Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac{P(x)}{Q(x)})(=0), где (P(x)) и (Q(x)) – выражения с иксом (или другой переменной).
Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.
Например:
(frac{9x^2-1}{3x})(=0)
(frac{1}{2x}+frac{x}{x+1}=frac{1}{2})
(frac{6}{x+1}=frac{x^2-5x}{x+1})
Пример не дробно-рациональных уравнений:
(frac{9x^2-1}{3})(=0)
(frac{x}{2})(+8x^2=6)
Как решаются дробно-рациональные уравнения?
Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ. И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.
Алгоритм решения дробно-рационального уравнения:
-
Выпишите и «решите» ОДЗ.
-
Найдите общий знаменатель дробей.
-
Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.
-
Запишите уравнение, не раскрывая скобок.
-
Раскройте скобки и приведите подобные слагаемые.
-
Решите полученное уравнение.
-
Проверьте найденные корни с ОДЗ.
-
Запишите в ответ корни, которые прошли проверку в п.7.
Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.
Пример. Решите дробно-рациональное уравнение (frac{x}{x-2} – frac{7}{x+2}=frac{8}{x^2-4})
Решение:
(frac{x}{x-2} – frac{7}{x+2}=frac{8}{x^2-4}) ОДЗ: (x-2≠0⇔x≠2) |
Сначала записываем и “решаем” ОДЗ. |
|
(frac{x}{x-2} – frac{7}{x+2}=frac{8}{x^2-4}) |
По формуле сокращенного умножения: (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)). |
|
(frac{x(x-2)(x+2)}{x-2} – frac{7(x-2)(x+2)}{x+2}=frac{8(x-2)(x+2)}{(x-2)(x+2)}) |
Сокращаем то, что можно и записываем получившееся уравнение. |
|
(x(x+2)-7(x-2)=8) |
Раскрываем скобки |
|
(x^2+2x-7x+14=8) |
Приводим подобные слагаемые |
|
(x^2-5x+6=0) |
Решаем полученное квадратное уравнение. |
|
(x_1=2;) (x_2=3) |
Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень – посторонний. В ответ записываем только второй. |
Ответ: (3).
Пример. Найдите корни дробно-рационального уравнения (frac{x}{x+2} + frac{x+1}{x+5}-frac{7-x}{x^2+7x+10})(=0)
Решение:
(frac{x}{x+2} + frac{x+1}{x+5}-frac{7-x}{x^2+7x+10})(=0) ОДЗ: (x+2≠0⇔x≠-2) |
Записываем и «решаем» ОДЗ. Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)). |
|
(frac{x}{x+2} + frac{x+1}{x+5}-frac{7-x}{(x+2)(x+5)})(=0) |
Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение. |
|
(frac{x(x+2)(x+5)}{x+2} + frac{(x+1)(x+2)(x+5)}{x+5}-) |
Сокращаем дроби |
|
(x(x+5)+(x+1)(x+2)-7+x=0) |
Раскрываем скобки |
|
(x^2+5x+x^2+3x+2-7+x=0) |
Приводим подобные слагаемые |
|
(2x^2+9x-5=0) |
Находим корни уравнения |
|
(x_1=-5;) (x_2=frac{1}{2}.) |
Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. |
Ответ: (frac{1}{2}).
Смотрите также:
Дробно-рациональные неравенства
Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.
Рациональное уравнение: определение и примеры
Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.
Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.
В различных пособиях можно встретить еще одну формулировку.
Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.
Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P=Q и P−Q=0 будут равносильными выражениями.
А теперь обратимся к примерам.
Рациональные уравнения:
x=1, 2·x−12·x2·y·z3=0, xx2+3·x-1=2+27·x-a·(x+2), 12+34-12x-1=3.
Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.
Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.
Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.
Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.
Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.
3·x+2=0 и (x+y)·(3·x2−1)+x=−y+0,5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.
1x-1=x3 и x:(5·x3+y2)=3:(x−1):5 – это дробно рациональные уравнения.
К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.
Решение целых уравнений
Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:
- сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
- затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.
Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n.
Необходимо найти корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3.
Решение
Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3·(x+1)·(x−3)−x·(2·x−1)+3=0.
Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:
3·(x+1)·(x−3)−x·(2·x−1)+3=(3·x+3)·(x−3)−2·x2+x+3==3·x2−9·x+3·x−9−2·x2+x+3=x2−5·x−6
У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x2−5·x−6=0. Дискриминант этого уравнения положительный: D=(−5)2−4·1·(−6)=25+24=49. Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:
x=–5±492·1,
x1=5+72 или x2=5-72,
x1=6 или x2=-1
Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3 и 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3. В первом случае 63=63, во втором 0=0. Корни x=6 и x=−1 действительно являются корнями уравнения, данного в условии примера.
Ответ: 6, −1.
Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.
Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.
Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.
Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.
Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:
- переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
- представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.
Найдите решение уравнения (x2−1)·(x2−10·x+13)=2·x·(x2−10·x+13).
Решение
Переносим выражение из правой части записи в левую с противоположным знаком: (x2−1)·(x2−10·x+13)−2·x·(x2−10·x+13)=0. Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x4−12·x3+32·x2−16·x−13=0. Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.
