент, чем z, и поэтому они заполняют верхнюю часть комплексной плоскости значений. На разрезе первый лист склеен со вторым, и функция непрерывно продолжается через разрез на второй лист, где её значения заполняют нижнюю часть комплексной плоскости значений. Оставшиеся свободными начало первого листа и конец второго тоже склеим, после чего полученная функция на римановой поверхности становится однозначной и всюду непрерывной[20].

Единственный нуль у функции (первого порядка) получается при z=0. Особые точки: z=0 и z=infty (точки разветвления бесконечного порядка)[20]. Понятие точки разветвления означает, что замкнутый контур в окрестности нуля неизбежно содержит переход с листа на лист.

В силу односвязности риманова поверхность корня является универсальной накрывающей[21] для комплексной плоскости без точки {displaystyle 0}.

Вариации и обобщения[править | править код]

Корень n-й степени из a есть решение уравнения x^n=a, и его в принципе можно определить всюду, где такое уравнение имеет смысл. Чаще всего рассматривают такие обобщения в алгебраических кольцах. Лучше всего исследованы обобщённые квадратные корни.

Если кольцо есть область целостности, то квадратных корней из ненулевого элемента может быть либо два, либо ни одного. В самом деле, если имеются два корня a,b, то {displaystyle a^{2}=b^{2},} откуда: {displaystyle (a-b)(a+b)=0}, то есть, в силу отсутствия делителей нуля, {displaystyle a=pm b}. В более общем случае, когда в кольце имеются делители нуля или оно некоммутативно, число корней может быть любым.

В теории чисел рассматривается конечное кольцо вычетов по модулю m: если сравнение {displaystyle x^{n}equiv a{pmod {m}}} имеет решение, то целое число a называется вычетом степени n (в противном случае — невычетом степени n). Решение x, если оно существует, является полным аналогом корня n-й степени из целого числа a. Чаще всего используются случаи[22]:

Корни для кватернионов имеют много общего с комплексными, но есть и существенные особенности. Квадратный кватернионный корень обычно имеет 2 значения, но если подкоренное выражение — отрицательное вещественное число, то значений бесконечно много. Например, квадратные корни из -1 образуют трёхмерную сферу, определяемую формулой[23]:

{ai+bj+ckmid a^{2}+b^{2}+c^{2}=1},.

Для кольца квадратных матриц доказано, что если матрица положительно определена, то положительно определённый квадратный корень из матрицы существует и единственен[24]. Для матриц других типов корней может быть сколько угодно (в том числе ни одного).

Квадратные корни вводятся также для функций[25], операторов[26] и других математических объектов.

История[править | править код]

Развитие понятия[править | править код]

Вавилонская табличка (около 1800—1600 г. до н. э.) с вычислением {sqrt {2}}approx 1+24/60+51/60^{2}+10/60^{3}
=1{,}41421296dots

Первые задачи, связанные с извлечением квадратного корня, обнаружены в трудах вавилонских математиков (о достижениях древнего Египта в этом отношении ничего не известно). Среди таких задач[27]:

  • Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника по известным двум другим сторонам.
  • Нахождение стороны квадрата, площадь которого задана.
  • Решение квадратных уравнений.

Вавилонские математики (II тысячелетие до н. э.) разработали для извлечения квадратного корня особый численный метод. Начальное приближение для {sqrt {a}} рассчитывалось исходя из ближайшего к корню (в меньшую сторону) натурального числа n. Представив подкоренное выражение в виде: a=n^{2}+r, получаем: {displaystyle x_{0}=n+{frac {r}{2n}}}, затем применялся итеративный процесс уточнения, соответствующий методу Ньютона[28]:

x_{n+1}={frac {1}{2}}~left(x_{n}+{frac {a}{x_{n}}}right)

Итерации в этом методе очень быстро сходятся. Для {sqrt {5}}, например, {displaystyle a=5;;n=2;;r=1; x_{0}={frac {9}{4}}=2{,}25,} и мы получаем последовательность приближений:

x_{1}={frac {161}{72}}=2{,}23611;;x_{2}={frac {51841}{23184}}=2{,}2360679779

В заключительном значении верны все цифры, кроме последней.

Аналогичные задачи и методы встречаются в древнекитайской «Математике в девяти книгах»[29]. Древние греки сделали важное открытие: {sqrt {2}} — иррациональное число. Детальное исследование, выполненное Теэтетом Афинским (IV век до н. э.), показало, что если корень из натурального числа не извлекается нацело, то его значение иррационально[30].

