Как найти корень уравнения log4

Как решать логарифмические уравнения – подробный разбор

Опубликовано 12.01.2018

Чтобы ответить на вопрос как решать логарифмические уравнения давайте вспомним, что такое логарифм. Логарифм – это показатель степени, в которую нужно возвести основание логарифма, чтобы получить число.

Например,

2^3=8 или число 3 (показатель степени) мы можем записать так  log_2{8}, таким образом log_2{8} =3

Основание логарифма всегда положительное число, не равное 1. Число под знаком логарифма – строго больше нуля.

Теперь переходим непосредственно к вопросу – как решать логарифмические уравнения из профильного и из базового ЕГЭ.

Пример 1 Найдите корень уравнения.

log_2{(7-x)}=5

согласно определению логарифма:

 2^5=7-x

32=7-x

Все неизвестные переносим в левую часть уравнения (слева от =), а известные – переносим в правую сторону.

Получим:

x=7-32

x=-25

Делаем проверку:

log_2{(7-(-25))}=5

 log_2{32}=5

5=5

Ответ: x=-25

Пример 2. Найдите корень уравнения.

log_7{(9-x)}=3log_7{3}

Здесь для решения данного логарифмического уравнения будем использовать свойство логарифма:

mlog_a{b}=log_a{b^m}

То есть внесем число 3 справа под знак логарифма.

log_7{(9-x)}=log_7{3^3}

или

log_7{(9-x)}=log_7{27}

Если показатели степени равны, основания степени равны, то равны числа, получаемые в результате, то есть получим

9-x=27

-x=27-9

-x=18

x=-18

Делаем проверку: log_7{(9+18)}=log_7{27}

Получаем: log_7{27}=log_7{27}

27=27

Ответ: x=-18

Пример 3. Найдите корень уравнения

log_4{(2-x)}=log_{16}{25}

Используем следующее свойство логарифма:

log_{a^n}{b}=frac{1}{n}log_a{b}=log_a{b^{frac{1}{n}}}

Тогда получим:

log_4{(2-x)}=log_4{25^{frac{1}{2}}}

 log_4{(2-x)}=log_4{5}

2-x=5

-x=5-2

-x=3

x=-3

Свойства логарифмов

Делаем проверку:

log_4{(2-(-3))}=log_{16}{25}

log_4{5}=log_4{5}

5=5

Ответ: x=-3

Пример 4. Найдите корень уравнения.

log_2{(4-x)}=8

Используя определение логарифма, получим:

4-x=2^8

4-x=256

-x=256-4

-x=252

x=-252

Проверим: log_2{(4-(-252))}=8

log_2{256}=8

8=8

Ответ: x=-252.

Таким образом, теперь вы можете составить четкую инструкцию, как решать логарифмические уравнения. Она заключается в следующих шагах:

  1. Сделать справа и слева от знака равенства (=) логарифмы по одному основанию, избавившись от коэффициентов перед логарифмами, используя свойства логарифмов.
  2. Избавляемся от логарифмов, используя правило потенцирования. Остаются только числа, которые были под знаком логарифма.
  3. Решаем получившееся обычное уравнение – как найти корень уравнения смотрите здесь.
  4. Делаем проверку
  5. Записываем ответ.

( 4 оценки, среднее 5 из 5 )

   Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях «Тригонометрические уравнения», «Решение рациональных уравнений». В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение  в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Определение

Логарифмом числа a  по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.

Определение логарифма

Основное логарифмическое тождество:

Основное логарифмическое тождество

Например:

 log39 = 2, так как  32 = 9

Свойства логарифмов:

Частные случаи логарифмов:

Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

Найдите корень уравнения:  log3(4–x) = 4

Используем основное логарифмическое тождество.

Так как  logba = x   bx = a,  то

34 = 4 – x

x = 4 – 81

x =  – 77

Проверка:

log3(4–(–77)) = 4

log381 = 4

34 = 81  Верно.

Ответ: – 77

Решите самостоятельно:

Найдите корень уравнения:  log(4 – x) = 7

Посмотреть решение 

Найдите корень уравнения log5 (4 + x) = 2

Используем основное логарифмическое тождество.

Так как   logab = x       bx = a,   то

52 = 4 + x

x =52 – 4

x = 21

Проверка:

log5(4 + 21) = 2

log525 = 2

52 = 25 Верно.

Ответ: 21

Найдите корень уравнения  log3(14 – x) = log35.

Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

 Если    logca = logcb,   то  a = b

14 – x = 5

x = 9

Сделайте проверку.

Ответ: 9

Решите самостоятельно:

Найдите корень уравнения  log5(5 – x) = log53.

Посмотреть решение 

Найдите корень уравнения: log4(x + 3) = log4(4x – 15).