Намного проще пойти другим путем: вынесем за скобки общий множитель x2−10·x+13. Так мы придем к уравнению вида (x2−10·x+13)·(x2−2·x−1)=0. Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x2−10·x+13=0 и x2−2·x−1=0 и найдем их корни через дискриминант: 5+2·3, 5-2·3, 1+2, 1-2.
Ответ: 5+2·3, 5-2·3, 1+2, 1-2.
Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.
Есть ли корни у уравнения (x2+3·x+1)2+10=−2·(x2+3·x−4)?
Решение
Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x2+3·x.
Теперь мы будем работать с целым уравнением (y+1)2+10=−2·(y−4). Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y2+4·y+3=0. Найдем корни квадратного уравнения: y=−1 и y=−3.
Теперь проведем обратную замену. Получим два уравнения x2+3·x=−1 и x2+3·x=−3. Перепишем их как x2+3·x+1=0 и x2+3·x+3=0. Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: -3±52 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.
Ответ: -3±52
Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.
Решение дробно рациональных уравнений
Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p(x)q(x)=0 , где p(x) и q(x) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.
В основу наиболее употребимого метода решения уравнений p(x)q(x)=0 положено следующее утверждение: числовая дробь uv, где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p(x)q(x)=0 может быть сведено в выполнению двух условий: p(x)=0 и q(x)≠0. На этом построен алгоритм решения дробных рациональных уравнений вида p(x)q(x)=0 :
- находим решение целого рационального уравнения p(x)=0;
- проверяем, выполняется ли для корней, найденных в ходе решения, условие q(x)≠0.
Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.
Найдем корни уравнения 3·x-25·x2-2=0 .
Решение
Мы имеем дело с дробным рациональным уравнением вида p(x)q(x)=0, в котором p(x)=3·x−2, q(x)=5·x2−2=0. Приступим к решению линейного уравнения 3·x−2=0. Корнем этого уравнения будет x=23.
Проведем проверку найденного корня, удовлетворяет ли он условию 5·x2−2≠0. Для этого подставим числовое значение в выражение. Получим: 5·232-2=5·49-2=209-2=29≠0.
Условие выполняется. Это значит, что x=23 является корнем исходного уравнения.
Ответ: 23.
Есть еще один вариант решения дробных рациональных уравнений p(x)q(x)=0. Вспомним, что это уравнение равносильно целому уравнению p(x)=0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p(x)q(x)=0 :
- решаем уравнение p(x)=0;
- находим область допустимых значений переменной x;
- берем корни, которые лежат в области допустимых значений переменной x, в качестве искомых корней исходного дробного рационального уравнения.
Решите уравнение x2-2·x-11×2+3·x=0.
Решение
Для начала решим квадратное уравнение x2−2·x−11=0. Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D1=(−1)2−1·(−11)=12, и x=1±23.
Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x2+3·x≠0. Это то же самое, что x·(x+3)≠0, откуда x≠0, x≠−3.
Теперь проверим, входят ли полученные на первом этапе решения корни x=1±23 в область допустимых значений переменной x. Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x=1±23.
Ответ: x=1±23
Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x, а корни уравнения p(x)=0 иррациональные. Например, 7±4·269. Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 1271101 и −3159. Это позволяет сэкономить время на проведении проверки условия q(x)≠0 : намного проще исключить корни, которые не подходят, по ОДЗ.
В тех случаях, когда корни уравнения p(x)=0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p(x)q(x)=0. Быстрее сразу находить корни целого уравнения p(x)=0, после чего проверять, выполняется ли для них условие q(x)≠0, а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.
Найдите корни уравнения (2·x-1)·(x-6)·(x2-5·x+14)·(x+1)x5-15·x4+57·x3-13·x2+26·x+112=0.
Решение
Начнем с рассмотрения целого уравнения (2·x−1)·(x−6)·(x2−5·x+14)·(x+1)=0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2·x−1=0, x−6=0, x2−5·x+14=0, x+1=0, из которых три линейных и одно квадратное. Находим корни: из первого уравнения x=12, из второго – x=6, из третьего – x=7, x=−2, из четвертого – x=−1.
Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.
По очереди подставим корни на место переменной х в выражение x5−15·x4+57·x3−13·x2+26·x+112 и вычислим его значение:
125−15·124+57·123−13·122+26·12+112==132−1516+578−134+13+112=122+132≠0;
65−15·64+57·63−13·62+26·6+112=448≠0;
75−15·74+57·73−13·72+26·7+112=0;
(−2)5−15·(−2)4+57·(−2)3−13·(−2)2+26·(−2)+112=−720≠0;
(−1)5−15·(−1)4+57·(−1)3−13·(−1)2+26·(−1)+112=0.
Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 12, 6 и −2.
Ответ: 12, 6, -2
Найдите корни дробного рационального уравнения 5·x2-7·x-1·x-2×2+5·x-14=0 .
Решение
Начнем работу с уравнением (5·x2−7·x−1)·(x−2)=0. Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5·x2−7·x−1=0 и x−2=0.
Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x=7±6910 , а из второго x=2.
Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x. В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x2+5·x−14=0. Получаем: x∈-∞, -7∪-7, 2∪2, +∞.
Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x.
Корни x=7±6910 – принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.
Ответ: x=7±6910.
Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p(x)q(x)=0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.