Греки сформулировали проблему удвоения куба, которая сводилась к построению кубического корня с помощью циркуля и линейки. Проблема оказалась неразрешимой. Численные алгоритмы извлечения кубического корня опубликовали Герон (в трактате «Метрика», I век н. э.) и индийский математик Ариабхата I (V век)[31].

Алгоритмы извлечения корней любой степени из целого числа, разработанные индийскими и исламскими математиками, были усовершенствованы в средневековой Европе. Николай Орем (XIV век) впервые истолковал[32] корень n-й степени как возведение в степень {frac {1}{n}}.

После появления формулы Кардано (XVI век) началось применение в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел[33]. Основы техники работы с комплексными числами разработал в XVI веке Рафаэль Бомбелли, который также предложил оригинальный метод вычисления корней (с помощью цепных дробей). Открытие формулы Муавра (1707) показало, что извлечение корня любой степени из комплексного числа всегда возможно и не приводит к новому типу чисел[34].

Комплексные корни произвольной степени в начале XIX века глубоко исследовал Гаусс, хотя первые результаты принадлежат Эйлеру[35]. Чрезвычайно важным открытием (Галуа) стало доказательство того факта, что не все алгебраические числа (корни многочленов) могут быть получены из натуральных с помощью четырёх действий арифметики и извлечения корня[36].

Этимология термина и происхождение символики[править | править код]

Термин корень имеет долгую и сложную историю. Извлечение квадратного корня древние греки понимали строго геометрически: как нахождение стороны квадрата по известной его площади. После перевода на санскрит греческое слово «сторона» превратилась в «мула» (основание). Слово «мула» имело также значение «корень», поэтому при переводе индийских сиддхант на арабский использовался термин «джизр» (корень растения). Впоследствии аналогичное по смыслу слово «radix» закрепилось в латинских переводах с арабского, а через них и в русской математической терминологии («корень», «радикал»)[37].

Средневековые математики (например, Кардано) обозначали квадратный корень[38] символом Rx, сокращение от слова «radix». Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов (то есть алгебраистов), в 1525 году[39]. Происходит этот символ от стилизованной первой буквы того же слова «radix». Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт (1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня.

Показатель степени появился в знаке корня благодаря Валлису и «Универсальной арифметике» Ньютона (XVIII век)[40].

См. также[править | править код]

  • Алгоритм нахождения корня n-ной степени
  • Возведение в степень
  • Квадратный корень
  • Корни из единицы
  • Кубический корень
  • Логарифм
  • Основная теорема алгебры
  • Степенная функция

Литература[править | править код]

  • Выгодский М. Я. Справочник по элементарной математике. — изд. 25-е. — М.: Наука, 1978. — ISBN 5-17-009554-6.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • История математики, в трёх томах / Под редакцией А. П. Юшкевича. — М.: Наука, 1970—1972.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд. — М.: Наука, 1970. — 720 с.
  • Мордкович А. Г. Алгебра и начала анализа. Учебник для 10—11 классов, часть 1. — изд. 4-е. — М.: Мнемозина, 2003. — 376 с.
  • Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.

Примечания[править | править код]