Если   logca = logcb,   то  a = b

x + 3 = 4x – 15

3x = 18

x = 6

Сделайте проверку.

Ответ: 6

Найдите корень уравнения   log1/8(13 – x) = – 2.

(1/8)–2 = 13 – x

82 = 13 – x

x = 13 – 64

x = – 51

Сделайте проверку.

Небольшое дополнение – здесь используется свойство

степени (отрицательная степень дроби).

Ответ: – 51

Решите самостоятельно: 

Найдите корень уравнения:  log1/7(7 – x) = – 2

Посмотреть решение 

Найдите корень уравнения  log(4 – x) = 2 log5.

Преобразуем правую часть. воспользуемся свойством:

logabm = m∙logab

log2(4 – x) = log252

Если    logca = logcb,   то  a = b

4 – x = 52

4 – x = 25

x = – 21

Сделайте проверку.

Ответ: – 21

Решите самостоятельно: 

Найдите корень уравнения:  log5(5 – x) = 2 log3

Посмотреть решение 

Решите уравнение   log5(x2 + 4x) = log5(x2 + 11)

Если    logca = logcb,   то  a = b

x2 + 4x = x2 + 11

4x = 11

x = 2,75

Сделайте проверку.

Ответ: 2,75

Решите самостоятельно: 

Найдите корень уравнения  log5(x2 + x) = log5(x2 + 10).

Посмотреть решение 

Решите уравнение   log2(2 – x) = log2(2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

log2 (……)

Представляем 1 как логарифм с основанием 2:

1 = log2

Далее применяем свойство:

logс(ab) = logсa + logсb

log2(2 – x) = log2(2 – 3x) + log22

Получаем:

log2(2 – x) = log2 2 (2 – 3x)

Если    logca = logcb,   то  a = b, значит

2 – x = 4 – 6x

5x = 2

x = 0,4

Сделайте проверку.

Ответ: 0,4

Решите самостоятельно: 

Найдите корень уравнения  log5(7 – x) = log5(3 – x) +1

Посмотреть решение 

Решите уравнение logх–125 = 2.  Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Воспользуемся основным логарифмическим тождеством:

(x – 1)2= 25

Далее необходимо решить квадратное уравнение. Кстати, квадратное уравнение, как вы поняли, это очень важная «буковка» в математической азбуке. К нему сводятся очень многие решения совершенно различных задач. Помнить формулы дискриминанта и корней нужно обязательно, и уметь решать такое уравнение вы должны очень быстро, периодически практикуйтесь.

Конечно же, опытный глаз сразу увидит, что в нашем примере выражение, стоящее под знаком квадрата равно 5 или – 5, так как только эти два числа  при возведении в квадрат дают 25, устно можно посчитать:

корни равны 6  и  – 4.

Корень  “–4″ не является решением, так как основание логарифма должно быть больше нуля, а при  “ 4″ оно равно «5». Решением является корень 6. Сделайте проверку.

Ответ: 6.

Решите самостоятельно: 

Решите уравнение logx–5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Посмотреть решение

Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать  свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

На чтение 1 мин. Просмотров 1.9k.

Найти корень логарифмического уравнения непросто – сначала, возможно, потребуется упрощение уравнения, применение известных свойств логарифма. Цель – сделать так, чтобы и слева, и справа от равенства был логарифм по одинаковому основанию.

Найдите корень уравнения log_4(7+6x)=log_4(1+x)+2.

Решение:

Представим 2 в виде логарифма, используя свойство a=a log_m m=log_m m^a, где m-любое положительное число (m neq 1) и log_m m=1.

Получим:

2=log_4 4^2.

Уравнение примет вид:

log_4(7+6x)=log_4(1+x)+log_4 4^2

log_4 (7+6x)=log_4 (1+x)cdot 16

Здесь мы упростили log_4(1+x)+log_4 4^2, использовав свойство логарифмов: log_a b+log_a c=log_a bc

Слева логарифм по основанию 4 и справа логарифм по основанию 4, значит, будут равны и числа под знаком логарифма:

7+6x=16(1+x)

Решим полученное уравнение:

7+6x=16+16x

-10x=9

x=-0,9.

Так как число под знаком логарифма не может быть отрицательным, проверим 7+6x>0 и 1+x>0.

7+6(-0,9)=1,6>0

1-0,9=0,1>0

Проверка:

log_4(7+6(-0,9))=log_4(1-0,9)+2

log_4 1,6=log_4 0,1 +log_4 16

log_4 1,6=log_4 1,6

Уравнение решено верно.

Ответ: -0,9.

( 3 оценки, среднее 5 из 5 )


Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение.
Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное
решение с пояснениями
, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Вы можете посмотреть теорию о логарифмической функции и логарифмах и
некоторые методы решения логарифмических уравнений.