Решите дробное рациональное уравнение -3,2×3+27=0.
Решение
Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.
Ответ: нет корней.
Решите уравнение 0x4+5·x3=0.
Решение
Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x.
Теперь определим ОДЗ. Оно будет включать все значения x, при которых x4+5·x3≠0. Решениями уравнения x4+5·x3=0 являются 0 и −5, так как, это уравнение равносильно уравнению x3·(x+5)=0, а оно в свою очередь равносильно совокупности двух уравнений x3=0 и x+5=0, откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x, кроме x=0 и x=−5.
Получается, что дробное рациональное уравнение 0x4+5·x3=0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и -5.
Ответ: -∞, -5∪(-5, 0∪0, +∞
Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r(x)=s(x), где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p(x)q(x)=0.
Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r(x)=s(x) равносильно уравнение r(x)−s(x)=0. Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r(x)−s(x)=0 в тождественную ему рациональную дробь вида p(x)q(x).
Так мы переходим от исходного дробного рационального уравнения r(x)=s(x) к уравнению вида p(x)q(x)=0, решать которые мы уже научились.
Следует учитывать, что при проведении переходов от r(x)−s(x)=0 к p(x)q(x)=0 , а затем к p(x)=0 мы можем не учесть расширения области допустимых значений переменной x.
Вполне реальна ситуация, когда исходное уравнение r(x)=s(x) и уравнение p(x)=0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p(x)=0 может дать нам корни, которые будут посторонними для r(x)=s(x). В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.
Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r(x)=s(x):
- переносим выражение из правой части с противоположным знаком и получаем справа нуль;
- преобразуем исходное выражение в рациональную дробь p(x)q(x), последовательно выполняя действия с дробями и многочленами;
- решаем уравнение p(x)=0;
- выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.
Визуально цепочка действий будет выглядеть следующим образом:
r(x)=s(x)→r(x)-s(x)=0→p(x)q(x)=0→p(x)=0→отсеиваниепостороннихкорней
Решите дробное рациональное уравнение xx+1=1x+1.
Решение
Перейдем к уравнению xx+1-1x+1=0. Преобразуем дробное рациональное выражение в левой части уравнения к виду p(x)q(x).
Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:
xx+1-1x-1=x·x-1·(x+1)-1·x·(x+1)x·(x+1)==x2-x-1-x2-xx·(x+1)=-2·x-1x·(x+1)
Для того, чтобы найти корни уравнения -2·x-1x·(x+1)=0, нам необходимо решить уравнение −2·x−1=0. Получаем один корень x=-12.
Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.
Подставим полученное значение в исходное уравнение. Получим -12-12+1=1-12+1. Мы пришли к верному числовому равенству −1=−1. Это значит, что x=−12 является корнем исходного уравнения.
Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x. Это будет все множество чисел, за исключением −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Полученный нами корень x=−12 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.
Ответ: −12.
Найдите корни уравнения x1x+3-1x=-23·x.
Решение
Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.
Перенесем выражение из правой части в левую с противоположным знаком: x1x+3-1x+23·x=0
Проведем необходимые преобразования: x1x+3-1x+23·x=x3+2·x3=3·x3=x.
Приходим к уравнению x=0. Корень этого уравнения – нуль.
Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 010+3-10=-23·0. Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.
Ответ: нет корней.
Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.
Решите уравнение 7+13+12+15-x2=7724
Решение
Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.
Отнимем от правой и левой частей 7, получаем: 13+12+15-x2=724 .
Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3+12+15-x2=247.
Вычтем из обеих частей 3: 12+15-x2=37. По аналогии 2+15-x2=73, откуда 15-x2=13, и дальше 5-x2=3, x2=2, x=±2
Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.
Ответ: x=±2
Дробно-рациональные уравнения — это уравнения c одной переменной.
Содержание:
Определение дробно-рационального уравнения
Определение дробно-рационального уравнения:
Например, уравнения
являются дробно-рациональными.
Рассмотрим дробно-рациональное уравнение Это уравнение можно решить, используя условие равенства рациональной дроби нулю.
Рациональная дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю.
Таким образом, получим:
Ответ: 1.
Вернемся к уравнению Выполним тождественные преобразования уравнения.
1) Перенесем все слагаемые из правой части уравнения в левую:
2) Преобразуем левую часть уравнения к рациональной дроби:
3) Применим условие равенства дроби нулю:
Ответ: 5.
Что нужно для решения дробно-рационального уравнения
Чтобы решить дробно-рациональное уравнение, нужно:
- Перенести все слагаемые из правой части уравнения в левую.
- Преобразовать левую часть уравнения к рациональной дроби.
- Применить условие равенства дроби нулю.
- Записать ответ.
Рассмотрим задачу: В дроби числитель на 2 больше знаменателя. Если числитель этой дроби уменьшить на 3, а знаменатель увеличить на 3, то новая дробь будет равна Найдите знаменатель первоначальной дроби.
Решение:
Обозначим знаменатель первоначальной дроби через х, тогда ее числитель равен
Если числитель дроби уменьшить на 3, то получится числитель новой дроби: Знаменатель новой дроби после увеличения на 3 будет равен а новая дробь будет иметь вид Так как по условию задачи она равна , то получим уравнение . В левой части этого уравнения записано дробное рациональное выражение.