  1. Корень // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
  2. 1 2 Элементарная математика, 1976, с. 49.
  3. Корн Г., Корн Т. Справочник по математике, 1970, с. 33.
  4. Сканави М. И. Элементарная математика. П. 1.11. С. 49.
  5. 1 2 Выгодский М. Я. Справочник по элементарной математике, 1978, с. 64.
  6. Арифметический корень // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 1. Архивировано 13 ноября 2013 года.
  7. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Т. I, С. 35—36.
  8. Выгодский М. Я. Справочник по элементарной математике, 1978, с. 141—143.
  9. Алгебра и начала анализа. Учебник для 10—11 классов, под ред. А. Н. Колмогорова. М.: Просвещение, 2002, С. 209.
  10. 1 2 Выгодский М. Я. Справочник по элементарной математике, 1978, с. 183.
  11. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Т. I, С. 194, 198.
  12. Мордкович А. Г., 2003, с. 236—238.
  13. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Т. I, С. 215.
  14. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Т. I, С. 233, частный случай для mu ={frac {1}{n}}..
  15. Не путать с кратными интегралами. Их записи весьма похожи, но k-й интеграл является неопределённым, в то время как k-кратный интеграл — определённый.
  16. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 67, 131—132, 164, 166—167.
  17. Алгебра. 9 класс. Учебник для общеобразовательных учреждений / Под ред. С. А. Теляковского. — Изд. 18-е. — М.: Просвещение, 2011. — С. 53. — ISBN 978-5-09-025168-6.
  18. Корн Г., Корн Т. Справочник по математике, 1970, с. 36—37.
  19. Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — издание третье, стереотипное. — М.: Наука, 1976. — С. 68. — 591 с.
  20. 1 2 3 Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 96-99, 28—29.
  21. Болтянский В. Г., Ефремович В. А. Наглядная топология. — М.: Наука, 1982. — С. 112. — (Библиотечка Квант, выпуск 21). Архивировано 2 марта 2022 года.
  22. Виноградов И. М. Основы теории чисел. — М.Л.: ГИТТЛ, 1952. — С. 71. — 180 с. Архивировано 4 ноября 2011 года.
  23. Porteous, Ian R. Clifford Algebras and the Classical Groups. Cambridge, 1995, page 60.
  24. См., например: Гантмахер Ф. Р. Теория матриц. М.: ГИТТЛ, 1953, С. 212—219, или: Воеводин В., Воеводин В. Энциклопедия линейной алгебры. Электронная система ЛИНЕАЛ. Спб.: БХВ-Петербург, 2006.
  25. См., например: Ершов Л. В., Райхмист Р. Б. Построение графиков функций. М.: Просвещение, 1984, или: Каплан И. А. Практические занятия по высшей математике. Харьков: Изд-во ХГУ, 1966.
  26. См., например: Хатсон В., Пим Дж. Приложения функционального анализа и теории операторов. М.: Мир, 1983, или: Халмош П. Гильбертово пространство в задачах. М.: Мир, 1970.
  27. История математики, 1970—1972, Том I, С. 42—46.
  28. История математики, 1970—1972, Том I, С. 47.
  29. История математики, 1970—1972, Том I, С. 169—171.
  30. Башмакова И. Г. Становление алгебры (из истории математических идей). — М.: Знание, 1979. — С. 23. — (Новое в жизни, науке, технике. Математика, кибернетика, № 9).
  31. Abhishek Parakh. Ariabhata’s root extraction methods // Indian Journal of History of Science. — 2007. — Вып. 42.2. — С. 149—161. Архивировано 9 июня 2010 года.
  32. История математики, 1970—1972, Том I, С. 275—276.
  33. История математики, 1970—1972, Том I, С. 296—298.
  34. История математики, 1970—1972, Том III, С. 56—59.
  35. История математики, 1970—1972, Том III, С. 62.
  36. Колмогоров А. Н., Юшкевич А. П. (ред.). Математика XIX века. Математическая логика, алгебра, теория чисел, теория вероятностей. — М.: Наука, 1978. — Т. I. — С. 58—66.
  37. История математики, 1970—1972, Том I, С. 185.
  38. Никифоровский В. А. Из истории алгебры XVI-XVII вв. — М.: Наука, 1979. — С. 81. — 208 с. — (История науки и техники).
  39. Знаки математические // Математическая энциклопедия. — М.: Советская Энциклопедия, 1982. — Т. 2. Архивировано 20 ноября 2012 года.
  40. Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник, изд. 3-е. — СПб.: ЛКИ, 2008. — С. 82. — 248 с. — ISBN 978-5-382-00839-4.

Элла 21,

без помощи калькулятора способу извлечения корня квадратного учили в советские времена в школе в 8-м классе.

Для этого надо разбить многозначное число справа налево на грани по 2 цифры :

31’78’92

Первая цифра корня ― это целый корень из левой грани, в данном случае, 5.

Вычитаем 5 в квадрате из 31, 31-25=6 и к шестерке приписываем следующую грань, имеем 678.

Следующая цифра х подбирается к удвоенной пятерке так, чтобы

10х*х было максимально большим, но меньшим чем 678.

х=6, поскольку 106*6 = 636,

теперь вычисляем 678 – 636 = 42 и добавляем следующую грань 92, имеем 4292.

Снова ищем максимальный х, такой что 112х*х < 4292.

х = 3

Ответ: корень равен 563

Так можно продолжать сколько требуется.