Примеры подробного решения >>

ln(b) или log(b) или log(e,b)– натуральный логарифм числа b
log(10,b) – десятичный логарифм числа b
log(a,b) – логарифм b по основанию a
Введите логарифмическое уравнение

Наши игры, головоломки, эмуляторы:

Немного теории.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x4 = 81
По определению арифметического корня имеем ( x = sqrt[4]{81} = 3 )

Задача 2. Решить уравнение 3x = 81
Запишем данное уравнение так: 3x = 34, откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том,
что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3.
Но уже, например, уравнение 3x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень.
Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение ax = b, где a > 0, ( a neq 1 ), b > 0, имеет единственный корень. Этот корень называют
логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, ( a neq 1 ), называется показатель степени,
в которую надо возвести число a, чтобы получить b

Например:

log28 = 3, так как 23 = 8

( log_3 frac{1}{9} = -2 ), так как ( 3^{-2} = frac{1}{9} )

log77 = 1, так как 71 = 7

Определение логарифма можно записать так:

$$ a^{log_a b} = b $$

Это равенство справедливо при b > 0, b > 0, ( a neq 1 ). Его обычно называют основным логарифмическим тождеством.

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64x = 128. Так как 64 = 26, 128 = 27,
то 2 6x = 27, откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить ( 3^{-2log_3 5} )
Используя свойства степени и основное логарифмическое тождество, находим

$$ 3^{-2log_3 5} = left( 3^{log_3 5} right)^{-2} = 5^{-2} = frac{1}{25}$$

Решить уравнение log3(1-x) = 2
По определению логарифма 32 = 1 – x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются
различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, ( a neq 1 ), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

1) loga(bc) = logab + logac

2) ( log_a frac{b}{c} = log_a b – log_a c )

3) logabr = r logab

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора.
И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число,
приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + frac{1}{1} + frac{1}{1 cdot 2} + frac{1}{1 cdot 2 cdot 3} + dots + frac{1}{1 cdot 2 cdot 3 cdot dots cdot n} + dots $$

или

$$ e = sum_{n=0}^{infty} frac{1}{n!} $$

$$ e approx 2,7182818284 $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы
чисел по любому основанию.
Для этого используется формула замены основания логарифма:

$$ log_a b = frac{log_c b}{log_c a} $$

где b > 0, a > 0, ( a neq 1 ), c > 0, ( c neq 1 )

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ log_a b = frac{lg b}{lg a} , ;; log_a b = frac{ln b}{ln a} $$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, ( a neq 1 )

Логарифмическая функция обладает свойствами:

1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке ( (0; +infty) ), если a > 1,
и убывающей, если 0 < a < 1.

5) Если a > 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 < x < 1.
Если 0 < a < 1, то функция y = logax принимает положительные значения при 0 < х < 1,
отрицательные при х > 1.

Ось Oy является вертикальной асимптотой графика функции y = logax


Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Теорема. Если logax1 = logax2 где a > 0, ( a neq 1 ),
x1 > 0, x2 > 0, то x1 = x2

Логарифмическая функция y = logax и показательная функция y = ax, где a > 0, ( a neq 1 ), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма
верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8

х2 + 4х + 3 = 8, т.е. х2 + 4x – 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого
уравнения.
Ответ x = 1

Решить уравнение lg(2x2 – 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x2 – 4x + 12) = lg(x2 + 3x)
откуда
2x2 – 4x + 12 = x2 + 3x
x2 – 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x – 1) • log4x = 2 log4(2x – 1)
Преобразуем данное уравнение:
log4(2x – 1) • log4x – 2 log4(2x – 1) = 0
log4(2х – 1) • (log4 x – 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х – 1) = 0, откуда 2х – 1 = 1, х1 = 1
2) log4 х – 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16

Найдите корень уравнения log4 (7 + 6x) = log4 (1 + x) + 2.

Источник: Ященко ЕГЭ 2023 (36 вар)

Решение:

log4 (7 + 6x) = log4 (1 + x) + 2
log4 (7 + 6x) = log4 (1 + x) + 2·1
log4 (7 + 6x) = log4 (1 + x) + 2·log4 4 (5)
log4 (7 + 6x) = log4 (1 + x) + log4 42 (12)
log4 (7 + 6x) = log4 (1 + x) + log4 16

log4 (7 + 6x) = log4 ((1 + x)·16) (6)
log4 (7 + 6x) = log4 (16 + 16x)
основания логарифмов равны и больше 1
7 + 6x = 16 + 16x (17)
7 – 16 = 16x – 6х
–9 = 10х
х = –9/10 = –0,9

Ответ: –0,9.

Используем свойства логарифмов (в решении в скобках указываю какое свойство использовал):

Свойства логарифмов, логарифмы и их свойства

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.6 / 5. Количество оценок: 24

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Добавить комментарий