Решение многих задач приводит к уравнениям, у которых в левой или правой (или в той и другой) частях записаны дробные рациональные выражения. Такие уравнения называют дробно-рациональными уравнениями.
Пример №1
Решите уравнение
Решение:
(1)
(2)
(3)
(4) Ответ:
Пример №2
Решите уравнение
Решение:
(1)
(2)
(3)
(4) Ответ:
Пример №3
Решите уравнение
Решение:
(1)
(2)
(3)
(4) Ответ: -2; 6.
Пример №4
Решите уравнение
Решение:
Выполним замену переменной и получим уравнение которое является дробно-рациональным. Решим его, применив алгоритм:
Подставим найденные значения в равенство и получим:
Ответ:
Дробно-рациональные уравнения используются как математические модели для решения задач, описывающих реальные ситуации.
Например, рассмотрим задачу. На тушение лесных пожаров площадью 200 га отправлено несколько вертолетов с водосливными устройствами. По информации метеорологов предполагается усиление ветра, поэтому было выделено еще 5 вертолетов, в связи с чем площадь для сброса воды каждым вертолетом уменьшилась на 20 га. Сколько вертолетов участвовало в тушении пожаров первоначально?
Решение:
(1) Выясним, о каких величинах и зависимостях между ними в задаче идет речь. В задаче речь идет о площади лесных пожаров и количестве вертолетов для тушения пожаров.
(2) Выясним, какие значения, величин и зависимости между ними, известны. Известна зависимость между количеством вертолетов и площадью для сброса воды.
(3) Выясним, какие значения величин и зависимости между ними не известны. Неизвестно, сколько потребовалось вертолетов.
(4) Обозначим неизвестное значение одной величины через х, а остальные выразим через х и зависимости между величинами. Обозначим через первоначальное количество вертолетов и получим, что вертолетов направлено на тушение пожаров после сообщения метеорологов. Составим таблицу зависимостей между величинами.
(5) Используя зависимости между известными и неизвестными значениями величин, составим уравнение (математическую модель задачи) и решим его.
По условию задачи га на 20 га меньше, чем га. Значит, разность между большим и меньшим числом равна 20, т. е.
(6) Запишем ответ в соответствии со смыслом задачи. Поскольку — число вертолетов, то выбираем число 5.
Ответ: 5 вертолетов.
Многие задачи, описывающие реальные процессы, имеют одну и ту же математическую модель. К таким относятся, например, задачи на движение, работу и т. п.
Рассмотрим две задачи:
Задача 1. Два велосипедиста выехали одновременно из поселка в поселок Скорость первого велосипедиста на больше скорости второго, поэтому он прибыл в поселок на 0,5 ч раньше. С какими скоростями двигались велосипедисты, если расстояние между поселками равно 30 км?
Задача 2. Для заполнения водой резервуара объемом используют два крана: первый кран заполняет резервуар на 0,5 ч быстрее второго, так как в час через него наливается на больше, чем через второй. Найдите скорость заполнения резервуара водой через каждый кран.
В обеих задачах речь идет о процессах: в первой — о процессе движения, во второй — о процессе заполнения резервуара водой.
Составим таблицу зависимостей между величинами.
Поскольку первый велосипедист прибыл в поселок на 0,5 ч раньше второго, а один кран заполняет резервуар на 0,5 ч быстрее другого, то уравнение является математической моделью каждой из предложенных задач.
Решим полученное уравнение:
По условию каждой задачи подходит число 12.
Ответ задачи 1: скорость первого велосипедиста скорость второго велосипедиста Ответ задачи 2: скорость заполнения резервуара водой через первый кран через второй кран —
Пример №5
Является ли дробно-рациональным уравнение:
а)
б)
в)
г)
Решение:
Уравнение а) не является дробно-рациональным, так как его левая и правая части — целые рациональные выражения. Уравнения б)—г) являются дробно-рациональными, так как левые части этих уравнений — дробно-рациональные выражения.
Пример №6
Решите уравнение, используя условие равенства дроби нулю:
а)
б)
в)
г)
Решение:
а)
Ответ: 6.
б)
Ответ: -6.
в)
Ответ: 0; 6.
г)
Ответ: нет корней.
Пример №7
Какие из уравнений:
а)
б)
в)
г) равносильны?
Решение:
а)
б)
в)
г)
Ответ: уравнения а), в), г) имеют один и тот же корень (уравнения равносильны).
Пример №8
Решите уравнение:
а)
б)
Решение:
а) (1)
(2)
(3)
(4) Ответ: 1; 2.
б)
Разложим на множители квадратный трехчлен в знаменателе первой дроби и получим:
Ответ: 2,5.
Пример №9
Найдите нули функции
Решение:
Так как нули функции – это значения аргумента, при которых значение функции равно нулю, то для решения задачи нужно решить уравнение
Используем условие равенства дроби нулю:
Ответ: 0; 3.
Пример №10
Найдите корни уравнения
Решение:
Выполним замену переменной в данном уравнении: Получим уравнение которое является дробно-рациональным.