автор вопроса выбрал этот ответ лучшим

Васил­ий Котен­очкин
[24.9K]

7 лет назад 

Столбиком надёжней, а когда нужно больше пятнадцати знаков, то компьютеры и телефоны с калькуляторами чаще всего отдыхают. Осталось проверить, займёт ли описание методики 4-5 тыс. знаков.

Берём любое число, от запятой отсчитываем пары цифр вправо и влево

Например, 12’34’56’78’90,09’87’65’43’21’00

Пара цифр – это как бы двузначное число. Корень из двузначного – однозначное. Подбираем однозначное, квадрат которого меньше первой пары цифр. В нашем случае это 3.

Как при делении столбиком, под первой парой выписываем этот квадрат и из первой пары вычитаем. Результат сносим под подчерк. 12 – 9 = 3. Добавляем к этой разнице вторую пару цифр (будет 334). Слева от числа берём удвоенное значение той части результата, которую уже нашли о дополняем цифрой (у нас 2*6=6), такой, чтобы при умножении на неё полученное число не превосходило число со второй парой цифр. Получаем, что найденная цифра – пятёрка. Снова находим разность (9), сносим следующую пару цифр получая 956, снова выписываем удвоенную часть результата (70), снова её дополняем нужной цифрой и так далее до упора. Или до нужной точности вычислений.

bezde­lnik
[34.1K]

7 лет назад 

С помощью таблиц можно не вычислить, а найти, корни квадратные толь из чисел которые есть в таблицах. Проще всего вычислять корни не только квадратные, но и других степеней, методом последовательных приближений. Например вычислим корень квадратный из 10739, заменяем три последние цифры нулями и извлечем корень из 10000 получим 100 с недостатком, поэтому берем число 102 возводим его в квадрат, получаем 10404, что тоже меньше заданного, берем 103*103=10609 опять с недостатком, берем 103,5*103,5=10712,25, берем ещё больше 103,6*103,6=10732, берем 103,7*103,7=10753,69, что уже с избытком. Можно принять корень из 10739 примерно равны 103,6. Более точно √10739=103,629… . . Аналогично вычисляем корень кубический сначала из 10000 получаем примерно 25*25*25=15625, что с избытком, берем 22*22*22=10,648, берем чуть больше 22,06*22,06*22,06=10735, что очень близко к заданному.

morel­juba
[62.5K]

6 лет назад 

Зачастую в школе требуется находить квадратные корни разных чисел. Но если вот мы привыкли пользоваться постоянно для этого калькулятором, то на экзаменах такой возможности не будет, поэтому нужно учиться искать корень без помощи калькулятора. А сделать-то это в принципе возможно.

Алгоритм таков:

-Смотрите сначала на последнюю цифру вашего числа:

-Далее надо разбить данное вам число на группы, а именно по две цифры при этом справа налево. Помните, что начать нужно будет с самой последней.

Например,

-Теперь требуется определить примерно значение для корня из самой левой группы

-В случае когда число имеет больше двух групп, то находить корень надо так:

-А вот следующая циферка должна быть именно наибольшей, подобрать её надо так:

-Теперь надо образовать новое число А посредством добавления к остатку, который был получен выше, следующую группу.

В наших примерах:

Помощ­ни к
[56.9K]

6 лет назад 

Есть хороший способ как найти корень из числа без помощи калькуляторов. Для этого вам понадобится линейка и циркуль. Суть в том, что вы находите на линейке значение, которое у вас под корнем. Например, ставите отметку возле 9. Ваша задача – поделить это число на равное количество отрезков, то есть на два линии по 4,5 см, а на ровный отрезок. Несложно догадаться, что в итоге получится 3 отрезка по 3 сантиметра.

Способ нелегкий и для больших чисел не подойдет, но зато считается без калькулятора.

Vasil Stryz­hak
[11.5K]

7 лет назад 

Предлагаю «изобретенный» мною вариант извлечения квадратного корня в столбик. Он отличается от общеизвестного, исключением подбора чисел. Но как выяснил позже, данный метод уже существовал за много лет до моего рождения. Описал его в своей книге “Всеобщая арифметика или книга об арифметических синтезе и анализе” великий Исаак Ньютон. Так что здесь излагаю свое видение и обоснование алгоритма метода по Ньютону. Запоминать алгоритм не стоит. Можно просто при необходимости пользоваться схемой на рисунке в качестве наглядного пособия.