Решим его:
Выполним подстановку найденных значений переменной и получим:
Ответ:
Моделирование реальных процессов с помощью дробно-рациональных уравнении
Задача:
Катер прошел 15 км по течению реки и 4 км по озеру, затратив на весь путь 1 ч. Чему равна скорость катера при движении по озеру, если скорость течения реки ?
Решение:
В задаче идет речь о процессах движения катера по реке и по озеру. Составим таблицу зависимостей между величинами.
Так как по условию задачи на весь путь затрачен 1 ч, то составим уравнение: Решим его:
По условию подходит число 16.
Ответ: 16
Системы нелинейных уравнений для решения дробно-рациональных уравнений
Рассмотрим задачу. Из листа картона прямоугольной формы нужно изготовить коробку без крышки, сделав надрезы в углах длиной 4 см (рис. 67). Найдите длину и ширину листа, зная, что его периметр равен 60 см, а объем коробки должен быть равен
Решение:
Обозначим длину и ширину листа соответственно см и см. Так как в углах листа сделаны надрезы длиной 4 см, то высота коробки равна 4 см, а длина и ширина коробки равны см и см соответственно.
По условию задачи периметр листа прямоугольной формы равен 60 см, а объем коробки равен 160 значит, и Оба полученных условия должны быть выполнены, поэтому объединим их в систему уравнений
Полученная система уравнений содержит нелинейное рациональное уравнение Такие системы называют системами нелинейных уравнений. Рассмотрим способы решения систем нелинейных уравнений.
Способ подстановки
Решим полученную в задаче систему уравнений способом подстановки:
Из первого уравнения системы выразим переменную и получим
Заменим во втором уравнении переменную на и получим уравнение Решим это уравнение:
Найденные значения подставим в выражение Тогда если то а если то
Решениями системы уравнений являются пары чисел и Таким образом, размер прямоугольного листа картона
Чтобы решить систему уравнений способом подстановки, нужно:
- Из одного уравнения системы выразить одну из переменных.
- Заменить в другом уравнении эту переменную на ее выражение.
- Решить полученное уравнение.
- Найденные значения одной переменной подставить в выражение для другой переменной и найти значение другой переменной.
- В виде упорядоченных пар чисел записать ответ.
Решите систему уравнений
Решение:
(1) Из второго уравнения системы выразим переменную
(2) Заменим в первом уравнении переменную на
(3) Решим уравнение и получим:
(4) Найденные значения подставим в выражение
Если то
Если то
(5) Ответ: (4; 1), (-4; -1).
Способ сложения
Чтобы решить систему уравнений способом сложения, нужно:
- Одно из уравнений системы оставить без изменения, а другое заменить суммой уравнений системы.
- Из полученного уравнения (суммы) найти значения одной из переменных.
- Подставить эти значения переменной в оставленное без изменения уравнение системы и найти значения другой переменной.
- Записать ответ.
Решите систему уравнений
Решение:
(1)
(2)
(3) При получим:
При получим:
(4) Ответ: (2;1), (2;-1), (-2;1), (-2;-1).
- Заказать решение задач по высшей математике
Графический метод решения систем нелинейных уравнений
Решим систему уравнений графическим методом. Для этого построим в одной системе координат графики каждого из уравнений системы.
Первое уравнение системы равносильно уравнению графиком которого является гипербола, проходящая через точки (1; 1), (0,5; 2) (рис. 68).
Графиком второго уравнения системы является парабола с вершиной в точке (1; 1), пересекающая ось ординат в точке (0; 2).
Единственная точка пересечения гиперболы и параболы имеет координаты (1; 1).
Рис. 68
Поскольку графический метод решения систем уравнений не является точным, то полученный результат необходимо проверить.
Подставим пару чисел (1; 1) в каждое из уравнений системы , и получим верные равенства. Таким образом, данная система имеет единственное решение (1; 1).
В рассмотренной системе решением оказалась пара целых чисел, которую легко было найти с помощью построенных графиков. В других случаях найти точные значения переменных по графику может оказаться затруднительно. Но, как правило, с помощью графического метода можно определить число решений системы уравнений.
Например, определим число решений системы уравнений Построим в одной системе координат графики каждого из уравнений системы (рис. 69). Графиком первого уравнения системы является гипербола, проходящая через точки (1; 5), (5; 1). Графиком второго уравнения – парабола, ветви которой направлены вниз, с вершиной в точке (0; 6). Графики пересекаются в трех точках, значит, система уравнений имеет три решения.
Рис. 69
Моделирование реальных процессов с помощью систем нелинейных уравнений
Системы нелинейных уравнений также являются математическими моделями при решении задач.
Задача:
Лечебными травами было решено засеять прямоугольный участок площадью При вспашке участка одну его сторону уменьшили на 3 м, а другую — на 2 м. Его площадь стала равна Какими были первоначальные размеры участка?
Решение:
В задаче речь идет о длине и ширине прямоугольного участка и его площади.
Если одну сторону участка обозначить через а другую — через то планируемая площадь участка равна По условию она равна значит, получится уравнение
После уменьшения размеров участка площадь станет равной По условию задачи составим уравнение
Объединим оба уравнения в систему
Получили математическую модель задачи в виде системы нелинейных уравнений. Решим ее, используя способ подстановки.
Условию задачи удовлетворяют найденные решения системы: стороны участка равны либо 15 м и 12 м, либо 18 м и 10 м.
Ответ: 15 м, 12 м или 18 м, 10 м.
Пример №11
Решите систему уравнений:
а)
б)
Решение:
а) Решим систему способом подстановки:
Ответ: (3; 0), (0; 3).
б) Применим способ сложения. Умножим первое уравнение на 2, сложим со вторым и получим:
Ответ:
Пример №12
Решите графически систему уравнений
Решение:
Построим графики уравнений системы
График первого уравнения — прямая, проходящая через точки (-2; 0), (1; 3). График второго уравнения — парабола с вершиной в точке (-1; -1), пересекающая ось абсцисс в точках (-2; 0) и (0; 0), проходящая через точку (1; 3).
Прямая пересекается с параболой в точках с координатами (-2; 0), (1; 3). С помощью проверки убеждаемся, что пары чисел (-2; 0) и (1; 3) являются решениями данной системы.
Ответ: (-2; 0), (1; 3).
Пример №13
Сколько решений имеет система уравнений
Решение:
Построим в одной системе координат графики уравнений системы. Графиком первого уравнения системы является гипербола, проходящая через точки (-1; 4), (-4; 1). График второго уравнения — парабола с вершиной в точке (-4; 0), пересекающая ось ординат в точке (0; 16).
На рисунке видны только две точки пересечения графиков. Но, учитывая то, что парабола пересекает ось ординат, а гипербола не пересекает, делаем вывод, что графики пересекаются еще в одной точке. Таким образом, графики пересекаются в трех точках, а, значит, система имеет три решения.
Пример №14
Решите систему уравнений
Решение:
Решим систему методом замены переменных. Введем новые переменные:
Тогда система примет вид
Решим ее способом подстановки:
Подставим и получим:
Решив каждую из двух систем совокупности способом подстановки, получим следующие решения исходной системы уравнений: (-5; 1); (1; -5); (4; 1); (1; 4).
Ответ: (-5; 1); (1; -5); (4; 1); (1; 4).
Задача:
Сумма квадратов цифр двузначного числа равна 13. Если из этого числа вычесть 9, то получится число, записанное теми же цифрами, но в обратном порядке. Найдите данное число.
Решение:
Обозначим цифру десятков данного числа через , а цифру единиц через , тогда данное число будет иметь вид . Числом, записанным теми же цифрами, но в обратном порядке, будет . По условию задачи: и Составим и решим систему уравнений:
По условию задачи подходит только
Ответ: 32.
Задача:
Из поселка в поселок вышел пешеход. Одновременно с ним из поселка в поселок выехал велосипедист. Через 50 мин они встретились. Сколько времени потребовалось бы пешеходу для того, чтобы пройти весь путь из в , если известно, что велосипедист проделал бы тот же путь на 4 ч быстрее пешехода?
Решение:
Составим таблицу зависимостей между величинами.
По условию задачи велосипедист проделал бы тот же путь на 4 ч быстрее пешехода, поэтому получим уравнение
При движении навстречу друг другу пешеход и велосипедист встретились через т. е.
Составим и решим систему уравнений:
откуда
Ответ: 5 ч.
Задача:
Две бригады, работая вместе, ремонтировали дорогу в течение б дней, а затем одна вторая бригада закончила ремонт за 10 дней. За сколько дней могла бы отремонтировать дорогу одна первая бригада, если она может выполнить эту работу на б дней быстрее, чем одна вторая?
Решение:
Составим таблицу зависимостей между величинами.
Обозначим объем всей работы через 1, тогда получим уравнение
Зная, что одна первая бригада может выполнить эту работу на б дней быстрее, чем одна вторая, составим уравнение
Составим и решим систему уравнений:
Ответ: 18 ч.
Формула длины отрезка с заданными координатами его концов. Уравнение окружности
Для применения графического метода решения систем необходимо знать графики различных уравнений. Многие из них вам уже знакомы. Это, например, прямая, гипербола, парабола.
Расширим возможности использования графического метода решения систем нелинейных уравнений и выведем уравнение окружности с центром в заданной точке с заданным радиусом. Для этого сначала выведем формулу для вычисления длины отрезка с заданными координатами его концов, т. е. для вычисления расстояния между двумя точками, заданными своими координатами.
Рассмотрим точки и (рис. 73). Найдем расстояние между этими точками (длину отрезка ). Рассмотрим прямоугольный треугольник , в котором По теореме Пифагора найдем гипотенузу треугольника
Получили формулу длины отрезка с заданными координатами его концов, или формулу расстояния между двумя точками с координатами
Пример №15
Найдите расстояние между точками А(-1; 3) и В(2; 5).
Решение:
Подставим координаты точек А(-1; 3) и В(2; 5) в формулу расстояния между двумя точками и получим, что
Рассмотрим окружность на координатной плоскости. Окружность — это множество точек плоскости, расстояние от каждой из которых до одной данной точки (центра окружности) является величиной постоянной, равной радиусу окружности
По формуле расстояния между двумя точками найдем расстояние от данной точки (центра окружности) до произвольной точки окружности (рис. 74):
Рис. 74
или
Таким образом, если точка принадлежит окружности с центром и радиусом то ее координаты удовлетворяют уравнению
Уравнение является уравнением окружности с центром в точке и радиусом
Если координаты точки удовлетворяют уравнению то эта точка принадлежит окружности с центром и радиусом
Покажем, что если точка не принадлежит окружности с центром и радиусом то ее координаты не удовлетворяют уравнению Действительно, если точка лежит вне окружности, то расстояние от нее до центра окружности больше радиуса, т. е. , а если точка лежит внутри окружности, то меньше,
т. е.