Nelli­4ka
[114K]

6 лет назад 

Вычисление (или извлечение) квадратного корня можно производить несколькими способами, но все они не сказать что уж очень просты. Проще, конечно, прибегнуть к помощи калькулятора. Но если такой возможности нет (или вы хотите понять суть квадратного корня), могу посоветовать пойти следующим путем, его алгоритм таков:

Если на такие длительные вычисления у вас нет сил, желания или терпения, можно прибегнуть к помощи грубого подбора, его плюс в том, что он невероятно быстрый и при должной смекалке точный. Пример:

Птичк­а2014
[25.4K]

6 лет назад 

Во-первых для того что бы вычислить квадратный корень надо хорошо знать таблицу умножения. Самые простые примеры – это 25 ( 5 на 5 = 25) и так далее. Если же брать числа посложнее, то можно использовать данную таблицу, где по горизонтали единицы, а по вертикале десятки.

В некоторых случаях можно попытаться разложить подкоренное число на два или несколько квадратных множителей.

Также полезно запомнить таблицу (или хотя бы какую-то ее часть) – квадраты натуральных чисел от 10 до 99.

Zolot­ynka
[550K]

5 лет назад 

Хочу поделиться быстрым способом высчитать корень квадратный, причем правильность ответа – два знака после запятой. Итак, нам нужно воспользоваться следующей формулой:

√X = √S + (X-S) / 2√S

Где:

X – это число, квадратный корень которого вы хотите получить, а S корень ближайшего числа к Х, которое вы знаете.

Например, давайте попробуем найти квадратный корень из числа 75.

X = 75 и, следовательно, ближайшее к нему число, квадратный корень которого мы знаем – 81, следовательно S = 81. Это означает, что √S = 9.

Используя нашу формулу, получаем:

√75 = 9 + (75-81) / 2 * 9

√75 = 9 + -6/18 = 9 – 0,333 = 8,667

Квадратный корень из числа
Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой — калькулятором корней. Она поможет:

  • найти квадратные или кубические корни из заданных чисел;
  • выполнить математическое действие с дробными степенями.
Число знаков после запятой:
=

Как вычислять квадратный корень вручную —методом подбора находить подходящие значения. Рассмотрим, как это делать.

Что такое квадратный корень

Корень n степени натурального числа a — число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

Квадратным корнем из числа a будет число, квадрат которого равен a. Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

Проводим расчеты вручную

Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

Квадратные числа — числа, из которых можно извлечь корень без остатка. А множители — числа, которые при перемножении дают исходное число.

Например:

25, 36, 49 — квадратные числа, поскольку:


Получается, что квадратные множители — множители, которые являются квадратными числами.

Возьмем 784 и извлечем из него корень.

Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель — 4 x 4 = 16. Делим 784 на 16 получаем 49 — это тоже квадратное число 7 x 7 = 16.
Применим правило

Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

Ответ. 

2.Неделимое. Его нельзя разложить на квадратные множители.

Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

Раскладываем число 252 на квадратный и обычный множитель.
Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки. Подкоренное число — 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

Значит

между 2 и 4.

Оцениваем значение Вероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76~7.

Вычисляем корень

Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

При делении в столбик получается максимально точный ответ при извлечении корня.

Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

— целую часть справа налево;

— число после запятой слева направо.

Пример: 3459842,825694 → 3 45 98 42, 82 56 94

795,28 → 7 95, 28

Допускается, что вначале остается непарное число.

Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

Извлеките из этого числа корень — √n. Запишите полученный результат сверху справа, а квадрат этого числа — снизу справа.

У нас первая 7. Ближайшее квадратное число — 4. Оно меньше 7, а 4 = 

Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

Примечание: числа должны быть одинаковыми.

Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.
Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

Снесите следующую пару чисел и запишите возле полученной разницы слева.

Вычтите полученное справа произведение из числа слева.

Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение  прочерками, подбираем множители для него и так далее.

Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

Алгоритм действий

1. Введите желаемое количество знаков после запятой.

2. Укажите степень корня (если он больше 2).

3. Введите число, из которого планируете извлечь корень.

4. Нажмите кнопку «Решить».

Вычисление самых сложных математических действий с онлайн калькулятором станет простым! Экономьте время и проводите расчеты с CALCON.RU.

Добавить комментарий