Чтобы составить уравнение окружности, нужно:
- Определить координаты центра окружности
- Определить радиус окружности
- Подставить найденные значения и в уравнение окружности
Составьте уравнение окружности с центром в точке (-8; 2) и радиусом 5.
Решение:
(1)
(2)
(3)
Пример №16
Составьте уравнение окружности:
а) с центром в точке (4; -1) и радиусом
б) с центром в точке (0; 0) и радиусом 4.
Решение:
а) Подставим координаты центра окружности и значение радиуса в уравнение окружности и получим
б) Координаты центра окружности: радиус окружности Тогда уравнение данной окружности
Если центром окружности радиуса является начало координат, то ее уравнение имеет вид
Пример №17
Определите количество решений системы уравнений
Решение:
Рис. 75
Построим графики уравнений системы. Первое уравнение — это уравнение окружности с центром в начале координат и радиусом, равным 4. Графиком второго уравнения является парабола с вершиной в точке (1; 5), пересекающая ось ординат в точке (0; 4).
Построенные графики пересекаются в четырех точках (рис. 75). Значит, данная система уравнений имеет 4 решения.
Ответ: 4 решения.
Пример №18
Найдите длину отрезка , если
Решение:
По формуле длины отрезка получим:
Пример №19
Найдите длину диагонали прямоугольника, если заданы его вершина и точка пересечения его диагоналей
Решение:
Найдем длину отрезка
Длина отрезка равна половине диагонали прямоугольника, следовательно, длина диагонали равна 10.
Пример №20
Определите координаты центра и радиус окружности:
а)
б)
в)
Решение:
а)
б)
в)
Пример №21
Какие из данных точек лежат на окружности
а)
б)
в)
г)
Решение:
Подставим координаты точек в уравнение окружности:
а) равенство верное, значит, точка лежит на окружности; б) значит, точка не лежит на окружности;
в) значит, точка не лежит на окружности;
г) равенство верное, значит, точка лежит на окружности.
Пример №22
Запишите уравнение окружности с центром в точке (-1; 1) и радиусом
Решение:
уравнение окружности.
Пример №23
Запишите уравнение окружности с центром в точке , для которой отрезок является радиусом, если А(2; 4), В(5; 7).
Решение:
радиус найдем по формуле расстояния между двумя точками:
Уравнение окружности
Пример №24
Решите систему уравнений используя графический метод.
Решение:
График первого уравнения — прямая, проходящая через точки (3; 0), (0; 3). График второго уравнения — окружность с центром в начале координат и радиусом, равным 3.
Координаты точек пересечения (3; 0), (0; 3) — решения системы.
- Дробно-рациональные неравенства
- Прогрессии в математике – арифметическая, геометрическая
- Единичная окружность – в тригонометрии
- Определение синуса и косинуса произвольного угла
- Рациональная дробь
- Функция в математике
- Наибольшее и наименьшее значения функции
- Раскрытие неопределенностей
Целые рациональные уравнения
Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.
Если в дроби нет деления на переменную (то есть на ( displaystyle x), ( displaystyle y) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:
( displaystyle begin{array}{l}frac{2x}{3}=13-frac{3x}{2};\4(2y-3)=y-9.end{array})
Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.
Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:
( displaystyle frac{2x}{3}+frac{3x}{2}=13);
Какой наименьший общий знаменатель будет?
Правильно ( displaystyle 6)!
Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на ( displaystyle 2), а второго на ( displaystyle 3), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.
А ( displaystyle 13) не трогаем, оно нам не мешает, имеем:
( displaystyle frac{4x}{6}+frac{9x}{6}=13)
( displaystyle frac{13x}{6}=13),
А теперь делим обе части на ( displaystyle 13):
( displaystyle begin{array}{l}frac{x}{6}=1\x=6end{array})
Тут все просто?
Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, ( displaystyle 6), так ( displaystyle 6), ну можно для верности подставить этот ответ в исходное уравнение, получим ( displaystyle 0=0), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).
Дробно-рациональные уравнения
А вот еще одно уравнение ( displaystyle frac{5}{x+1}+frac{4{x}-6}{(x+1)cdot (x+3)}=3).
Это уравнение целое? НЕТ!!! Тут есть деление на переменную ( displaystyle x), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.
Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.
Для начала найдем наименьший общий знаменатель, это будет ( displaystyle (x+1)cdot (x+3)).
Важный момент!
В предыдущем примере, где было целое уравнение мы не стали свободный член ( displaystyle 13) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель ( displaystyle (x+1)cdot (x+3)).
А это тебе не шутки, переменная в знаменателе!
Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!
Это надеюсь, ты запомнишь, но давай посмотрим что вышло:
( displaystyle frac{5(x+1)cdot (x+3)}{x+1}+frac{(4{x}-6)cdot (x+1)cdot (x+3)}{(x+1)cdot (x+3)}=3cdot (x+1)cdot (x+3)).
Что-то оно огромное получилось, надо все посокращать:
( displaystyle 5(x+3)+(4{x}-6)=3cdot (x+1)cdot (x+3)).
Раскроем скобки и приведем подобные члены:
( displaystyle begin{array}{l}9x+9=3{{x}^{2}}+12x+9\3{{x}^{2}}+3x=0.end{array})
Ну как, это уже попроще выглядит, чем в начале было?
Выносим за скобку общий множитель: ( displaystyle 3xcdot (x+1)=0)
У этого уравнения два решения, его левая сторона принимает нулевое значение при ( displaystyle x=0) и ( displaystyle x=-1).
Вроде бы все, ну ладно давайте напоследок подставим корни ( displaystyle x=0) и ( displaystyle x=-1) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим ( displaystyle 0), получается ( displaystyle 3=3) –нет претензий?
С ним все нормально. А теперь ( displaystyle -1), и тут же видим в знаменателе первого члена ( displaystyle -1+1)!
Но ведь это же будет ноль!
На ноль делить нельзя, это все знают, в чем же дело???
Дело в ОДЗ — Области Допустимых Значений!
(если забыл что это, повтори тему «ОДЗ — область допустимых значений»!)
Всякий раз когда ты видишь уравнение, где есть переменные (( displaystyle x,y) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.
Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.
Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:
ОДЗ: ( displaystyle x+1ne 0) и ( displaystyle x+3ne 0) ( displaystyle Rightarrow xne -1) и ( displaystyle xne -3).
Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами ( displaystyle x=0) и ( displaystyle x=-1) мы смело исключаем ( displaystyle x=-1), т.к. он противоречит ОДЗ.
Значит, какой ответ будет у решенного уравнения?
В ответ стоит написать только один корень, ( displaystyle x=0).
Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.
Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,
ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!
Рациональные выражения, уравнения и дробно-рациональные уравнения
Повторим еще раз то, что прошил в предыдущих разделах, больше используя язык математики.
Рациональное выражение – это алгебраическое выражение, составленное из чисел и переменной ( displaystyle x) с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.
Ну а рациональное уравнение – это равенство двух рациональных выражений.
Дробно-рациональные уравнения – рациональные (без знака корня) уравнения, в которых левая или правая части являются дробными выражениями.
Например:
( displaystyle frac{{{x}^{2}}-2{x}-3}{{x}-1}-frac{x+1}{{x}-3}={{x}^{2}}-1) (чаще всего мы встречаем именно дробно рациональные уравнения).
В общем случае при решении рациональных уравнений мы стремимся преобразовать его к виду: Произведение = «( displaystyle 0)» или Дробь = «( displaystyle 0)«, например:
( displaystyle frac{left( {x}-2 right)left( x+3 right)left( {{x}^{2}}+1 right)}{xcdot left( {x}-3 right)}=0).
Тогда мы сможем сказать, что любой из множителей числителя может быть равен нулю, но знаменатель при этом нулю не равен.
Для этого нам нужно сначала всё перенести в левую часть уравнения (не забываем при этом поменять знаки между слагаемыми: «( displaystyle +)» на «( displaystyle —)» и наоборот).
Затем мы обычно приводим все к общему знаменателю, и пишем систему:
( displaystyle left{ begin{array}{l}Числитель=0,\Знаменательne 0.end{array} right.)
Например:
( displaystyle begin{array}{l}frac{{x}-2}{{{x}^{2}}+2{x}-3}-frac{x+1}{{{x}^{2}}+5x+6}=frac{3}{x+3}Leftrightarrow \Leftrightarrow frac{{x}-2}{left( {x}-1 right)left( x+3 right)}-frac{x+1}{left( x+2 right)left( x+3 right)}-frac{3}{x+3}=0Leftrightarrow end{array})
( displaystyle Leftrightarrow frac{{{x}^{2}}-4-left( {{x}^{2}}-1 right)-3left( {{x}^{2}}+{x}-2 right)}{left( {x}-1 right)left( x+2 right)left( x+3 right)}=0Leftrightarrow frac{-3{{x}^{2}}-3x+3}{left( {x}-1 right)left( x+2 right)left( x+3 right)}=0Leftrightarrow )
( displaystyle Leftrightarrow left{ begin{array}{l}{{x}^{2}}+{x}-1=0\left( {x}-1 right)left( x+2 right)left( x+3 right)ne 0end{array} right.Leftrightarrow left{ begin{array}{l}left[ begin{array}{l}x=frac{-1+sqrt{5}}{2}\x=frac{-1-sqrt{5}}{2}end{array} right.\xne 1\xne -2\xne -3end{array} right.Leftrightarrow left[ begin{array}{l}x=frac{-1+sqrt{5}}{2}\x=frac{-1-sqrt{5}}{2}.end{array} right.)
Если знаменателя нет, или он является числом, – тем лучше, не придется решать неравенство.
Как бы то ни было, в ЕГЭ все рациональные выражения степени больше ( displaystyle 2) легко преобразуются в произведение более простых выражений при помощи либо перегруппировки, либо замены переменных (см. раздел «Разложение многочлена на множители»).